
Computer Science & Engineering 155E
Problem Solving Using Computers

Lecture 08 - Arrays

Christopher M. Bourke
cbourke@cse.unl.edu

Chapter 8

8.1 Declaring and Referencing Arrays

8.2 Array Subscripts

8.3 Using For Loops for Sequential Access

8.4 Using Array Elements as Function Arguments

8.5 Array Arguments

8.6 Searching and Sorting an Array

8.7 Multidimensional Arrays

8.9 Common Programming Errors

Introduction

I Simple data types use a single memory cell to store a variable

I Collections of data should be logically grouped

I Example: 75 students in the class should we declare 75 separate
variables to hold grades?

I Grouping related data items together into a single composite data
structure is done using an array

Declaring Arrays I

I An array is a collection of two or more adjacent memory cells, called
array elements

I All elements in an array are associated with a single variable name

I Each element is individually accessed using indices

Declaring Arrays II

I To set up an array in memory, we declare both the name of the array
and the number of cells associated with it:
double my_first_array[8];

int students[10];

I This instructs C to associate 8 memory cells of type double with the
name my_first_array

I This instructs C to associate 10 memory cells of type int with the name
students

I These memory cells will be adjacent to each other in memory

Referencing Array Elements I

I To process the data stored in an array, each individual element is
associated to a reference value

I By specifying the array name and identifying the element desired, we can
access a particular value

I The subscripted variable x[0] (read as x sub zero) may be used to
reference the first element

Referencing Array Elements II

I Other elements can be accessed similarly: x[1], x[2], ...

myArray[0] = 8;

printf("value of second element=%d",myArray[1]);

scanf("input a number: %d",&anotherArray[9]);

I For an array of size n, we index 0, 1, . . . , n− 1

I An array size must be an integer (no such thing as half an element)

Referencing Array Elements I
Pitfall

Take care that you do not reference an index outside the array:

1 double grades [75];

2 ...

3 printf("75th grade is %f\n", grades [74]);

4 printf("76th grade is %f\n", grades [75]); ← Illegal
5 printf(" -1th grade is %f\n", grades [-1]); ← Illegal
6
7 int i;

8 for(i=0; i<76; i++)

9 printf("%d-th grade is %f\n", (i+1), grades[i]);

10 ↑ Illegal on last iteration

Array Initialization

I You can declare multiple arrays along with regular variables:
double cactus[5], needle, pins[7];

I We can initialize a simple variable when we declare it:
int sum = 0;

I Same with arrays:

1 int array[SIZE];

2 for(i=0; i < SIZE; i++)

3 array[i] = 0;

Array Declaration & Initialization

I We can declare and initialize an array

I If we initialize when we declare, we can omit the size

1 int primeNumbersLessThanHundred [] = {

2 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

3 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

4 89, 97 };

Using for Loops for Sequential Access

I Elements of an array are processed in sequence, starting with element
zero.

I This processing can be done easily using an indexed for loop: a
counting loop whose loop control variable runs from zero to one less
than the array size.

I Using the loop counter as an array index (subscript) gives access to each
array element in turn.

1 for(i=0; i < SIZE; i++) {

2 printf("%d ",array[i]);

3 }

Using Array Elements as Function Arguments

You can use scanf with array elements just like with regular variables

1 int x[10];

2 int i = 0;

3 scanf("%d", &x[i]);

4 printf("Hey , I read %d\n", x[i]);

Arrays as Arguments

I You can also use entire arrays as function arguments
I Passing arrays as arguments to a function means:

I The function can access any value in the array
I The function can change any value in the array

I Syntax: specify an array as a parameter by using the square brackets:
int sum(int array[], int size);

I Note: what is actually being passed is a pointer to the first element of
the array!

