
Recurrences

Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke
cbourke@cse.unl.edu

Recursive Algorithms

A recursive algorithm is one in which objects are defined in terms
of other objects of the same type.

Advantages:

I Simplicity of code

I Easy to understand

Disadvantages:

I Memory

I Speed

I Possibly redundant work

Tail recursion offers a solution to the memory problem, but really,
do we need recursion?

Recursive Algorithms
Analysis

We’ve already seen how to analyze the running time of algorithms.
However, to analyze recursive algorithms, we require more
sophisticated techniques.

Specifically, we study how to define & solve recurrence relations.

Motivating Example
Factorial

Recall the factorial function.

n! =

{
1 if n = 1
n · (n− 1)! if n > 1

Consider the following (recursive) algorithm for computing n!:

Algorithm (Factorial)

Input : n ∈ N
Output : n!

1 if n = 1 then
2 return 1

3 end

4 else
5 return Factorial(n− 1)× n

6 end

Motivating Example
Factorial - Analysis?

How many multiplications M(n) does Factorial perform?

I When n = 1 we don’t perform any.

I Otherwise we perform 1.

I Plus how ever many multiplications we perform in the
recursive call, Factorial(n− 1).

I This can be expressed as a formula (similar to the definition of
n!.

M(0) = 0
M(n) = 1 +M(n− 1)

I This is known as a recurrence relation.

Recurrence Relations I
Definition

Definition

A recurrence relation for a sequence {an} is an equation that
expresses an in terms of one or more of the previous terms in the
sequence,

a0, a1, . . . , an−1

for all integers n ≥ n0 where n0 is a nonnegative integer.

A sequence is called a solution of a recurrence relation if its terms
satisfy the recurrence relation.



Recurrence Relations II
Definition

Example

The Fibonacci numbers are defined by the recurrence,

F (n) = F (n− 1) + F (n− 2)
F (1) = 1
F (0) = 1

The solution to the Fibonacci recurrence is

fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

(your book derives this solution).

Recurrence Relations III
Definition

More generally, recurrences can have the form

T (n) = αT (n− β) + f(n), T (δ) = c

or

T (n) = αT

(
n

β

)
+ f(n), T (δ) = c

Note that it may be necessary to define several T (δ), initial
conditions.

Recurrence Relations IV
Definition

The initial conditions specify the value of the first few necessary
terms in the sequence. In the Fibonacci numbers we needed two
initial conditions, F (0) = F (1) = 1 since F (n) was defined by the
two previous terms in the sequence.

Initial conditions are also known as boundary conditions (as
opposed to the general conditions).

From now on, we will use the subscript notation, so the Fibonacci
numbers are

fn = fn−1 + fn−2
f1 = 1
f0 = 1

Recurrence Relations V
Definition

Recurrence relations have two parts: recursive terms and
non-recursive terms.

T (n) = 2T (n− 2)︸ ︷︷ ︸
recursive

+ n2 − 10︸ ︷︷ ︸
non-recrusive

Recursive terms come from when an algorithm calls itself.

Non-recursive terms correspond to the “non-recursive” cost of the
algorithm—work the algorithm performs within a function.

We’ll see some examples later. First, we need to know how to
solve recurrences.

Solving Recurrences

There are several methods for solving recurrences.

I Characteristic Equations

I Forward Substitution

I Backward Substitution

I Recurrence Trees

I Maple!

Linear Homogeneous Recurrences

Definition

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k

with c1, . . . , ck ∈ R, ck 6= 0.



Linear Homogeneous Recurrences
Examples

Examples

The Fibonacci sequence is a linear homogeneous recurrence
relation. As are the following.

an = 4an−1 + 5an−2 + 7an−3

an = 2an−2 + 4an−4 + 8an−8

How many initial conditions do we need to specify for these? As
many as the degree, k = 3, 8 respectively.

So, how do we solve linear homogeneous recurrences?

Solving Linear Homogeneous Recurrences I

We want a solution of the form an = rn where r is some (real)
constant.

We observe that an = rn is a solution to a linear homogeneous
recurrence if and only if

rn = c1r
n−1 + c2r

n−2 + · · ·+ ckr
n−k

We can now divide both sides by rn−k, collect terms, and we get a
k-degree polynomial.

rk − c1rk−1 − c2rk−2 − · · · − ck−1r − ck = 0

Solving Linear Homogeneous Recurrences II

rk − c1rk−1 − c2rk−2 − · · · − ck−1r − ck = 0

This is called the characteristic equation of the recurrence relation.

The roots of this polynomial are called the characteristic roots of
the recurrence relation. They can be used to find solutions (if they
exist) to the recurrence relation. We will consider several cases.

Second Order Linear Homogeneous Recurrences

A second order linear homogeneous recurrence is a recurrence of
the form

an = c1an−1 + c2an−2

Theorem (Theorem 1, p414)

Let c1, c2 ∈ R and suppose that r2 − c1r − c2 = 0 is the
characteristic polynomial of a 2nd order linear homogeneous
recurrence which has two distinct1 roots, r1, r2.

Then {an} is a solution if and only if

an = α1r
n
1 + α2r

n
2

for n = 0, 1, 2, . . . where α1, α2 are constants dependent upon the
initial conditions.

1we discuss how to handle this situation later.

