
CSCE 155 - Java
Lab 02 - Data Types

Dr. Chris Bourke

Prior to Lab

Before attending this lab:

1. Read and familiarize yourself with this handout.

2. Review Oracle’s Java Tutorial section on Primitive Data Types:
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Peer Programming Pair-Up

To encourage collaboration and a team environment, labs will be structured in a pair
programming setup. At the start of each lab, you will be randomly paired up with
another student (conflicts such as absences will be dealt with by the lab instructor).
One of you will be designated the driver and the other the navigator.

The navigator will be responsible for reading the instructions and telling the driver
what to do next. The driver will be in charge of the keyboard and workstation. Both
driver and navigator are responsible for suggesting fixes and solutions together. Neither
the navigator nor the driver is “in charge.” Beyond your immediate pairing, you are
encouraged to help and interact and with other pairs in the lab.

Each week you should alternate: if you were a driver last week, be a navigator next,
etc. Resolve any issues (you were both drivers last week) within your pair. Ask the lab
instructor to resolve issues only when you cannot come to a consensus.

Because of the peer programming setup of labs, it is absolutely essential that you com-
plete any pre-lab activities and familiarize yourself with the handouts prior to coming
to lab. Failure to do so will negatively impact your ability to collaborate and work with
others which may mean that you will not be able to complete the lab.

1

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html


1 Lab Objectives & Topics

At the end of this lab you should be familiar with the following

• Using command line arguments

• Variable declarations

• Basic primitive data types

• How to choose appropriate data types for a given problem

2 Activities

2.1 Using Command Line Arguments

When you run a program from the command line, you can also provide the program
with arguments that the program can use for input or for configuration. To understand
this, we have provided you two completed Java programs that compute an age given
a birthdate. The first works by prompting the user for input interactively, while the
second uses command line arguments.

Instructions

1. Open Eclipse and choose the same workspace on your Z: drive.

2. Open the Git perspective and clone the Lab 02 project from Github using the
following URL:
https://github.com/cbourke/CSCE155-Java-Lab02

For more detailed instructions, refer to Lab 01.

3. Open and run the Birthday.java program and answer the questions on your
worksheet. Note: the program will prompt for input in Eclipse’s Console window.

4. The second program, BirthdayCLI.java is non-interactive: it reads input di-
rectly from the command line when you run it. With an IDE, there is no direct
command line, but it is still possible to do so:

a) Run the program by clicking the “play” button.

b) An error should be echoed because the program expected command line ar-
guments; since we don?t really have a command line in an IDE, we need to
setup a run configuration.

c) Click the play button’s down arrow and select “Run Configurations”

2

https://github.com/cbourke/CSCE155-Java-Lab02


d) Click the “Arguments” tab and enter the command line arguments as follows:
James 1955 5 19 .

e) Click “Apply” then “Run”

5. Answer the questions on your worksheet.

2.2 Basic Data Types

A variable is a name associated with a memory cell whose value can change. When
variables are stored in memory, the computer has to have a way of knowing what type
of data is stored in a given variable. Data types identify the type of values stored in a
memory location and operations that can be performed on those values. A computer will
not use the same amount of memory to store a single letter as it does to store a very large
real number, and the values are not going to be interpreted the same way. Therefore,
different data types may have different sizes. The (incomplete) table in question 4 on the
worksheet shows some basic data types with their sizes and ranges. Size is represented
in bytes. A byte is a unit of storage capable of holding a single character. A byte is
usually considered equal to 8 bits. A bit (short for binary digit), is the smallest unit of
information in a computer–either a zero or a one. Some basic data types can be either
signed (either positive or negative) or unsigned (non-negative).

Java is a statically-typed language; all variables must be declared by giving them a type
and a name before they can be used. Declarations can optionally be followed by an
assignment in the same line. Some examples:

1 int a;

2 int b = 10;

3 int c, d = 5, e;

4 double x, pi = 3.14;

For basic data types (called primitive data types), Java specifies exactly how many bytes
each type takes and consequently defines a fixed range for each type. A Java program
has been provided, Ranges.java that demonstrates the size and range of each basic data
type.

3



Instructions

1. Open the source file Ranges.java in your Eclipse project and run it.

2. On the lab worksheet, complete all the size and range entries in the table with the
values of the output of the program.