I We could equivalently define:
int sum(int *array, int size);

Full Example

1 #include <stdio.h>

2
3 int sum(int array[], int size);

4
5 int main(void)

6 {

7 int foo[] = {1,2,3,4,5,6,7,8,9,10}, i;

8 printf("sum of all array elements is %d\n",sum(foo , 10));

9 return 0;

10 }

11
12 int sum(int a[], int size)

13 {

14 int i, summation = 0;

15 for(i=0; i<size; i++)

16 {

17 summation += a[i];

18 }

19 return summation;

20 }

Formal Array Parameter

I It was necessary to pass an additional variable size to sum

I An array does not have an explicit size associated with it

I C does not allocate space in memory for arrays, the operating system
does at runtime

I As programmers, we are responsible for:
I Memory management,
I for keeping track of the size of an array and
I for ensuring that we do not access memory outside the array

I If a function accesses an array, it needs to be told how big it is

Arrays as Input Arguments

I Since arrays are passed by reference, functions can modify their values

I Sometimes, we would like to pass arrays as arguments, but do not want
to change their values.

I We can do this by using the const quantifier in the function declaration:
int sum(const int foo[], int size) ...

I Specifies to the compiler that the array is to be used only as an input

I The function does not intend to modify the array

I The compiler enforces this: any attempt to change an array element in
the function as an error

Returning an Array Result

I C only allows us to return a single item

I It is not possible to return an array (a collection of items)

I We can, however, return a pointer to an array

I We cannot return a pointer to a local array (dangerous, undefined
behavior)

I Requires knowledge of dynamic memory and malloc

I More later, for now: declare an array large enough for your purposes

Searching and Sorting an Array

Two common problems with array processing:

1. Searching - Finding the index of a particular element in an array

2. Sorting - rearranging array elements in a particular order

Searching an Array

Input : hello

1 Assume the target has not been found //hello

2 ;

3 Start with the initial array element, a[0] ;

4 while the target is not found and there are more array elements do
5 if the current element matches array then
6 set flag true and store the array index ;

7 end

8 advance to next array element

9 end

10 if flag is set to true then
11 return the array index

12 end

13 return -1 to indicate not found

Algorithm 1: Searching Algorithm

Searching an Array
C code

1 int search(int array[], int size , int target)

2 {

3 int found = 0, index = -1;

4 while (!found && (i < size))

5 {

6 if (array[i] == target) {

7 found = 1;

8 index = i;

9 }

10 else {

11 i++;

12 }

13 }

14 if(found)

15 return index;

16 else

17 return -1;

18 }

Sorting an Array - Selection

1 foreach index value i = 0, . . . , n− 2 do
2 Find the index of the smallest element in the

subarray a[i, . . . , n− 1] ;

3 Swap the smallest element with the element stored
at index i ;

4 end

Algorithm 2: Selection Sort Algorithm

Sorting an Array - Selection

1 void selectionSort(int *a, int size)

2 {

3 int i, j, index_of_min , temp;

4 for(i=0; i<size -1; i++)

5 {

6 index_of_min = i;

7 for(j=i+1; j<size; j++)

8 {

9 if(a[index_of_min] > a[j])

10 {

11 index_of_min = j;

12 }

13 }

14 temp = a[i];

15 a[i] = a[index_of_min];

16 a[index_of_min] = temp;

17 }

18 }

Sorting an Array - Bubble Sort

1 while i ≤ n− 1 do
2 while j ≤ n− 1 do
3 if a[j] > a[j + 1] then
4 Swap a[j] and a[j + 1] ;

5 end

6 end

7 end

Algorithm 3: Bubble Sort Algorithm

Sorting an Array - Bubble Sort
C code

1 void bubbleSort(int *a, int size)

2 {

3 int i, j, temp;

4 for (i=0; i<size -1; i++)

5 {

6 for(j=0; j<size -1; j++)

7 {

8 if (a[j] > a[j+1])

9 {

10 temp = a[j];

11 a[j] = a[j+1];

12 a[j+1] = temp;

13 }

14 }

15 }

16 }

Multidimensional Arrays I

I A multidimensional array is an array with two or more dimensions

I Two-dimensional arrays represent tables of data, matrices, and other
two-dimensional objects

I Declare multidimensional arrays similar to regular arrays:
int myArray[10][20];

I This declares a 10× 20 sized array

I Interpretation: 10 rows, 20 columns

Multidimensional Arrays II

I Each row/column is still indexed 0, . . . , n− 1 and 0, . . . ,m− 1

I Last row, las column: myArray[9][19] = 29;

I When iterating over a multidimensional array, use nested for loops

1 int a[10][10];

2 for(i=0; i<10; i++)

3 for(j=0; j<10; j++)

4 a[i][j] = 1 + i + j;

Initialization of Multidimensional Arrays

You can initialize multidimensional arrays when declaring

1 char tictactoe [][3] = { {’ ’,’ ’,’ ’},

2 {’ ’,’ ’,’ ’},

3 {’ ’,’ ’,’ ’} };

This would initialize a 3× 3 the array with all blank spaces.

