Strings

Computer Science & Engineering 155E
Computer Science I: Systems Engineering Focus

Lecture — Strings > Until now we have only dealt with single characters
» char myChar = ’A’, ’\n’

. » Processing and manipulating single characters is too limiting
Christopher M. Bourke

cbourke@cse . unl . edu » Need a way for dealing with groups of characters

Strings String Basics

» A collection of characters is called a string Calls to scanf or printf used a string constant as the first argument

» We have also dealt with static strings: "Hello World!"
printf("a = %d\n", a)
printf ("Average = %.2f", avg)

» C has no string data type

> Instead, strings are arrays of characters, char myStringl[],

char myName [20]
J . . . » Each string above is a string of 12, 7, and 14 characters respectively
» Necessary to represent textual data, communicate with users in a

» Its possible to use a preprocessor directive:
readable manner

#define INSUFF_DATA "Insufficient Data"

Static Strings Declaring and Initializing String Variables

» Strings are character arrays

» Declaration is the same, just usechar
char string_var[100];

. . . . char myName[30];
» Static strings cannot be changed during the execution of the program . .
. » myName will hold strings anywhere from 0 to 29 characters long
» They cannot be manipulated or processed o .
. » Individual characters can be accessed/set using indices
» May only be changed by recompiling

» Stored in an array of a fixed size 1 |myName [0] = ’C’;
2 |myName [1] = ’h’;
3 |myName [2] = ’r’;
4 |myName [3] = ’i’;
5 |myName [4] = ’s’;
6 |printf ("First initial: %c.\n", myName[0]);

Declaring and Initializing String Variables

» You can declare and initialize in one line
» Be sure to use the double quotes
> char myName[30] = "Chris";

> You need not specify the size of the array when declaring-initializing in
one line:

> char myName[] = "Chris";

» C will create a character array large enough to hold the string

Null Terminating Character

v

C needs a way to tell where the end of a string is

With arrays, it is the programmer's responsibility to ensure they do not
access memory outside the array

To determine where the string ends, C uses the null-terminating
character, \O

ASCII text character 0

Null Terminating Character

Example
char str[20] = "Initial value"; will produce the following in memory:
(O [0[RI T B[@[BTIl [B[]
(T [nfifet[iJal1] [v]al]
[[10] [[1a] | [12] [[13] | [14] [[15] | [16] | [17] [[18] | [19] |
(Y JufefN[?r]2]2[2[7]7]

Arrays

v

v

of Strings

Without the null terminating character, C would not know where the
string ends

Many functions parse a string until it sees \O

Without it, the program would run into memory space that doesn’t
belong to it

char str[20] can only hold 19 characters: at least one character is
reserved for \0

In declarations, char myName[] = "Chris", C automatically inserts the
null-terminating character

Printing Strings

> You can use printf to print strings

> Use %s as a placeholder:
printf ("My Name is %s.\n", myName);
> printf prints the string until the first null-terminating character

Arrays

v

>

of Strings

One string is an array of characters; an array of strings is a
two-dimensional array of characters

1 |#define NUM_PEOPLE 30
2 |#define NAME_LEN 25

30...

4 | char names [NUM_PEOPLE] [NAME_LEN];

names can hold 30 names each of up to 24 characters long

Arrays of Strings Reading Strings |

We can initialize an array of strings at declaration in the following manner:

1 |char month [12][10] = {"January", "February", > You can use scanf and %s to read strings
2 "March","April", "May", "June", "July", » printf("Enter Topic: ");
3 "August", "September","October", scanf ("%s", string_var);
4 "November", "December"}; » scanf skips leading whitespace characters such as blanks, newlines, and
tabs
» Starting with the first non-whitespace character, scanf copies the
» As with other arrays, the [12] is optional characters it encounters into successive memory cells of its character array
» Why [10]7 argument
. . . » When a whitespace character is reached, scanning stops, and scanf places
> September is the longest string with 9 characters the null character at the end of the string in its array argument
» Needs an additional character for the null-terminating character
Reading Strings Il String Library Functions: Assignment and Substrings
> Note: no & is used » The assignment operator, = works for simple data types
» The array is already represented by a memory address » For strings, = only works in the declaration
» Dangerous: the user can put as many characters as they want 1 |char message [30];
> If they input more characters than the string can hold: overflow 2 |message = "Hello!"; < lllegal
> Segmentation Fault, may not even crash o]]
» This is because arrays point to a memory location
» Rest of the program may produce garbage results . . .
» Cannot assign arbitrary values to memory pointers
» Must use library functions to do so
String Library String Assignment |

