
Strings	
Lecture	Notes	

Overview	
• A	string	is	a	collection	of	ordered	characters		
• Some	languages	support	strings	as	a	native	type,	others	use	arrays	of	characters	
• Strings	are	sequences	of	characters	under	some	encoding	(ASCII,	Unicode)	

1. Static	&	dynamic	strings	
a. String	literals	
b. Declaration	&	initialization	

2. String	operations/library	functions	
a. Assignment	
b. Printing	
c. Substrings	
d. Concatenation	
e. Comparisons	
f. String	length	

3. Misc	
a. Input	
b. Arrays	of	Strings	
c. Tokenizing	
d. Character	Tests	(alpha,	upper/lower,	space,	etc.)	Conversions	(number/string)	

4. Pitfalls	
a. Null	vs	empty	string	

Strings	in	C	
1. Overview	

• Strings	in	C	are	null-terminated	arrays	of	char	elements	
• Bookkeeping:	size	of	arrays	is	not	maintained,	neither	is	the	length	of	strings	
• Instead:	the	end	of	a	string	is	indicated	by	the	special	character:	‘\0’	(zero,	null)		
• Null	terminator	can	appear	anywhere	in	the	array	(string	is	effectively	cut	short)	
• Without	null	terminator:	many	functions	will	fail	(continue	to	scan,	bleeding	into	

memory	that	is	not	part	of	the	string)	
2. Static	declarations	

• char message[] = “Hello World!”; 
• size	is	one	more	than	the	number	of	characters		(to	accommodate	null	terminator)	



• Manually	change	contents	of	a	string:	
message[0] = ‘h’; 
message[6] = ‘w’; 
message[11] = ‘\0’; 

• 	
3. Dynamic	strings	

• Exactly	the	same	as	any	dynamic	array!	
• When	allocating	space,	need	to	allocate	bytes	+	1	for	the	null	terminator.	
• Examples:	

char *msg = NULL; 
msg = (char *) malloc(sizeof(char) * (n+1)); 

4. String/character	operations	
a. Libraries	

• string.h		
• ctype.h	(isalpha,	isdigit,	islower,	toupper,	isspace,	etc.)	

b. Assignment	
• Can	only	use	the	assignment	operator	in	a	declaration,	not	to	assign	values:	
message	=	“goodbye	world!”;	//not	allowed	

• Only	elements	in	an	array	can	be	set	with	the	assignment	operator	
• Can	use	the	strcpy	(string	copy)	function	to	copy	contents	of	one	string	into	
another:	
char *strcpy(char *dest, const char *src) 
strcpy(destinationStr, sourceStr); 
strcpy(destinationStr, “goodbye world!”);	

• Pitfall:	destination	must	be	big	enough	to	hold	the	source!	
• Alternative:	if	we	only	want	to	copy	part	of	the	string:		
char *strncpy(char *dest, const char *src, size_t n)	

• Copies	from	the	first	character,	n	bytes	(characters)	
c. Printing	

• printf	placeholder:	%s	
• Example:	
printf(“message is %s \n”, msg); 

d. Substrings	
• To	copy	a	substring:	just	need	to	start	from	another	index!	
strncpy(foo, &message[6], 6); //foo is now “world” 

• If	null	terminator	is	in	the	first	n	bytes,	copied,	otherwise	it	is	our	responsibility	
e. Concatenation	

• Concatenation	is	an	operation	whereby	two	strings	are	linked	together	
• strcat	
• strncat	
• Both	concatenate	the	second	string	to	the	first	
• The	first	string	must	be	large	enough	to	hold	both	



f. Comparisons	
• Character	comparisons	can	use	regular	numeric	comparison	operators	(<,	>,	<=,	
>=)	since	chars	have	integer	values	(ASCII	table)	

• Comparing	strings:	lexicographic	ordering	(not	alphabetic;	see:	
http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-
order.html)	

• General	comparison	contract:	a	comparator/comparison	function	returns:	
• Something	negative	if	a	<	b	
• Zero	if	a	is	equal	to	b	
• Something	positive	if	a	>	b	

• int	strcmp(a,	b)	
• int	strncmp(a,	b,	n)	

g. String	length	
• int	strlen(a)	
• Iterating	over	characters	in	a	string	

5. Misc	
a. Input	

• Most	techniques	are	dangerous	(buffer	overflows)	
• fgets	is	safe,	but	buffer	processing	may	be	necessary	

b. Arrays	of	Strings	
• 2D	array	of	chars;	same	rules	apply	as	with	other	multidimensional	arrays	

c. Tokenizing	
• Lots	of	data	may	be	separated	by	some	delimiter	(commas,	tabs,	whitespace)	
• Common	to	split	a	string	along	some	delimiter	into	tokens	and	process	each	
token.	

