Chapter 7

Computer Science & Engineering 155E
Problem Solving Using Computers

Lecture 07 - Simple Data Types 7.1 Representation and conversion of numeric types
7.2 Representation and conversion of type char

. 7.3 Enumerated Types
Christopher M. Bourke

cbourke@cse . unl . edu 7.5 Common Programming Errors

Representation and Conversion of Numeric Types

We have used three standard data types: int, double, and char.

» Type int values are used in C to represent both the numeric concept of
an integer and the logical concepts true and false.

v

Differences Between Numeric Types

v

. ) Numerical Inaccuracies
» Standard types and user-defined enumerated types are simple, or scalar,

. . . > I i
data types because only a single value can be stored in a variable of Automatic Conversion of Data Types

each type. » Explicit Conversion of Data Types
Differences Between Numeric Types Round-off Error |
Example
Uses of different data types: 1 b = 2.0;
> Data type double can be used for (many) “real” numbers. 2 printf ("b = %.20f\n",b);
) S
» Operations involving integers are faster than those involving double _ pow N ’ - D R .
> Less storage space is needed to store type int values (32-bits versus 5 printf("b = 7%.20f\n",b);
64-bits)
» Operations with integers are always precise, whereas some loss of accuracy Output:
can occur when dealing with type double numbers. :
> These differences result from the way numbers are represented in the 1|b = 2.00000000000000000000
computer's memory. 2 |b = 2.00000000000000044409




Round-off Error Il Base 10
Example
» Certain numbers, such as /2 are approximated » Humans have 10 fingers, so we naturally developed counting in base-10
. . > Single numbers are represented using arabic numerals 0 thru 9
> Internally, some interpolation method(s) are used ) o >
. . » Single numbers are multiplied by various powers of 10 and added
> Thus, sqrt(2.0) = 1.41421356. .. is not accurate in the lower order . .
digit together to form any possible number in base-10
1g1ts
53241 =5x 102 +3 x 10" +2x 10° +4 x 107" +1 x 1072
Base 2 Base Conversion
> C.omputers do not have fingers; they only have states: on/off, » Algorithms for conversion are straightforward, but beyond this course
high-voltage/low-voltage, etc. » Necessary to simply understand what's going on behind the scenes
» Thus, computers work in base-2: binary
» All data are represented in memory as binary strings, strings of Os and 1s.
» Single numbers are limited to 0, 1 110011 = 1x2241x2140x204+0x2141x22+4+1x23
> Single numbers are multiplied by various powers of 2 and added together =

to form any possible number in base-2

'~-+b2><22+b1><21+b0><20+b,1><271+b,2><272+“~

Ix44+1x240x1+0x3+1x5+1x1
4+2+0+0+2+1
6.375

Data Representation |

v

\{

The binary string stored for type in value 13 is not the same as the
binary string stored for 13.0

Integers are whole numbers and so have a definite end (nothing to the
right of the decimal)

Floating point numbers could have any number of bits to the left and to
the right of the decimal

In order to represent a larger range of values, computers store floating
point numbers in a manner analogous to scientific notation

Scientific Notation |

» Scientific Notation (base-10): any number is “normalized” by shifting
the decimal place so that it is between 0 and 10:

14326.123 — 1.4326123E4

0.00529 — 5.29E — 3

> Similarly, floating point numbers (double, float) are divided into two
sections: the mantissa and the exponent.




Scientific Notation Il Mantissa-Exponent Example |

» The mantissa is a binary fraction between % =2"1and 1 =29 for
positive numbers and between -0.5 and -1.0 for negative numbers.

» The exponent is an integer.
» The mantissa and exponent are chosen so that: > Let 110.011 be our number as before

. " » Shift right to get the Mantissa: .110011
real number = mantissa x 267Ponent ) ) o )
> We had to shift 3 places, so the exponent is 3 (in binary, that is 11)
» Because of the finite size of memory cell, not all real numbers in the
range allowed can be represented precisely as type double values
(irrationals, even rationals such as 1/3).