» To assign a value to a string, we actually copy it

» char *strcpy(char *dest, const char *src) copies string src

> C provides a standard string library (source) into dest (destination)
> Use #include<string.h> > Note:
» Table 9.1 on page 441 summarizes which functions are provided » Second argument has the keyword const: guarantees the source string is

not modified

First argument must point to a memory location large enough to handle
the size of dest

This is your responsibility, C does not do it for you

Returns a pointer to the first character of dest

» Copy, concatenation, comparison, length, tokenizer, etc.

v

v

v

String Assignment |l String Assignment |

Byte-wise

1 |char myEmail [30];

2 |strcpy (myEmail, "cbourke@cse.unl.edu"); » C provides another copying function called strncpy:

char *strncpy(char *dest, const char *src, size_t n);

> Be very careful: » Copies (up to) n character values of src to dest

» Actually copies n bytes, but 1 char is one byte

1 |char myEmail [10];

2 |strcpy (myEmail, "cbourke@cse.unl.edu"); 1 |char myEmail[] = "cbourke@cse.unl.edu";
2 |char myLogin [30];
> In this case, e.unl.edu would overwrite adjacent memory cells 3 |//copy first 7 characters:
4 | strncpy (myLogin, myEmail, 7);
String Assignment |l String Assignment Il
Byte-wise Byte-wise

» Pitfall: If there is no null-terminating character in the first n bytes of

src, strncpy will not insert one for you . L . . .
Py Y » If n is larger than src, the null-terminating character is copied multiple

> You must add the null terminating character yourself times:
1 |[char myEmail[] = "cbourke@cse.unl.edu"; strncpy(aString, "Test", 8);
2 |char myLogin [30]; > Four null terminating characters will be copied
3 |//copy first 7 characters: » Thus, aString contains "Test\0\0\0\0"
4 |strncpy (myLogin, myEmail, 7);
5 |myLogin[7] = ’\0’;
Concatenation | Concatenation |l
1 |char fullName [80];
2 |char firstName [30] = "Chris";
» Concatenation is the operation of appending two strings 3 |char lastName [30] = "Bourke";
» C provides concatenation functions: 4 | strcpy(fullName,lastName);
char *strcat(char *dest, const char *src); 5 |strcat (fullName,", ");
char *strncat(char *dest, const char *src, size_t n); 6 |strcat (fullName,firstName);
3 n 3 ° n .
» Both append src onto the end of dest 7 |printf("My name is %s\n", fullName);

> Result: My name is Bourke, Chris

Concatenation Il

> strncat copies at most n bytes

» From the documentation:
If src contains n or more characters, strncat () writes n + 1 characters
to dest (n from src plus the terminating null byte). Therefore, the size

of dest must be at least the length of dest +n + 1

Comparisons |

» We can do character comparisons, A’ < ’a’

> We can also do string comparisons (lexicographic order)

» As before, we cannot use the usual operators <, > <=, etc.
» Strings (arrays of characters) are memory addresses

> string_1 < string_2, would compare the memory locations

Comparisons |l

» String library provides several comparison functions:

Comparisons IlI

int strcmp(const char *sl, const char *s2); 1 |char nameA[] = "Alpha";
int strncmp(const char *s1, const char *s2, size_t n); 2 | char nameB[] = "Beta";
» Both compare s1, s2 3 |char nameC[] = "Alphie";
’ 4 |if (st A, B) < 0
> If s1 < s2, returns a negative integer if (s . rcmpl('f]ame nameb) o) "
> If s1 > 2, returns a positive integer 5 printf ("%s comes before Y%s\n", nameA, nameB);
, fsi == 5'2 returns zero 6 |if (strncmp (nameA ,nameC,4) == 0)
] 7 printf ("Almost the same!\n");
> strncmp compares only the first n characters
String Length Substrings |

N

v

v

The string library also provides a function to count the number of
characters in a string:

size_t strlen(const char *s);

Returns the number of (bytes) characters appearing before the null
terminating character

» Does not count the size of the array!

