
Trees

Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke
cbourke@cse.unl.edu

Trees I

General graphs are great data structures. However, they often have
no unifying, underlying mathematical structure from which we can
design efficient algorithms.

As an alternative, we can consider classes of graphs that have
some underlying structure; e.g. cycles, bipartite, grid, etc.

One of the most widely used classes of graphs are trees.

Trees II

Definition

A tree is an acyclic graph.

Lemma

An graph is a tree if and only if there is a unique path between any
two of its vertices.

Trees III

Trees are used as models in hundreds of applications in computer
science, chemistry, geology, botany, etc.

The are useful in modeling any hierarchical structure, etc.

In computer science, trees are useful data structures for searching,
indexing, and other applications handling data.

Terminology I

Like any plant, we can root a tree; we select (arbitrarily) a node
from a tree as the root. The distance of a path from the root to a
node defines is ascendency.

I Let v be a node in a tree T .

I A node immediately preceding v is a parent of v.

I A node immediately following v is a child of v.

I A node preceding/following v is an ancestor/descendent of v.

I If deg(v) = 1, then v is a leaf.

I If a node is not a leaf, it is an internal node.

I A subtree with v as its root is the subgraph of v and all of its
descendants.

Terminology II

Definition

A rooted tree T is m-ary if every internal node has at most m
children. T is a full m-ary tree if every node has exactly m
children.

For m = 2, we have a binary tree.

Sometimes an ordering is defined on a node’s children. In this
case, we consider ordered rooted trees.

In a binary tree, each node has a left child and a right child, each
defining a left subtree and right subtree respectively.

Properties I

Theorem

A tree T = (V,E) with |V | = n has n− 1 edges.

proof: Another easy induction.

Theorem

A full m-ary tree with i internal vertices contains n = mi + 1
vertices.

For binary trees with i internal nodes, there are n = 2i+ 1 vertices.

The number of internal nodes i, leaves l, and n total vertices are
all related. In particular, if we know any one of them, then we
know the other two.

Properties II

Theorem

Let T be a full m-ary tree.

1. If T has n vertices, then T has i = (n− 1)/m internal nodes
and l = ((m− 1)n + 1) /m leaves.

2. If T has i internal vertices, then T has n = mi + 1 vertices
and l = (m− 1)i + 1 leaves.

3. If T has l leaves, then T has n− (ml − 1)/(m− 1) vertices
and i = (l − 1)/(m− 1) internal nodes.

Trees I
More Terminology

The level of a vertex v in a tree is the length of the unique path
from the root to v. The root is at level 0.

The height of a tree is the longest path from the root to a leaf.
(Alternatively, you may consider depth). Therefore, the height is
equal to the lowest (highest numbered) level.

Many applications call for balanced trees—trees were each subtree
is roughly the same height.

A rooted m-ary tree of height h is balanced if all leaves are at
levels h or h− 1.

Theorem

There are at most mh leaves in an m-ary tree of height h.

Trees II
More Terminology

If the tree is full, this equality is strict. That is,

l = mh

In particular, a full binary tree has 2h leaves.

By one of the previous properties, this also bounds the number of
vertices.

Corollary

Let T be an m-ary tree of height h.

If T has l leaves then
h ≥ dlogm le

If T is full and balanced then this equality is strict.

Binary Search Trees I

A binary search tree (BST) is a binary tree with each vertex v
labeled with a (unique) key such that

I The key of the left-sub-child of v is less than the key value of
v.

I The key of the right-sub-child of v is greater than the key
value of v.

This recursive property ensures that all keys in the left-sub tree are
less than the key value of v and that those in the right-sub tree are
greater.

Binary Search Trees II

15

7

4

1 5

9

30

20

17 23

40

Binary Search Trees III

Operations that can be performed on a binary search tree include

I Search (access)

I Delete

I Insert

Binary search trees are nice data structures because these
operations can usually be performed in O(log n) time. Here n is
the number of nodes.

BST Searching I

Say we have a BST, T with a key value k and left TL and right TR
sub-trees. We can search for an item v in T in the obvious manner.

We can compare k to each node and recursively check the proper
sub-child.

BST Searching II

Algorithm (BSTSearch)

1 if v = k then
2 return true

3 end

4 else if v < k then
5 return BSTSearch(TL)

6 end

7 else if v > k then
8 return BSTSearch(TR)

9 end

10 else if T = φ then
11 return false

12 end

BST Searching III

Such a tree traversal has a worst case run time of Θ(h) where h is
the height of T .

If the tree is balanced, then one can expect that h = O(log n).

Unfortunately, the worst case can still be linear. When does this
happen?