Note: Java also supports a primitive boolean type that can be assigned the value true
or false. Thus, there is no range. Conceptually, a boolean should only require one bit,
however memory addressing would make this inefficient. In practice, a boolean takes
32 bits if in the system stack, and 8 bits when used in arrays.

2.3 Currency Conversion

Write a program that will convert US Dollars to British Pounds and Japanese JPY.
10% of the total amount of US Dollars will be taken as an exchange fee. For the rest
of the US Dollars, half will be changed to British Pounds and the other half to JPY.
Assume the exchange rate is: 1 US Dollar = 0.6 British Pound; 1 US Dollar = 76.8 JPY.
The program should prompt the user to input the amount of US dollars then print an
appropriate output. An example run would look something like the following:

Please input the total amount of US Dollars: 100.00

You get 27.00 British Pounds and 3456.00 Japanese JPY.

Instructions

1. In Eclipse, create a new class named Dollar by right-clicking your project and
selecting New → class.

2. Write your complete Java program in this source file. Be sure to place your code
in a main method and to choose appropriate data types for your variables

3. Run your program and answer the questions on your worksheet.

2.4 Mixed types

A mixed-type expression is an expression with operands of different data types. When an
assignment statement is executed, the expression on the right-hand-side is evaluated, and
then the resulting value is placed into the variable on the left-hand-side. For example:

1 int x = (8 * 4) + (3 * .5);

The data types of the operand affect the data type of the result. This can lead to some
initially unintuitive results. When performing division between two integers, the result
is necessarily an integer. For example:

4



1 int a = 10, b = 20, c;

2 c = a / b;

In the code snippet above, the floating point result of 10 / 20 should be 0.5 , but the
actual value stored in the variable c is zero! This is because the result of an operation
of two integers is an integer: thus the decimal part of the result is truncated (dropped).
We could fix this by making at least one of the operands (and the resulting variable) a
floating point variable through type-casting:

1 int a = 10, b = 20;

2 double c;

3 c = (double) a / b;

You have been given a Java program, Area.java that reads in the base and the height
of a triangle and calculates the total area.

1. Read through and understand the source code

2. Compile and run your program to answer the remaining questions on your work-
sheet.

3. Using the previous birthday programs as a reference, change the area program to
accept command line arguments instead of prompting for input.

3 Handin/Grader Instructions

1. Hand in your Area.java source file by pointing your browser to: https://

cse-apps.unl.edu/handin and login with your CSE login/password.

2. Grade yourself by pointing your browser to https://cse.unl.edu/~cse155h/

grade/ (you may need to change the course in this URL depending on which
course you are taking)

3. Enter your cse login and password, select the appropriate assignment for this lab
and click grade me.

4. You will be displayed with both expected output and your program’s output. The
formatting may differ slightly and that is not important. As long as your program
successfully compiles, runs and outputs the same values, it is considered correct.

Turn your completed worksheet in to the lab instructor.

5

https://cse-apps.unl.edu/handin
https://cse-apps.unl.edu/handin
https://cse.unl.edu/~cse155h/grade/
https://cse.unl.edu/~cse155h/grade/


4 Advanced Activities (Optional)

1. Modify the Area.java program to accept inputs from command line arguments
rather than prompting the user for input. Note: command line inputs are always
strings. To convert to a particular data type, each primitive data type has a
corresponding class that has several static functions for data type conversion. For
example:

1 int a = Integer.parseInt(args[0]);

2 double b = Double.parseDouble("3.14");

2. Many applications require the use of numerical values greater than or with greater
precision than what 32-bit signed integers and 64-bit floating point numbers can
represent. It is typical to use a multi-precision library that offers integers and float-
ing point number types with arbitrary precision but with a greater performance
cost. Java offers several classes as part of its Standard Developer Kit (SDK):
BigInteger (http://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.

html) and BigDecimal (http://docs.oracle.com/javase/8/docs/api/java/

math/BigDecimal.html). Read the provided documentation and modify your pro-
gram to use these types instead so that US National Debt can be represented and
correctly converted to Yen.

6

http://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

	Lab Objectives & Topics
	Activities
	Using Command Line Arguments
	Basic Data Types
	Currency Conversion
	Mixed types

	Handin/Grader Instructions
	Advanced Activities (Optional)