char message[50] = "You have mail";
int n = strlen(message);
printf ("message has %d characters\n",n);

Result: message has 13 characters

» A substring is a portion of a string, not necessarily from the beginning

> strncpy can be used to extract a substring (of n characters), but only
from the beginning

» However, we can use referencing to get the memory address of a
character

> &aString[3] is the memory address of the 4th character in aString

> We can exploit this fact to copy an arbitrary substring

Substrings Il
1 | char aString[100] = "Please Email me at the address cbourke@(
2 | char myEmail [20];
3 |//copy a substring
4 |strncpy(myEmail, &aString([31], 19);
5 |printf ("email is %s\n",myEmail);

Result: email = "cbourke@cse.unl.edu"

Pitfalls & Strategies

Two most important questions when dealing with strings:
1. Is there enough room to perform the given operation?

2. Does the created string end in *\0°?

» Read the documentation

» Each string function has its own expectations and guarantees

Scanning a Full Line |

> The scanf only gets non-whitespace characters

> Sometimes it is necessary to get everything, including whitespace

v

Standard function (in stdio library):
char *gets(char *s);
char xfgets(char *s, int size, FILE *stream);

v

gets works with the standard input, fgets works with any buffer (more
in Chapter 12)

gets (get a string)

\{

Scanning a Full Line Il

1 |char read_line [80];
2 |gets(read_line);
3 |printf ("I read your line as \"%s\"\n", read_line);

» Dangerous: If the user enters more than 79 characters, no room for
null-terminating character

» If user enters more than 80 characters: overflow

» Compiler message:

(.text+0x2c5): warning: the ‘gets’function is dangerous and should not be used

Scanning a Full Line Il

> fgets is safer since you can limit the number of bytes it reads:
char read_line[80];
fgets(read_line,80,stdin)

> Reads at most size-1 characters (automatically inserts null-terminating
character)

» Takes the endline character out of the standard input, but retains it in
the string

Comparison and Swapping

We can perform a sorting algorithm to a list of strings:

1 |for(i=0; i<num_string; i++)

2 |{

3 for(j=i; j<num_string; j++)

4

5 if (stremp(list[i], list[j]) < 0)
6 Swap (list [i],1ist[j]1);

7 }

8 |}

What would Swap look like?

Comparison and Swapping Tokenizing

Swapping two strings: . .
wapping tw Ing » Data is often delimited by some marker

; strcpy Etmp 2 [13151" [i1) ’[H » CSV files: Comma Separated Value
strc list[i], listl[]j ;
Py . . J » TSV: Tab Separated Value
3 |strcpy(list[jl, tmp);
> Useful to have a function to split strings into tokens according to some
. delimiter(s)
Careful: how big does tmp need to be?
Tokenizing Tokenizing Example
1 #include<stdio.h>
2 |#include<string.h>
3
4 | int main(void)
» C tokenizer function: 5 [¢
6 char sent[] = "I am taking CSE 150A - Introduction to C";
char *strtok(char *str, const char *delim) 7 char str[15][100];
8 char *tempStr = NULL;

» First call: pass str, string to be tokenized o | e
L. empStr = striok(semt, " ");
» Each subsequent call: pass NULL as str (otherwise, it starts over) B | el Cempe ot hoiLy)
13 {
» delim: a collection of delimiters, examples: " ", " ;:" "\t" u i;;;‘;ifsfﬁﬂgo,ﬁiﬁ,‘ji{f’i o,
» Function returns a pointer to a null-terminated copy of the string hal
(token) without the delimiter(s) 19 | torcino; s<o; 1o
20 printf ("str[%d] = %s\n", i, str[il);
21 return 0;
22 }
Tokenizing Example Command Line Arguments |
Output
1 |strf[0] =1
2 |strr1] = am Up to now, your int main(void) functions have not taken any parameters.
. To read parameters (delimited by white space) in from the command line,
3 |str[2] = taking ou can use
4 |str[3] = CSE Y
5 |str[4] = 150A int main(int argc, char *argv[])
6 |str[5] = -
7 |str[6] = Introduction > argc gives you a count of the number of arguments which are stored in
8 |str[7] = to argv
9 |strl8] = C > argv is an array of strings (two dimensional array of characters)

Command Line Arguments Il

> argv: the first element is the program name (ex: argv[0] = a.out)

