
CSCE 155 - Java
Lab 01 - Introduction

Dr. Chris Bourke

Prior to Lab

In each lab there may be pre-lab activities that you are required to complete prior to
attending lab. Failure to do so may mean that you will not be given full credit for the
lab. For the first lab, there are no pre-lab activities.

Peer Programming Pair-Up

To encourage collaboration and a team environment, labs will be structured in a pair
programming setup. At the start of each lab, you will be randomly paired up with
another student (conflicts such as absences will be dealt with by the lab instructor).
One of you will be designated the driver and the other the navigator.

The navigator will be responsible for reading the instructions and telling the driver
what to do next. The driver will be in charge of the keyboard and workstation. Both
driver and navigator are responsible for suggesting fixes and solutions together. Neither
the navigator nor the driver is “in charge.” Beyond your immediate pairing, you are
encouraged to help and interact and with other pairs in the lab.

Each week you should alternate: if you were a driver last week, be a navigator next,
etc. Resolve any issues (you were both drivers last week) within your pair. Ask the lab
instructor to resolve issues only when you cannot come to a consensus.

Because of the peer programming setup of labs, it is absolutely essential that you com-
plete any pre-lab activities and familiarize yourself with the handouts prior to coming
to lab. Failure to do so will negatively impact your ability to collaborate and work with
others which may mean that you will not be able to complete the lab.

1

1 Lab Objectives & Topics

At the end of this lab you should be familiar with the following

• The general lab environment & CSE system including its policies and expectations

• Basic unix commands

• Retrieving lab code from Github

• Modifying, compiling and executing your first Java program from the command
line as well as with the Eclipse Integrated Development Environment (IDE)

• Using CSE’s web handin and web grader

2 Activities

2.1 Login & Consent Form

You will receive your login from the CSE System Administrators who will also give
you an overview of the CSE system and its policies. Be sure to login and change your
temporary password. Some departmental resources that you may find useful:

• CSE Website: http://cse.unl.edu

• UNL Computing Policy: http://www.unl.edu/ucomm/compuse/

• CSE Academic Integrity Policy: http://cse.unl.edu/academic-integrity-policy

• CSE System FAQ: http://cse.unl.edu/faq

• Account Management: https://cse-apps.unl.edu/amu/

• CSE Undergraduate Advising Page: http://cse.unl.edu/advising

• CSEStudent Resource Center: http://cse.unl.edu/src

2.2 Lab Introduction

• Lab instructors and TAs

• Office Hours

• Student Resource Center (Avery 12)

• Lab policies

2

http://cse.unl.edu
http://www.unl.edu/ucomm/compuse/
http://cse.unl.edu/academic-integrity-policy
http://cse.unl.edu/faq
https://cse-apps.unl.edu/amu/
http://cse.unl.edu/advising
http://cse.unl.edu/src

2.3 Basic Unix Commands

Much of your work will be done on the command line. Take a moment to familiarize
yourself with the following basic commands. A more comprehensive tutorial on unix
commands is available here: http://www.math.utah.edu/lab/unix/unix-commands.

html.

• Show the current working directory: pwd

• Creating a new directory: mkdir dirName

• Changing directories: cd dir_name

• Moving up a directory: cd ..

• Moving directly to your home directory: cd ~

• Listing files in a directory: ls

• Listing details of files in a directory: ls -l

• Listing files in another directory: ls dir_name

• Listing the contents of a (text) file: more file_name

• Removing files (careful!): rm file_name

Text Editors

Programming requires that you write code in a source file: a plain text file that con-
tains syntactically valid programming commands. In general, any plain text editor can
facilitate this (MS Word is not a plain text editor). The lab instructor will demonstrate
some of the following options:

• jpico

• emacs

• Notepad++ (a graphical editor launched from Windows)

3 Activity A: Developing Java from the Command Line

3.1 Checking Out Code From Github

Each lab will have some starter code and other artifacts (data files, scripts, etc.) that will
be provided for to you. However, the code is hosted on Github (https://github.com)
and you must check it out. You will not need to know the details of using git nor be a
registered Github user to get access to the code necessary for your labs or assignments.