BST Searching IV

Example

Search for 17, 30, and 6 in the previous example.

15

7

4

1 5

9

30

20

17 23

40

BST Deleting I

Binary Search Trees are easily implemented via doubly linked lists
having two “next” pointers (left and right sub-children).

Thus, deletion in a BST is simply a matter of changing some
pointers (and cleaning up memory).

To delete a node, we first have to search for it.

If the node is a leaf, then we simply delete the pointer to it.

Also, if there is only one child, then we simply promote it.

BST Deleting II

Otherwise, we have to “promote” some lower node that preserves
the binary search tree properties.

Here, we have one of to choices:

I Choose the minimal element among the greater elements
(right sub-tree); or

I Choose the maximal element of the lesser elements (left
sub-tree).

To find such an element, it suffices to traverse to the left (right)
sub-tree and then traverse all the way to the right (left).

BST Deleting I
Example I

Example

Delete 20 from the previous tree.

15

7

4

1 5

9

30

20

17 23

40

BST Deleting II
Example I

15

7

4

1 5

9

30

17

23

40

BST Deleting I
Example II

Example

Delete 15 from the previous tree.

15

7

4

1 5

9

30

20

17 23

40

BST Deleting II
Example II

15

7

4

1 5

9

30

20

17 23

40

BST Deleting III
Example II

15

7

4

1 5

9

30

20

17 23

40

BST Deleting IV
Example II

9

7

4

1 5

30

20

17 23

40

BST Insertion

For an ordinary binary search tree, we always insert a key k as a
leaf. Therefore, insertion is essentially the same as searching.

In particular, we search for a node, v such that

I k < v and the left sub-child of v is null or

I k > v and the right sub-child of v is null.

Once we’ve discovered such a node, insertion is simply a matter of
changing some pointers.

BST Inserting I
Example I

Example

Insert 16 into the previous tree.

15

7

4

1 5

9

30

20

17 23

40

BST Inserting II
Example I

15

7

4

1 5

9

30

20

17 23

40

BST Inserting III
Example I

15

7

4

1 5

9

30

20

17 23

40

BST Inserting IV
Example I

15

7

4

1 5

9

30

20

17 23

40

BST Inserting V
Example I

15

7

4

1 5

9

30

20

17

16

23

40

Coding Theory I

Coding Theory is the study and theory of codes—schemes for
transmitting data.

There are two disciplines in coding theory. The first is where we
try to “pad” out a message with minimal redundant information
that ensures reliability.

Error correcting codes allow us to detect and/or correct errors in
transmission with a minimal blow-up in message size.

Coding Theory II

The second deals with compressing data to save space. You should
already be familiar with data compression.

I MP3s (uses a form of Huffman coding, but is information
lossy)

I jpegs, mpegs, even DVDs

I pack (straight Huffman coding)

I zip, gzip (uses a Ziv-Lempel compression algorithm)

Coding I

Say we have a fixed alphabet, ∆ of size n. A coding is a mapping
of this alphabet to a collection of bit vectors, ∆→ {0, 1}∗ called
codewords.

For example, the ASCII coding standard maps 256 unique
characters to bit vectors of length 8. This is known as a fixed
length encoding scheme.

Coding II

For many applications, some characters will occur with higher
frequency than others.

I English language ASCII files will use t,s,r far more than
z,q, and may never use ô.

I Data files may contain long strings of 0s or 1s or repeat
certain patterns.

I Video and audio may contain redundant information (black
fades, “still” scenes).

Coding III

It makes more sense to assign a shorter codeword to more frequent
characters and longer codewords to less frequent characters.

This variable-length encoding scheme reduces the overall average
length of a codeword used in a file.

In fact, for a given file, if a character doesn’t appear at all, we do
not even need to consider encoding it.

Coding IV

However, there is an immediate problem that should be apparent.

I With fixed length codes, you implicity know where a codeword
begins and ends.

I With variable length codes, you don’t.

I Thus, a delimiter is necessary.

I Or we can define our coding to be a prefix free code.

Prefix Free Codes

A prefix-free coding is one in which no whole codeword is the
prefix of another (other than itself of course).

Scanning is thus achieved by parsing a codeword until it matches a
whole valid codeword.

We then know that the next bit will be the beginning of a new
codeword.

Example

I {0, 01, 101, 010} is not a prefix free code.

I {10, 010, 110, 0110} is a prefix free code.

Building Prefix Free Codes

A simple way of building a prefix free code is to associate
codewords with the leaves of a binary tree (not necessarily full).

Each edge corresponds to a bit, 0 if it is to the left sub-child and 1
to the right sub-child.

