
Computer Science & Engineering 155E
Problem Solving Using Computers

Lecture 07 - Simple Data Types

Christopher M. Bourke
cbourke@cse.unl.edu

Chapter 7

7.1 Representation and conversion of numeric types

7.2 Representation and conversion of type char

7.3 Enumerated Types

7.5 Common Programming Errors

We have used three standard data types: int, double, and char.

I Type int values are used in C to represent both the numeric concept of
an integer and the logical concepts true and false.

I Standard types and user-defined enumerated types are simple, or scalar,
data types because only a single value can be stored in a variable of
each type.

Representation and Conversion of Numeric Types

I Differences Between Numeric Types

I Numerical Inaccuracies

I Automatic Conversion of Data Types

I Explicit Conversion of Data Types

Differences Between Numeric Types

Uses of different data types:

I Data type double can be used for (many) “real” numbers.
I But:

I Operations involving integers are faster than those involving double
I Less storage space is needed to store type int values (32-bits versus

64-bits)
I Operations with integers are always precise, whereas some loss of accuracy

can occur when dealing with type double numbers.

I These differences result from the way numbers are represented in the
computer’s memory.

Round-off Error I
Example

1 b = 2.0;

2 printf("b = %.20f\n",b);

3 b = sqrt (2.0);

4 b = pow(b ,2.0);

5 printf("b = %.20f\n",b);

Output:

1 b = 2.00000000000000000000

2 b = 2.00000000000000044409



Round-off Error II
Example

I Certain numbers, such as
√
2 are approximated

I Internally, some interpolation method(s) are used

I Thus, sqrt(2.0) = 1.41421356... is not accurate in the lower order
digits

Base 10

I Humans have 10 fingers, so we naturally developed counting in base-10

I Single numbers are represented using arabic numerals 0 thru 9

I Single numbers are multiplied by various powers of 10 and added
together to form any possible number in base-10

532.41 = 5× 102 + 3× 101 + 2× 100 + 4× 10−1 + 1× 10−2

Base 2

I Computers do not have fingers; they only have states: on/off,
high-voltage/low-voltage, etc.

I Thus, computers work in base-2: binary

I All data are represented in memory as binary strings, strings of 0s and 1s.

I Single numbers are limited to 0, 1

I Single numbers are multiplied by various powers of 2 and added together
to form any possible number in base-2

· · ·+ b2 × 22 + b1 × 21 + b0 × 20 + b−1 × 2−1 + b−2 × 2−2 + · · ·

Base Conversion

I Algorithms for conversion are straightforward, but beyond this course

I Necessary to simply understand what’s going on behind the scenes

110.011 = 1× 22 + 1× 21 + 0× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3

= 1× 4 + 1× 2 + 0× 1 + 0× 1
2 + 1× 1

4 + 1× 1
8

= 4 + 2 + 0 + 0 + 1
4 + 1

8
= 6.375

Data Representation I

I The binary string stored for type in value 13 is not the same as the
binary string stored for 13.0

I Integers are whole numbers and so have a definite end (nothing to the
right of the decimal)

I Floating point numbers could have any number of bits to the left and to
the right of the decimal

I In order to represent a larger range of values, computers store floating
point numbers in a manner analogous to scientific notation

Scientific Notation I

I Scientific Notation (base-10): any number is “normalized” by shifting
the decimal place so that it is between 0 and 10:

14326.123→ 1.4326123E4

0.00529→ 5.29E− 3

I Similarly, floating point numbers (double, float) are divided into two
sections: the mantissa and the exponent.



Scientific Notation II

I The mantissa is a binary fraction between 1
2 = 2−1 and 1 = 20 for

positive numbers and between -0.5 and -1.0 for negative numbers.

I The exponent is an integer.

I The mantissa and exponent are chosen so that:

real number = mantissa× 2exponent

I Because of the finite size of memory cell, not all real numbers in the
range allowed can be represented precisely as type double values
(irrationals, even rationals such as 1/3).