3

http://www.math.utah.edu/lab/unix/unix-commands.html
http://www.math.utah.edu/lab/unix/unix-commands.html
https://github.com

However, you are highly encouraged to learn this essential tool. You may find it very
useful to keep track of your own code and to share code if you work in pairs or groups.

To check out the code for this lab, do the following.

1. If you haven’t already, connect to the CSE server using PuTTY as follows:

a) Open PuTTY (this is a Secure Shell Client, SSH)

b) Enter the address cse.unl.edu

c) Click “Open”

d) Login using your CSE credentials (you may be prompted to change your
password the first time).

2. In your home directory, create a new directory for all your labs:
mkdir labs

3. Verify that this worked by listing the contents of your directory by typing ls .
You should see your labs directory.

4. Go to this directory by changing your directory:
cd labs

5. “Clone” this lab’s code by using the following command:
git clone https://github.com/cbourke/CSCE155-Java-Lab01

6. A new directory, CSCE155-Java-Lab01 should be created, go to this directory by
typing cd CSCE155-Java-Lab01/src .

7. List the contents of this directory by typing ls . If everything worked, there
should be a Hello.java file in your directory.

3.2 Your First Program: Hello World!

As this is an introductory course, most of the Java programs you will write in this
course will execute and require interaction from the command line rather than a more
user-friendly graphical interface.

The code you cloned contains a basic “Hello World” program that, when compiled and
run will simply print the message “Hello World” and exit.

To compile and run this program, do the following.

1. Type javac Hello.java , this compiles the source code into a class file named

Hello.class .1 Use ls to verify that the new file has been created.

1The class file contains Java Byte Code that can be interpreted and executed in a Java Virtual Machine
(JVM)

4

2. Run your program by typing the following: java Hello

Note: javac is the Java compiler while the java command launches the Java Virtual
Machine from the command line.

Let’s now modify the program.

1. Open the Hello.java source file in the text editor of your choice (Notepad++

is recommended for beginners). Your program should look something like the
following:

1 /**

2 Author: Chris Bourke

3 Date: xx/xx/20xx

4 Hello World in Java

5 */

6 public class Hello {

7

8 public static void main(String args[]) {

9 System.out.println("Hello World!");

10 }

11 }

2. Modify the file by changing the author to you and your partner and change the
date.

3. Change the message that is produced by the program (line 9) to instead print you
and your partner’s names.

4. Save and exit your editor and repeat the process to compile and run your program
and verify that your changes have taken effect.

4 Activity B: Developing Java Using Eclipse

4.1 Using Eclipse

Eclipse is the de facto industry-standard IDE for Java development. There are several
other popular and emerging IDEs available and you are welcome (and encouraged) to
try them out and use them. However, for this course, we will primarily focus on Eclipse.

1. From Windows, start Java Eclipse

2. Choosing a “Workspace”:

• If you are using a lab computer, type the following in the text box: Z:\Workspace

(the Z: drive is your personal file storage on CSE)

5

• If you are using a personal computer, choose a workspace directory/folder
where you want all of your future projects to exist.

3. Close the Welcome screen, and create a new project. Select: File → New →
Project

4. Select “Java Project” when prompted by the New Project Wizard; click Next

5. Enter a name for your project (Lab01); click Finish

6. Open the Lab01 folder in the Package Explorer View and find the src folder

7. Right-click on the src folder and select “New Class” and name it Hello .

8. This should open a new source code editor; cut and paste (or retype) the source
code from Hello.java into this file and save it

9. Run your program by clicking the “play” button in the tool bar

4.2 Checking Out Code From Github

You can also clone code from Github within Eclipse just as you did from the command
line.