Since no simple path from the root to any leaf can continue to
another leaf, then we are guaranteed a prefix free coding.

Using this idea along with a greedy encoding forms the basis of
Huffman Coding.

Huffman Coding I

We consider here a fixed file f with a fixed alphabet ∆ of
characters appearing in f .

The relative frequencies are the number of times each x ∈ ∆
appear in f divided by the total number of characters in f .

Huffman Coding II

Algorithm (HuffmanEncoding)

1 foreach x ∈ ∆ do
2 Initialize a single node tree Tx.

3 Associate a weight wt(Tx) = freq(x)

4 end

5 repeat
6 Create a new root node r

7 Combine the two trees with the smallest weights under r. //a weight of

a tree is defined as the sum of the weights of its leaves

8

9 Update the weight of the new tree

10 until Only one tree exists

Huffman Trees

The tree constructed in Huffman’s algorithm is known as a
Huffman Tree and it defines a Huffman Code.

Example

Construct the Huffman Tree and Huffman Code for a file with the
following content.

character A B C D E F G

frequency 0.10 0.15 0.34 .05 .12 .21 .03

codeword

Compression Ratio I

For an n character alphabet, a fixed-length coding would require a
minimal codeword length of log2 n.

In particular, the previous example would require 3 bits per
codeword.

Instead, the Huffman coding gave us an average codeword length
of

.10 · 3 + .15 · 3 + .34 · 2 + .05 · 4 + .12 · 3 + .21 · 2 + .03 · 4 = 2.53

Compression Ratio II

This means we got a compression ratio of

(3− 2.53)

3
= 15.67%

For text files, pack (Huffman Coding), claims an average
compression ratio of 25-40%.

Depending on the type of data/distribution in any given file, you
may expect a lot more or a lot less.

Optimality

It can be shown that Huffman coding actually compresses a file in
an optimal way.

That is, no other compression scheme could hope for an
(asymptotically) better compression ratio, ever.

Note here that we are only considering information loss-less
schemes, of course MP3s, jpegs, etc are information lossy and can
achieve better compression at the expense of losing information.

Worst Case Encoding

There are a couple of situations in which Huffman coding does
nothing for us—that is, the compressed file is no more smaller than
the original.

I When the probability distribution is uniform: p(x) = p(y) for
all x, y ∈ ∆. What kind of tree will be built?

I When the probability distribution follows a fibonacci sequence
(the sum of each of the two smallest probabilities is less than
equal to the next highest probability for all probabilities)
What kind of tree do we have in this case?

Binary Tree Traversals I

There are three systematic ways to traverse, that is visit every
node, of a binary tree.

I Preorder Traversal – Nodes are visited in root-left-right
order.

I Inorder Traversal – Nodes are visited in left-root-right order.

I Postorder Traversal – Nodes are visited in left-right-root
order.

Binary Tree Traversals II

There is a generalization for any m-ary tree:

I Preorder Traversal – Nodes are visited in (root)-(left
child)-(remaining children, left to right) order.

I Inorder Traversal – Nodes are visited in (left
child)-(root)-(remaining children, left to right) order.

I Postorder Traversal – Nodes are visited in (left
child)-(remaining children, left to right)-(root) order.

Binary Tree Traversals
Example

Example

(9.3.8) Give the pre-, in-, and postorder traversals of the following
tree.

a

b

d e

i j

m n o

c

f g h

k l

p

Binary Tree Traversals
Example Continued

The traversals are as follows.

I Preorder
a, b, d, e, i, j,m, n, o, c, f, g, h, k, l, p

I Inorder
d, b, i, e,m, j, n, o, a, f, c, g, k, h, p, l

I Postorder

d, i,m, n, o, j, e, b, f, g, k, p, l, h, c, a

Notations I

Trees can be used to represent mathematical expressions
(arithmetic, Boolean, etc).

Preorder, Inorder, and Postorder traversals of such trees
correspond to prefix, infix and postfix notation.

Example

The following tree represents the quadratic formula,

−b±
√
b2 − 4ac

2a

Give the prefix, infix and postfix notation for this formula.

Notations II

÷

±

×

−1 b

∗∗

−

∗∗

b 2

×

4 ×

a c

1
2

×

2 a

Notations III

Infix notation is what we usually use, but may be ambiguous
without proper parentheses.

Prefix notation (or Polish notation) is unambiguous;

(* (+ 0 1) (+ 2 3)) = * + 0 1 + 2 3

It is still used in computer languages such as LISP.

Postfix notation is also unambiguous and can be very efficiently
realized using a stack data structure. It is still used in many
engineering calculators (TI-89). It is also used in the PostScript file
format.