Initialization of Multidimensional Arrays

I When declaring and initializing, you must still provide all dimensions
except the outer-most

I The compiler is able to deduce the outer-most dimension at compile time

I Not sophisticated enough to deduce the rest

Common Programming Errors

I Most common error: out-of-range access error

I Segmentation fault, Bus error

I Error may not be caught in some situations: unexpected results

I Use correct syntax when passing arrays as parameters

Dynamic Memory

I int array[10]; is a static declaration

I The size is fixed for the life of the program

I Often, you don’t know how large of an array you’ll need

I Not practical or possible to declare a “large enough” array for all
purposes

I C does not allow you to declare an array size using a variable

Dynamic Memory

1 int n;

2 printf("Enter the size of the array: ");

3 scanf("%d", &n);

4 int array[n]; ← Bad

I May compile

I May even work (sometimes)

I Behavior is not defined in C

Dynamic Memory

I Instead, we need to dynamically allocate memory

I We allocate a certain amount of memory only when we need it

I Memory is allocated at some point in the program

I Contrast with static declaration: done when the program starts

Dynamic Memory I
How-to in C

I The C function malloc (memory allocation) can be used to allocate
memory.

I malloc takes one argument: the number of bytes to be allocated

I malloc returns a generic pointer to the allocated memory

I Returns NULL if it failed

I Can cast the generic pointer to the proper type (unnecessary in C, but
required in C++)

I C function sizeof gives the number of bytes of each type of variable
(system dependant!)

Dynamic Memory II
How-to in C

1 int n = 10;

2 int *myDynamicArray = NULL;

3 myDynamicArray = (int *) malloc(n * sizeof(int));

4 myDynamicArray [0] = 1;

5 myDynamicArray [9] = 42;

Dynamic Memory I
Garbage Collection

I If and when you are done using the memory, you should free it up so
that it can be reused

I The C function free deallocates memory (frees it up):
free(myDynamicArray);

I Note that all information in myDynamicArray will be lost

Dynamic Memory I
Memory Management

I Be careful that you don’t cause dangling pointers or memory leaks

I If you allocate memory, but lose a pointer to it, then the memory is
effectively lost

I The memory is still being used, but you cannot access it

I This is a memory leak

Dynamic Memory I
Memory Management

1 int *my_array;

2 my_array = (int *) malloc (10 * sizeof(int));

3 my_array = NULL;

I The memory location pointing to that 40 bytes is now lost

I The memory will be unavailable (until the program ends).

Dynamic Memory I
Multi-Dimensional Arrays

I To declare a dynamic multi-dimensional array, you need to use pointers
to pointers

I Each row (or column) needs a call to malloc via a loop

1 int ** myMatrix = NULL;

2 myMatrix = (int **) malloc (10 * sizeof(int *));

3 int i=0;

4 for(i=0; i<10; i++)

5 myMatrix[i] = (int *) malloc (10 * sizeof(int));

6 myMatrix [9][9] = 10;

Exercises

Write the following functions and write a main driver program to test them.

I void printArray(int *array, int size) – prints the elements of
an integer array

I void printMatrix(int **array, int rows, int columns) –
prints the elements of an integer array

I double average(int *array, int size) – computes the average of
all elements in the array

I int *onesArray(int size) – returns a pointer to a dynamically
allocated integer array all initialized to 1

I int *sortedCopy(int *array, int size) – returns (a pointer to) a
sorted copy of array

I int **identityMatrix(int n) – returns a pointer to an n× n
integer array, initialized to the identity matrix