• C:	char *strtok(char *str, const char *delimiter)	
• First	call:	string	to	be	tokenized	along	some	delimiter	
• Subsequent	calls:	use	NULL	instead	of	str	to	get	the	next	token	(use	the	same	
delimiter,	optionally	a	different	one)	

• Careful:	strtok	modifies	the	given	string	(it	uses	it	as	a	buffer)	
6. Pitfalls	

a. NULL	is	not	the	same	thing	as	“”	
b. Memory	management	&	null	terminator	(C	only)	

• Some	string	functions	take	care	of	null	terminator	for	us,	others	don’t:	RTM	
(Read	the	Manual!)	

Strings	in	Java	
1. Representation:	String	class	(could	do	character	arrays,	but	not	recommended)	

a. Immutability	
b. String	s:	s	is	a	reference	to	a	string	



c. Creating	new	strings:	new	String(“foo”)	
2. String	operations	

a. Java	Documentation:	http://docs.oracle.com/javase/6/docs/api/java/lang/String.html	
b. Assignment	

String	s	=	“Hello	World”;	
String	t	=	s;	

c. Concatenation:		
• Use	the	+	operator	(creates	a	new	string)	
• Operator	is	overloaded:	can	mix	types!	
• Under	the	hood:	Polymorphism	magic!		

1. Code	is	replaced	with	StringBuilder	calls	
2. Object	code	is	wrapped	in	String.valueOf	calls	

d. Substrings	
• s.substring(int) 
• s.substring(int, int) 

e. Comparisons	
• s	==	t:	compares	memory	addresses!	
• s.compareTo(String)	
• s.compareToIgnoreCase(String)	

f. String	length	
• s.length()	

g. Others	
i. contains	
ii. replace	
iii. split	

3. Character	class:		
a. http://docs.oracle.com/javase/6/docs/api/java/lang/Character.html	
b. isSpace,	isDigit,	etc.	

4. Misc	
a. StringBuilder Class 

• Mutable	version	of	a	String	
• http://docs.oracle.com/javase/6/docs/api/java/lang/StringBuilder.html	
• http://docs.oracle.com/javase/tutorial/java/data/buffers.html	
• append,	insert,	replace	

Exercises	
1. Write	a	function	to	copy	a	string	that	also	dynamically	allocates	new	memory	for	it.	
2. Write	a	function	to	determine	if	a	given	string	is	a	palindrome.		A	palindrome	is	a	string	that	is	

the	same	forward	and	backward.	
3. Write	a	function	to	convert	all	characters	in	a	string	to	lower	case	



4. Write	a	function	to	return	a	new	string	that	is	the	substring	of	a	given	string;	the	function	should	
take,	as	part	of	its	input	a	beginning	and	an	ending	index	

5. Write	a	function	to	reverse	the	contents	of	a	string	
6. Write	a	function	to	return	a	reversed	copy	of	the	contents	of	a	string	
7. Write	a	function	to	replace	certain	characters	with	other	characters	
8. Write	a	function	to	remove	certain	specified	characters	
9. Write	a	function	to	return	a	copy	of	a	string	with	certain	characters	removed/replaced	
10. Write	a	function	to	remove	all	whitespace	from	a	string	(and/or	to	return	a	copy	of	the	new	

string)	
11. Write	a	function	and/or	program	to	detect	whether	or	not	a	string	contains	repeated	words	

(such	as	“the	the”)	
12. Write	a	program/function	to	compute	(and	sort)	a	suffix	array.		A	suffix	array	of	a	string	is	a	

sorted	array	of	all	of	its	suffixes.	
13. Write	a	function	to	replace	all	space	characters	with	an	underscore	
14. Write	a	function	to	“double	space”	a	string:	replace	all	end-line	characters	with	two	end-line	

characters	
15. Implement	a	true	split	function	for	C:	it	should	return	an	array	of	strings	split	along	a	given	

delimiter	
16. Write	a	function	to	replace	any	single	numeric	character	(surrounded	by	spaces)	to	its	English	

word	(but	leaves	other	instances	of	numbers	alone)	
17. Write	a	function	to	create	an	acronym	from	a	given	string:	it	should	take	the	first	letter	of	each	

word	and	capitalize	them	(International	Business	Machines	->	IBM)	
18. Write	a	function	to	sort	a	collection	of	strings	


