
CSCE 155 - C
Lab 10 - File I/O

Dr. Chris Bourke

Prior to Lab

Before attending this lab:

1. Read and familiarize yourself with this handout.

2. Review the following free textbook resources:

• http://en.wikibooks.org/wiki/C_Programming/File_IO

• http://www.cs.cf.ac.uk/Dave/C/node18.html

Peer Programming Pair-Up

To encourage collaboration and a team environment, labs will be structured in a pair
programming setup. At the start of each lab, you will be randomly paired up with
another student (conflicts such as absences will be dealt with by the lab instructor).
One of you will be designated the driver and the other the navigator.

The navigator will be responsible for reading the instructions and telling the driver
what to do next. The driver will be in charge of the keyboard and workstation. Both
driver and navigator are responsible for suggesting fixes and solutions together. Neither
the navigator nor the driver is “in charge.” Beyond your immediate pairing, you are
encouraged to help and interact and with other pairs in the lab.

Each week you should alternate: if you were a driver last week, be a navigator next,
etc. Resolve any issues (you were both drivers last week) within your pair. Ask the lab
instructor to resolve issues only when you cannot come to a consensus.

Because of the peer programming setup of labs, it is absolutely essential that you com-
plete any pre-lab activities and familiarize yourself with the handouts prior to coming

1

http://en.wikibooks.org/wiki/C_Programming/File_IO
http://www.cs.cf.ac.uk/Dave/C/node18.html

Function Purpose

fopen() Opens a file for reading (r) or writing (w)

fclose() Closes the file stream passed to the function
fprintf , fscanf Output/input from a file stream in a structured manner

fgets() , fputs() Inputs/outputs an entire string (line) from/to a file

fwrite() , fread() Inputs/outputs binary data

Table 1: Several File I/O Functions

to lab. Failure to do so will negatively impact your ability to collaborate and work with
others which may mean that you will not be able to complete the lab.

1 Lab Objectives & Topics

At the end of this lab you should be familiar with the following

• Understand the differences between binary and plaintext data

• How to read from a file and process information

• How to write to a file to persist information

• Have some exposure to other topics such as XML and sorting

2 Background

The life span of most program is short–measured in seconds or microseconds. For data to
be useful, it needs to last beyond the typical program. This is known as data persistence.
One mechanism for persisting data is to store it in a file. Files can generally consist of
raw binary data or plaintext. In either case, the data needs to be structured in some
manner for a program to be able to read and write it.

In C, file I/O (input/output) is facilitated through several standard functions provided
by the standard input/output (<stdio.h>) library, including those found in Table 1.

You will use these functions to complete the activities in this lab. For more details, refer
to a standard C reference on how to use these functions.

String Tokenizing

Often times it is necessary to process formatted data. One common solution is to tokenize
a string along some delimiter. For example, given a string of comma-separated-values

2

(CSV) such as Sandberg,Ryne,1060 West Addison Street,Chicago,IL,60613 we
may want to process each field, so we would want to split the string using the comma as
a delimiter into its constituent components (last name, first name, address, city, state,
zip for example).

The standard string library provides a function for doing this:

char *strtok(char *str, const char *delim);

The way to use it is as follows: the first argument is the string to be tokenized, the second
is the delimiter (or list of delimiters to tokenize on). The return value is the next token
with the delimiter removed. The first time you call strtok , the first argument should
be the string to be tokenized. Subsequent calls should use pass NULL to tokenize on
the same string (otherwise tokenization begins anew on the string). The same delimiter
should be passed each time. The tokenization ends when strtok returns NULL . Note:
the observant coder will notice that the first argument is not a const char * . As such
you can expect strtok to change the provided string as it tokenizes, so be careful.

3 Activities

Clone the code for this lab from GitHub using the following URL: https://github.
com/cbourke/CSCE155-C-Lab10.

3.1 Plaintext versus Binary Data

In general, data files can contain either binary data (a collection of 0s and 1s) or plaintext
data (ASCII). Binary data is generally readable only by a computer or program that
interprets the 0s and 1s as different types of data (7-bit ASCII characters, 32-bit integers,
etc.) while ASCII text is readable by humans, but may need additional formatting and
data conversions to be handled by a program. In this first activity you will get some
experience in the contrast between these two types of data.

