Computer Science & Engineering 155E
Computer Science I: Systems Engineering Focus
Lecture – Recursion
Christopher M. Bourke
cbourke@cse.unl.edu

Recursion

- Functions in C routinely call other functions
- Example: the main function calls the quadraticRoot01 function, which calls the discriminant function, which calls the sqrt function
- C allows functions to also call themselves
- This is known as recursion

Fibonacci Sequence

- Fibonacci sequence defined as the sum of its two previous elements
- Named for Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, “son of Bonaccio”)
- We can easily translate a recursive mathematical function to a recursive C function
- We design a function that calls itself: a function that calls a function of the same name

Fibonacci Sequence
From Math to C

- We can easily translate a recursive mathematical function to a recursive C function
- We just have to be careful to handle certain issues
- We design a function that calls itself: a function that calls a function of the same name

Fibonacci Sequence

- Fibonacci sequence defined as the sum of its two previous elements
- Named for Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, “son of Bonaccio”)
- Canonical example: the Fibonacci sequence

$F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{if } n > 1
\end{cases}$

Sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci Sequence

- Fibonacci sequence defined as the sum of its two previous elements
- Named for Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, “son of Bonaccio”)

Recursion

- Functions in C routinely call other functions
- Example: the main function calls the quadraticRoot01 function, which calls the sqrt function
- C allows functions to also call themselves
- This is known as recursion

Recursion

<table>
<thead>
<tr>
<th>C Code</th>
</tr>
</thead>
<tbody>
<tr>
<td># include < stdlib.h></td>
</tr>
<tr>
<td># include < stdio.h></td>
</tr>
<tr>
<td>int fibonacci(int n)</td>
</tr>
<tr>
<td>{</td>
</tr>
<tr>
<td>if(n < 0)</td>
</tr>
<tr>
<td>return -1;</td>
</tr>
<tr>
<td>else if(n == 0)</td>
</tr>
<tr>
<td>return 0;</td>
</tr>
<tr>
<td>else if(n == 1)</td>
</tr>
<tr>
<td>return 1;</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>return fibonacci(n-1) + fibonacci(n-2);</td>
</tr>
<tr>
<td>}</td>
</tr>
</tbody>
</table>

Recursive Functions

- Recursive functions are common in mathematics
- Sequences are recursively defined functions
- Recall the interpolation method for computing the square root:
 \[x_i = \frac{1}{2} \left(x_{i-1} + \frac{n}{x_{i-1}} \right) \]
- Functions defined using the functions in the definition (recurrence relations)
- Canonical example: the Fibonacci sequence

Recursive Functions

- Recursive functions are common in mathematics
- Sequences are recursively defined functions
- Recall the interpolation method for computing the square root:
 \[x_i = \frac{1}{2} \left(x_{i-1} + \frac{n}{x_{i-1}} \right) \]
- Functions defined using the functions in the definition (recurrence relations)
- Canonical example: the Fibonacci sequence

Fibonacci Sequence

- Fibonacci sequence defined as the sum of its two previous elements
- Named for Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, “son of Bonaccio”)
- Canonical example: the Fibonacci sequence

Recursion

- Functions in C routinely call other functions
- Example: the main function calls the quadraticRoot01 function, which calls the sqrt function
- C allows functions to also call themselves
- This is known as recursion
Recursion

Rules

When using recursion, some rules must be followed:
1. The function must have at least one terminating condition
2. The function must make progress toward a terminating condition

Terminating Condition

We need some guarantee that a recursive function will eventually halt
- A recursive function must have at least one terminating condition
- A "base case" in which the function does not call itself again
- In the Fibonacci program: Three terminating conditions
- Each returns a specific value without calling fibonacci again

Progress

- Must, in some way, make progress toward the terminating condition
- Incrementing/decrementing the passed values
- Fibonacci example: each recursive call, fibonacci(n-1), fibonacci(n-2) decrements \(n \)
- Progress is made toward the terminating conditions
- Out of bounds check: function is undefined for \(n < 0 \)
- If all possibilities are not handled: infinite recursion

Tracing a Recursive Call

- To understand recursion, it is helpful to trace a recursive function call
- Example: fibonacci(5): on the first call, the function makes two calls: fibonacci(4) and fibonacci(3)
- Each one makes two recursive calls, and each one of those makes its own recursive calls, etc.
- Full computation can be illustrated with a recursion tree

- Note: fibonacci(5) required 15 calls to fibonacci
- Many calls were unnecessary: fibonacci(2) was called three times!
- Extensive recomputation is required in this case
- Number of recursive calls is exponentially large
- Better way of computing \(F_n \)?
Factorial Example

- Recall the factorial function:
 \[n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1 \]
- We can also write a recursive function for this function:
 \[F_n = \begin{cases} 1 & \text{if } n = 1 \\ F_{n-1} \times n & \text{otherwise} \end{cases} \]

- **Strategy:**
 1. Identify and handle the base case(s)
 2. Identify and handle the recursive call

Factorial C Code

```c
#include <stdio.h>

int factorial(int n);

int main(int argc, char *argv[])
{
  if(argc != 2)
    {
      printf("usage: a.out n
" );
      exit(-1);
    }
  int n = atoi(argv[1]);
  printf("%d! = %d
", n, factorial(n));
}

int factorial(int n)
{
  if(n < 1)
    return 0;
  if(n == 1)
    return 1;
  else
    return n * factorial(n-1);
}
```

Factorial Recursion Tree

```
factorial(5)
  /  \
factorial(4)  factorial(3)
    /  \
factorial(2)  factorial(1)
```

Factorial Example

- \(5! \) only requires five calls to \texttt{factorial}
- Recursion is linear in depth and number of calls

Advantages & Disadvantages I

Overview
- Some languages may not support recursion
- Non-trivial fact: Any recursive function can be made non-recursive
- Arguments for and against recursion exist

Advantages:
- Simplified code
- Closely matches a Divide & Conquer approach to problems solving

Advantages & Disadvantages II

Disadvantages:
- Generally inefficient: requires many system stack swaps
- May needlessly recompute values (Fibonacci sequence)
- May be harder to debug and/or consider all possibilities

Better Alternatives:
- Tail recursion (no local state to take up the program stack)
- Use smarter data structures (stacks)
- Use memoization (use of a table to store function values to avoid repeating the same call)
Exercise I

Exercise
In class exercise: Write a non-recursive function for the fibonacci sequence. Modify the main driver program to count the number of additions that are preformed (this will require a global variable) and compare the performance of the two functions.

Exercise II

Exercise
The binomial coefficients, $C(n, k)$ or $\binom{n}{k}$ ("n choose k"), are defined as the number of ways you can select k distinct items from a collection of n items. A direct combinatorial definition is

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

An alternative is Pascal’s identity, which gives a recurrence to compute this value:

\[\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \]

Where $\binom{n}{0} = 1$ for any n and for all $k > n$, $\binom{n}{k} = 0$. Finally, $\binom{n}{1} = n$.

Exercise II II

Exercise
Write a recursive function to compute $\binom{n}{k}$ using this formula. Then write a function that uses the factorial definition and try to compute $\binom{30}{12}$ with each one. What answers do you get and why? Write a main function that takes n, k as command line arguments and outputs the result of $\binom{n}{k}$ for both the recursive definition and for the factorial definition.