Mantissa-Exponent Example I

I Let 110.011 be our number as before

I Shift right to get the Mantissa: .110011

I We had to shift 3 places, so the exponent is 3 (in binary, that is 11)

Mantissa-Exponent Error I

I When converting to the mantissa-exponent format, we may shift lower
order bits out of range (we can only hold 64 bits)

I Bits shifted out of range are dropped, leading to round off error

Range of Types

Table: Range of values typical in most C implementations

Type Range

short -32,767 ... 32,767
unsigned short 0 ... 65,535
int -32,767 ... 32,767
unsigned int 0 ... 65,535
long int -2,147,483,647 ... 2,147,483,647
unsigned long int 0 ... 4,294,967,295

Range of Types

Table: Range of values according to the ANSI C specification

Type Approximate Range Significant Digits Bits (CSE)

float 10−37 . . . 1038 6 32
double 10−307 . . . 10308 15 64
long double 10−4931 . . . 104932 19 128

Numerical Inaccuracies I

I Representation error: some fractions cannot be represented in the
decimal number system (e.g., 1/3 is 0.3333...), some fractions cannot be
represented exactly as binary numbers in the type double format.

I Sometimes called round-off error
I This depends on the number of binary digits used in the mantissa. More

bits −→ smaller error.
I Because of this kind of error, an equality comparison of two type double

values can lead to surprising results.
I for(i=0.0; i != 10.0; i+=0.1) ...
I Problems can occur when manipulating very large and very small real

numbers.



Numerical Inaccuracies II

I Cancelation error Adding a small number to a large number, the larger
number may “cancel out” the smaller number.

I If x is much larger than y, then x+ y may have the same value as x
(example: 1000.0 + 0.0000001234 is equal to 1000.0 on some
computers).

I Arithmetic underflow: Multiplying small numbers may cause the result
to be too small to be represented accurately, so it will be represented as
zero.

I Arithmetic overflow: adding/multiplying large number (recall: 13!)

Round-Off Error Example

Recall the round cents function we wrote:

1 double roundCents(double m) {

2 double x;

3 x = m * 100;

4 x = floor(x);

5 x = x / 100;

6
7 printf("m-x = %.50f\n", m-x);

8 if(m - x >= 0.005)

9 {

10 x = x + .01;

11 }

12 return x;

13 }

Round-Off Error Example

First run:

1 enter a number: 100.075

2 m-x = 0.00500000000000966338120633736252784729003906250000

3 The rounded value is: 100.080000

Second run:

1 enter a number: 171.065

2 m-x = 0.00499999999999545252649113535881042480468750000000

3 The rounded value is: 171.060000

Automatic Conversion of Data Types

1 int k = 5, m = 4, n;

2 double x = 1.5, y = 2.1, z;

I k + x: k is converted before adding since x is of type double

I z = k / m: conversion is done after division, since both operands are of
type int

I n = x * y: x * y evaluates to get 3.15, but then is converted to 3 to
store it in a type int

I These conversions are automatic and implicit

Explicit Conversion of Data Types

I In addition to automatic conversions, C also provides an explicit type
conversion operation called a cast:
z = (double)k / (double)m;

I The value to be converted causes the value to change to double data
format before it is used in the computation

I Casting is a very high precedence operation, so it is performed before the
division

I (double)(k/m) will do k/m first: The highest precedence operator is
always the parentheses

Enumerated Types

I Certain programming problems require new data types

I Ex: it makes sense in a calendar program to be able to distinguish
between months

I C allows you to associate a numeric code with each category by creating
an enumerated type that has its own list of meaningful values.

1 typedef enum {

2 january , february , march , april , may ,

3 june , july , august , september , october ,

4 november , december}

5 month_t;



Enumerated Types

I Defining type month as shown causes the enumeration constant
january to be represented as the integer 0, february to be represented
as integer 1, etc.

I Variable month and the twelve enumeration constants can be
manipulated just as one would handle any other integers.

I Like variables and functions, user defined types must be defined before
you use them

I Enumerated types are integers, the keywords associated with them
cannot be printed

I Be careful when doing arithmetic operations on enumerated types

Enumerated Types

1 month_t myMonth;

2 myMonth = january;

3 myMonth ++;

4 if (myMonth == february)

5 printf("True");

6 else

7 printf("False");

8
9 printf("myMonth = %d",myMonth );

10 myMonth = myMonth + 100000;

Common Programming Errors I

I Arithmetic underflow and overflow resulting from a poor choice of
variable type are common causes of run-time errors

I Programs that approximate solutions need to be careful of rounding
errors

I When defining enumerated types, only identifiers can appear in the list
of values for the type.

Common Programming Errors II

I Do not reuse one of the identifiers in another type, as a variable name,
etc. (compile error)

I Keep in mind that there is no built-in facility for input/output of the
identifiers that are the valid values of an enumerated type. You must
either display the underlying integer representation or write your own
input/output functions.


