
Computer Science & Engineering 155E
Computer Science I: Systems Engineering Focus

Lecture – Recursion

Christopher M. Bourke
cbourke@cse.unl.edu

Recursion

I Functions in C routinely call other functions

I Example: the main function calls the quadraticRoot01 function, which
calls the discriminant function, which calls the sqrt function

I C allows functions to also call themselves

I This is known as recursion

Recursive Functions

I Recursive functions are common in mathematics

I Sequences are recursively defined functions

I Recall the interpolation method for computing the square root:

xi =
1

2

(
xi−1 +

n

xi−1

)

I Functions defined using the functions in the definition (recurrence
relations

I Canonical example: the Fibonacci sequence

Fibonacci Sequence

I Fibonacci sequence defined as the sum of its two previous elements

I Named for Leonardo of Pisa, known as Fibonacci (a contraction of filius
Bonaccio, “son of Bonaccio”)

Fn =





0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

Sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Fibonacci Sequence
From Math to C

I We can easily translate a recursive mathematical function to a recursive
C function

I We just have to be careful to handle certain issues

I We design a function that calls itself: a function that calls a function of
the same name

Recursion
C Code

1 #include <stdlib.h>

2 #include <stdio.h>

3
4 /* Computes the n-th Fibonacci number */

5 int fibonacci(int n);

6
7 int main(int argc , char *argv [])

8 {

9 if(argc != 2)

10 {

11 printf("usage: a.out n\n");

12 exit (-1);

13 }

14 int n = atoi(argv [1]);

15 printf("%d! = %d\n",n,fibonacci(n));

16 }

17
18 int fibonacci(int n)

19 {

20 if(n < 0)

21 return -1;

22 else if(n == 0)

23 return 0;

24 else if(n == 1)

25 return 1;

26 else

27 return fibonacci(n-1) + fibonacci(n-2);

28 }



Recursion
Rules

When using recursion, some rules must be followed:

1. The function must have at least one terminating condition

2. The function must make progress toward a terminating condition

Recursion
Terminating Condition

I We need some guarantee that a recursive function will eventually halt

I A recursive function must have at least one terminating condition

I A “base case” in which the function does not call itself again

I In the Fibonacci program: Three terminating conditions

I Each returns a specific value without calling fibonacci again

Recursion
Progress

I Must, in some way, make progress toward the terminating condition

I Incrementing/decrementing the passed values

I Fibonacci example: each recursive call, fibonacci(n-1),
fibonacci(n-2) decrements n

I Progress is made toward the terminating conditions

I Out of bounds check: function is undefined for n < 0

I If all possibilities are not handled: infinite recursion

Tracing a Recursive Call

I To understand recursion, it is helpful to trace a recursive function call

I Example: fibonacci(5): on the first call, the function makes two
calls:fibonacci(4) and fibonacci(3)

I Each one makes two recursive calls, and each one of those makes its own
recursive calls, etc.

I Full computation can be illustrated with a recursion tree

Tracing a Recursive Call

fibonacci(5)

fibonacci(4)

fibonacci(3)

fibonacci(2)

fibonacci(1) fibonacci(0)

fibonacci(1)

fibonacci(2)

fibonacci(1) fibonacci(0)

fibonacci(3)

fibonacci(2)

fibonacci(1) fibonacci(0)

fibonacci(1)

Tracing a Recursive Call

I Note: fibonacci(5) required 15 calls to fibonacci

I Many calls were unnecessary: fibonacci(2) was called three times!

I Extensive recomputation is required in this case

I Number of recursive calls is exponentially large

I Better way of computing Fn?



Factorial Example

I Recall the factorial function:

n! = n× (n− 1)× (n− 2)× · · · , 2× 1

I We can also write a recursive function for this function:

Fn =

{
1 if n = 1
Fn−1 × n otherwise

I Strategy:

1. Identify and handle the base case(s)
2. Identify and handle the recursive call

Factorial C Code

1 #include <stdlib.h>

2 #include <stdio.h>

3
4 int factorial(int n);

5
6 int main(int argc , char *argv [])

7 {

8 if(argc != 2)

9 {

10 printf("usage: a.out n\n");

11 exit (-1);

12 }

13 int n = atoi(argv [1]);

14 printf("%d! = %d\n",n,factorial(n));

15 }

16
17 int factorial(int n)

18 {

19 if(n < 1)

20 return 0;

21 if(n == 1)

22 return 1;

23 else

24 return n * factorial(n-1);

25 }

Factorial Recursion Tree

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

Factorial Example

I 5! only requires five calls to factorial

I Recursion is linear in depth and number of calls

Advantages & Disadvantages I

Overview

I Some languages may not support recursion

I Non-trivial fact: Any recursive function can be made non-recursive

I Arguments for and against recursion exist

Advantages:

I Simplified code

I Closely matches a Divide & Conquer approach to problems solving

Advantages & Disadvantages II

Disadvantages:

I Generally inefficient: requires many system stack swaps

I May needlessly recompute values (Fibonacci sequence)

I May be harder to debug and/or consider all possibilities

Better Alternatives:

I Tail recursion (no local state to take up the program stack)

I Use smarter data structures (stacks)

I Use memoization (use of a table to store function values to avoid
repeating the same call)



Exercise I

Exercise

In class exercise: Write a non-recursive function for the fibonacci sequence.
Modify the main driver program to count the number of additions that are
preformed (this will require a global variable) and compare the performance of
the two functions.

Exercise II I

The binomial coefficients, C(n, k) or
(
n
k

)
(“n choose k”), are defined as the

number of ways you can select k distinct items from a collection of n items.
A direct combinatorial definition is

(
n

k

)
=

n!

k!(n− k)!

An alternative is Pascal’s identity, which gives a recurrence to compute this
value: (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)

Where
(
n
0

)
= 1 for any n and for all k > n,

(
n
k

)
= 0. Finally,

(
n
1

)
= n.

Exercise II II

Exercise

Write a recursive function to compute
(
n
k

)
using this formula. Then write a

function that uses the factorial definition and try to compute
(
30
12

)
with each

one. What answers do you get and why? Write a main function that takes
n, k as command line arguments and outputs the result of

(
n
k

)
for both the

recursive definition and for the factorial definition.