Instructions

In this exercise, you will work with a pre-written program that opens a file containing
census data on states from the 2010 census.

1. Open the stateData.txt data file and observe its contents (do not edit this file)

2. Examine what the stateData.c program is doing; compile and run it

3. The program will create a binary output file, stateData.dat in the same working
directory.

3

https://github.com/cbourke/CSCE155-C-Lab10
https://github.com/cbourke/CSCE155-C-Lab10

a) The unix command file is a utility that determines the type of a file;
examples:

file stateData.txt

file stateData.dat

b) Open the stateData.dat file in jpico or Notepad++ and observe its contents

c) The unix command ls -la will list some detailed statistics of all the files
in a directory. Run it and observe the sizes of the files (5th column in bytes).

4. Answer the questions on your worksheet and move on to the next activity.

3.2 File Output

Extensible Markup Language (XML) is a markup language that defines a set of rules
for formatting data in a file that is both human readable and can be processed by
a machine. Each piece of data is semantically marked-up to indicate what that data
represents. This enables data to be more portable and interoperable across different
programs and different programming languages. Many tools and frameworks have been
developed around its usage. For example, the state population data may be encoded in
XML as follows.

1 <STATES>

2 <STATE>

3 <NAME>Nebraska</NAME>

4 <POPULATION>1826341</POPULATION>

5 </STATE>

6 ...

7 <STATE>

8 <NAME>Ohio</NAME>

9 <POPULATION>11536504</POPULATION>

10 </STATE>

11 </STATES>

Instructions

Modify the stateData.c program by implementing (and calling) the function:

void toXMLFile(char states[][35], int *populations, int numStates);

1. The function should open a file for writing, stateData.xml

2. It should create an XML file containing marked up data on all 50 states as in the
example above.

4

3. Hint: a convenience function, rtrim has been provided to you that trims the
trailing whitespace from a string and returns a pointer to the new, trimmed string.

4. Answer the questions on your worksheet and demonstrate your program to a lab
instructor.

3.3 File Input & Data Processing

Reading data from a file is often done in order to process and aggregate it to get addi-
tional results. In this activity you will read in data from a file containing win/loss data
from the 2011 Major League Baseball season. Specifically, the file mlb_nl_2011.txt

contains data about each National League team. Each line contains a team name fol-
lowed by the number of wins and number of losses during the 2011 season. You will
open this file and process the information to output a list of teams followed by their
win percentage (number of wins divided by the total number of games) from highest to
lowest.

Instructions

1. Open the mlb.c C source files. Much of the program has already been provided
for you, including a convenience function to sort the lists of teams and their win
percentages as well as a function to output them.

2. Add code to open the data file and read in the team names, wins and losses and
populate the teams[] and winPercentages[] arrays with the appropriate data

3. Call the sort and output functions to sort and display your results

4. Answer the questions on your worksheet and demonstrate your working program
to a lab instructor

4 Advanced Activity (Optional)

1. When we sorted the baseball teams and their win percentages, we had to do all
the “bookkeeping” ourselves: that is, we had to swap elements in both arrays to
make sure that the i-th team name matched up with the i-th win percentage. A
much better way would have been to define a user defined struct type to hold the
team name and win percentage in the same structure. Redesign the program to
use such a struct.

2. In general, there are no restrictions on the length of a line in a plaintext file (and
in a data file, there is not even a concept of a “line”). For the best readability,
however, it is best to keep lines to a limited, consistent length. One common

5

maximum length for monotype font is 72 characters per line (CPL). A plaintext
file, star_wars.txt has been provided (the original draft script of the movie Star
Wars) that contains some very long lines. Write a program to read in the file, line
by line. If the line exceeds the 72 CPL limit, break it up into multiple lines (but
do not break up individual words). Output the resulting well-formatted file to a
separate file.

6

	Lab Objectives & Topics
	Background
	Activities
	Plaintext versus Binary Data
	File Output
	File Input & Data Processing

	Advanced Activity (Optional)