Mantissa-Exponent Error | Range of Types

Table: Range of values typical in most C implementations

» When converting to the mantissa-exponent format, we may shift Jower Type Range
order bits out of range (we can only hold 64 bits) short -32,767 ... 32,767
. . . unsigned short 0 ... 65,535
» Bits shifted out of range are dropped, leading to round off error int 32,767 ... 32,767
unsigned int 0 ... 65,535
long int -2,147,483,647 ... 2,147,483,647
unsigned long int 0 ... 4,294,967,295
Range of Types Numerical Inaccuracies |

» Representation error: some fractions cannot be represented in the
decimal number system (e.g., 1/3 is 0.3333...), some fractions cannot be

Table: Range of values according to the ANSI C specification represented exactly as binary numbers in the type double format.

» Sometimes called round-off error

Type Approximate Range Significant Digits Bits (CSE) » This depends on the number of binary digits used in the mantissa. More
float 10737...10%8 6 32 bits — smaller error.

double 107397 ... 10308 15 64 » Because of this kind of error, an equality comparison of two type double
long double 107491 . 10%932 19 128 values can lead to surprising results.

» for(i=0.0; i != 10.0; i+=0.1) ...
Problems can occur when manipulating very large and very small real
numbers.

v




Numerical Inaccuracies |l Round-Off Error Example

Recall the round cents function we wrote:

» Cancelation error Adding a small number to a large number, the larger
number may ‘“cancel out” the smaller number. 1 | double roundCents(double m) {
2 double x;
» If  is much larger than y, then z + y may have the same value as x 3 x = m * 100;
(example: 1000.0 + 0.0000001234 is equal to 1000.0 on some 41 x = floor(x);
computers). Z ¥ = x / 100;
» Arithmetic underflow: Multiplying small numbers may cause the result 7 printf ("m-x = %.50f\n", m-x);
to be too small to be represented accurately, so it will be represented as g if (m - x >= 0.005)
zero. 10 x = x + .01;
> Arithmetic overflow: adding/multiplying large number (recall: 13!) 1 }
12 return x;
13 |}
Round-Off Error Example Automatic Conversion of Data Types
First run: 1 |int k =5, m = 4, n;

2 |double x = 1.5, y = 2.1, z;

1 |enter a number: 100.075

N

m-x = 0.00500000000000966338120633736252784729003906250000

3 |The rounded value is: 100.080000 . . . .
> k + x: k is converted before adding since x is of type double

» z = k / m: conversion is done after division, since both operands are of

Second run: A
type int

1 |enter a number: 171.065
2 |m-x = 0.00499999999999545252649113535881042480468750000000 <7 -
3 |The rounded value is: 171.060000 store It in a type int

» These conversions are automatic and implicit

> n =x * y: x * y evaluates to get 3.15, but then is converted to 3 to

Explicit Conversion of Data Types Enumerated Types

» Certain programming problems require new data types
» In addition to automatic conversions, C also provides an explicit type » Ex: it makes sense in a calendar program to be able to distinguish
conversion operation called a cast: between months

z = (double)k double)m; . . . .
( e / om; » C allows you to associate a numeric code with each category by creating

» The value to be converted causes the value to change to double data an enumerated type that has its own list of meaningful values.
format before it is used in the computation

typedef enum {
january, february, march, april, may,
june, july, august, september, october,
november , december}

month_t;

» Casting is a very high precedence operation, so it is performed before the
division

v

(double) (k/m) will do k/m first: The highest precedence operator is
always the parentheses

s wWwN =




Enumerated Types Enumerated Types

» Defining type month as shown causes the enumeration constant 1 month_t myMonth;
january to be represented as the integer 0, february to be represented 2 myMonth = january;
as integer 1, etc. 3 myMonth++;
» Variable month and the twelve enumeration constants can be g if (l,nyi’[;l(lfl; ==" ;F.ebruary)
manipulated just as one would handle any other integers. 6 lprln FUS =25
. . else
» Like variables and functions, user defined types must be defined before 7 printf ("False");
you use them 3
» Enumerated types are integers, the keywords associated with them 9 printf ("myMonth = %d",myMonth);
cannot be printed 10 myMonth = myMonth + 100000;
» Be careful when doing arithmetic operations on enumerated types
Common Programming Errors | Common Programming Errors |l

> Do not reuse one of the identifiers in another type, as a variable name,
> Arithmetic underflow and overflow resulting from a poor choice of etc. (compile error)

variable type are common causes of run-time errors » Keep in mind that there is no built-in facility for input/output of the

> Programs that approximate solutions need to be careful of rounding identifiers that are the valid values of an enumerated type. You must
errors either display the underlying integer representation or write your own
» When defining enumerated types, only identifiers can appear in the list input/output functions.

of values for the type.