> Subsequent elements of argv contain strings read from the command
line

» Arguments are delimited by whitespace

» You can encapsulate multiple words from the command line using the
double quotes

Command Line Arguments Il

“>a.out hello world "hi yall"abc 123

would result in:

argc = 6

argv[0]
argv[1]
argv[2]
argv[3]
argv[4]
argv[5]

a.out
hello

= world

hi yall

= abc
= 123

Command Line Arguments IV

/%

commandLineArgs.c

1
2
3
4 Demonstrates the usage of command line arguments
5 by printing the arguments back to the command
6 line

7

8

*/

10 | #include<stdio.h>
11 | #include<string.h>

13 |int main(int argc, char *argv(l)

15 printf("You entered %d arguments.\n",argc-1);
16 printf ("Program Name: %s\n",argv[0]);

17 int i;

18 for(i=1; i<arge; i++)

19 printf ("\targv(%d] = %s\n",i,argv[il);

20

21 return 0;

2 |}

Character Analysis and Conversion |

» The C ctype.h library provides several useful functions on characters

» isalpha(char ch) is true if ch is an alphabetic character (upper or
lower case)

» isdigit(char ch) is true if ch is a character representing a digit

Character Analysis and Conversion |l

» islower(char ch) is true if ch is a lower-case character
> isupper(char ch) (guess)

> toupper and tolower convert alphabetic characters (no effect
otherwise)

v

ispunct (char ch)

v

isspace(char ch) true if ch is any whitespace character

String-to-Number and Number-to-String Conversions |

» C provides several functions for converting between strings and numbers

» String to numbers:
int atoi(const char *nptr);
double atof(const char *nptr);

v

v

Returns the value of the number represented in the string nptr

a (alpha-numeric) to integer, floating point

> Does not handle errors well: returns zero if it fails (see strtol for
advanced behavior)

String-to-Number and Number-to-String Conversions |l String-to-Number and Number-to-String Conversions |

1 [#include<stdlib.h>
2 |#include<stdio.h>
3
4 |int main(int argc, char xargv[]) .
5 (¢ » sprintf takes numbers, doubles, characters, and strings and
6 if (arge != 3) concatenates them into one large string.
7 { sprintf (string_1, "%d integer %c - %s", int_val, char_val, string_2);
g pr?:t(f_i;lllsage: ks integer double\n”, argv[01); » If int_val = 42, char_val = ‘a’, and string_2 = "Tom Waits"
10 3 exd ! » then string_1 would be "42 integer a - Tom Waits"
1 int a = atoi(argv([1]); > sscanf takes a string and parses it into integer, doubles, characters, and
12 double b = atof (argv[2]); strings
13 printf ("You gave a = %d, b = %f ",a,b);
14 printf("as command line args\n");
15 return O;
16 |}
String-to-Number and Number-to-String Conversions |l String-to-Number and Number-to-String Conversions Ill

1 |int num;
2 | double pij; .
3 | char al[501, b[501; Result:
4 | sscanf ("42 3.141592 Tom Waits", "%d %1f %s %s", &mjlm, 1 |num = 42
5 &pi, 2 |pi = 3.141592
6 a, 3 _

a = Tom
7 L2E 40p = vai

= aits
8 | printf ("num = %d\n", num);
9 |printf ("pi = %f\n", pi);
10 | printf("a = %s\n", a);
11 |printf("b = %s\n", b);
Common Programming Errors | Common Programming Errors Il

» Be careful not to overflow strings

v

> We usually use functions to compute some value and use the return to Always follow expected formats
send that value back to the main function. However functions are not » Read the documentation!
allowed to return strings, so we must use what we learned about

. » Most important: make sure all strings are null-terminated (a >\0’ at the
input/output parameters

end)

Just because your program seems to work, doesn't mean it always does
(ex: add & to a, b in the sscanf snippet above)

» Know when to use & and when not to

v

» Use them for simple data typesint, char, and double
» Do not use them for whole arrays (strings)

Exercises |

1. Write a program that takes command line arguments and prints them
out one by one. Then sort them in lexicographic order and print them
out again.

2. A palindrome is a string that is the same backwards and forwards
(example: tenet, level). Write a program that reads a string from the
command line and determines if it is a palindrome or not. In the case
that it is not, make the string a palindrome by concatenating a reversed
copy to the end.