1. First we need a Git perspective (a context in the Eclipse User Interface that will
allow us to work with Git). To open the Git perspective, click on the “Open
Perspective” tab in the upper right:

Select “Git” from the menu and click OK

2. Click the “Clone a Git repository” in the Git Repositories navigation menu:

3. Copy/past or type into the URI field, the URL:
https://github.com/cbourke/CSCE155-Java-Lab01

6

https://github.com/cbourke/CSCE155-Java-Lab01

4. Click “Next”; once Eclipse has grabbed the project, the “master” branch should
be selected (checkbox); click “Next” again.

5. Select the directory where you want your project to be saved. Caution: the default
option may not correspond to your default workspace. You may want to change
it to your workspace, but the choice is yours. Also mark the “Import all existing
projects after clone finishes” checkbox option or you will need to manually import
the cloned project into Eclipse.

7

6. Switch back to your Java or JavaEE perspective and you can see your cloned
project.

7. Make the same changes as in Activity A

Note: this process assumes that the project you are cloning originated from an Eclipse
project. Eclipse expects that files be organized in a particular way and that configuration
files are present that describe how the project is setup. If the project was not an Eclipse
project, you’ll need to clone/setup the project in Eclipse manually.

5 Handing In & Grading

Many of your assignments will include a programming portion that will require you to
hand in soft-copy source files for graders to compile and evaluate. To do this, you will
use a web-based handin program. After handing your file(s) in, you can then grade them
by using the web grader. To demonstrate, do the following.

1. Open a browser to https://cse-apps.unl.edu/handin

2. Login with your CSE credentials

3. Click on this course/lab 01 and handin the Hello.java file. You can either click
the large “handin” area and select the file or you can drag-drop the file. You will
be able to re-handin the same file as many times as you want up until the due
date.

4. Now that the file has been handed in, you can “grade” yourself by using the
webgrader; open a new tab/window and point your browser to one of the following
depending on which course you are in:

8

https://cse-apps.unl.edu/handin

• https://cse.unl.edu/~cse155a/grade

• https://cse.unl.edu/~cse155e/grade

• https://cse.unl.edu/~cse155h/grade

5. Fill the form with your CSE login and password, select the appropriate assignment
(Lab 01) and click “Grade”

6. For future assignments and labs, you can compare the results of your program with
the “Expected Results”. If there are problems or errors with your program(s), you
should fix/debug them and repeat the handin/grading process. You can do this as
many times as you like up until the due date. Some programs and assignments will
run test cases and may provide expected output alongside your output. Others
may have more sophisticated test cases and actually provide you a percentage of
test cases passed. It is your responsibility to read, understand and address all of
the errors and/or warnings that the grader produces.

Demonstrate your working programs to a lab instructor, answer all the questions on
your lab worksheet, and have them sign off on it.

Resources

• Eclipse can be downloaded here: http://www.eclipse.org/downloads/ For a
more in-depth tutorial on Eclipse, see here:
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclipse/

• Windows users can download and use PuTTY on their own machines:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

• Mac users already have an SSH client as part of their OS. Open a terminal and type:
ssh login@cse.unl.edu where login is replaced with your own login; provide
your password and you’re at the CSE command line

• You may also find FileZilla useful (http://filezilla-project.org/). It is a
free File Transfer Protocol (FTP) client that you can use to transfer files back and
forth from your machine to your CSE account.

• Many other options exist for developing code on your own machine, see Blackboard
for more resources.

9

https://cse.unl.edu/~cse155a/grade
https://cse.unl.edu/~cse155e/grade
https://cse.unl.edu/~cse155h/grade
http://www.eclipse.org/downloads/
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclipse/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://filezilla-project.org/

	Lab Objectives & Topics
	Activities
	Login & Consent Form
	Lab Introduction
	Basic Unix Commands

	Activity A: Developing Java from the Command Line
	Checking Out Code From Github
	Your First Program: Hello World!

	Activity B: Developing Java Using Eclipse
	Using Eclipse
	Checking Out Code From Github

	Handing In & Grading