Second Order Linear Homogeneous Recurrences
Example

Example

Find a solution to
an = 5an−1 − 6an−2

with initial conditions a0 = 1, a1 = 4

I The characteristic polynomial is

r2 − 5r + 6

I Using the quadratic formula (or common sense), the root can
be found;

r2 − 5r + 6 = (r − 2)(r − 3)

so r1 = 2, r2 = 3

Second Order Linear Homogeneous Recurrences
Example Continued

I Using the 2nd-order theorem, we have a solution,

an = α1(2
n) + α2(3

n)

I Now we can plug in the two initial conditions to get a system
of linear equations.

a0 = α1(2)0 + α2(3)0

a1 = α1(2)1 + α2(3)1

1 = α1 + α2 (1)

4 = 2α1 + 3α2 (2)



Second Order Linear Homogeneous Recurrences
Example Continued

I Solving for α1 = (1− α2) in (1), we can plug it into the
second.

4 = 2α1 + 3α2

4 = 2(1− α2) + 3α2

4 = 2− 2α2 + 3α2

2 = α2

I Substituting back into (1), we get

α1 = −1

I Putting it all back together, we have

an = α1(2
n) + α2(3

n)
= −1 · 2n + 2 · 3n

Second Order Linear Homogeneous Recurrences
Another Example

Example

Solve the recurrence

an = −2an−1 + 15an−2

with initial conditions a0 = 0, a1 = 1.

If we did it right, we have

an =
1

8
(3)n − 1

8
(−5)n

How can we check ourselves?

Single Root Case

Recall that we can only apply the first theorem if the roots are
distinct, i.e. r1 6= r2.

If the roots are not distinct (r1 = r2), we say that one
characteristic root has multiplicity two. In this case we have to
apply a different theorem.

Theorem (Theorem 2, p416)

Let c1, c2 ∈ R with c2 6= 0. Suppose that r2 − c1r − c2 = 0 has
only one distinct root, r0. Then {an} is a solution to
an = c1an−1 + c2an−2 if and only if

an = α1r
n
0 + α2nr

n
0

for n = 0, 1, 2, . . . where α1, α2 are constants depending upon the
initial conditions.

Single Root Case
Example

Example

What is the solution to the recurrence relation

an = 8an−1 − 16an−2

with initial conditions a0 = 1, a1 = 7?

I The characteristic polynomial is

r2 − 8r + 16

I Factoring gives us

r2 − 8r + 16 = (r − 4)(r − 4)

so r0 = 4

Single Root Case
Example

I By Theorem 2, we have that the solution is of the form

an = α14
n + α2n4n

I Using the initial conditions, we get a system of equations;

a0 = 1 = α1

a1 = 7 = 4α1 + 4α2

I Solving the second, we get that α2 = 3
4

I And so the solution is

an = 4n +
3

4
n4n

I We should check ourselves. . .

General Linear Homogeneous Recurrences

There is a straightforward generalization of these cases to higher
order linear homogeneous recurrences.

Essentially, we simply define higher degree polynomials.

The roots of these polynomials lead to a general solution.

The general solution contains coefficients that depend only on the
initial conditions.

In the general case, however, the coefficients form a system of
linear inequalities.



General Linear Homogeneous Recurrences I
Distinct Roots

Theorem (Theorem 3, p417)

Let c1, . . . , ck ∈ R. Suppose that the characteristic equation

rk − c1rk−1 − · · · − ck−1r − ck = 0

has k distinct roots, r1, . . . , rk. Then a sequence {an} is a solution
of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

an = α1r
n
1 + α2r

n
2 + · · ·+ αkr

n
k

for n = 0, 1, 2, . . ., where α1, α2, . . . , αk are constants.

General Linear Homogeneous Recurrences
Any Multiplicity

Theorem (Theorem 4, p418)

Let c1, . . . , ck ∈ R. Suppose that the characteristic equation

rk − c1rk−1 − · · · − ck−1r − ck = 0

has t distinct roots, r1, . . . , rt with multiplicities m1, . . . ,mt.

General Linear Homogeneous Recurrences
Any Multiplicity

Theorem (Continued)

Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

an = (α1,0 + α1,1n+ · · ·+ α1,m1−1n
m1−1)rn1+

(α2,0 + α2,1n+ · · ·+ α2,m2−1n
m2−1)rn2+

...
(αt,0 + αt,1n+ · · ·+ αt,mt−1n

mt−1)rnt +

for n = 0, 1, 2, . . ., where αi,j are constants for 1 ≤ i ≤ t and
0 ≤ j ≤ mi − 1.

Linear Nonhomogeneous Recurrences

For recursive algorithms, cost functions are often not homogenous
because there is usually a non-recursive cost depending on the
input size.

Such a recurrence relation is called a linear nonhomogeneous
recurrence relation.

Such functions are of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k + f(n)

Linear Nonhomogeneous Recurrences

Here, f(n) represents a non-recursive cost. If we chop it off, we
are left with

an = c1an−1 + c2an−2 + · · ·+ ckan−k

which is the associated homogenous recurrence relation.

Every solution of a linear nonhomogeneous recurrence relation is
the sum of a particular solution and a solution to the associated
linear homogeneous recurrence relation.

Linear Nonhomogeneous Recurrences

Theorem (Theorem 5, p420)

If {a(p)n } is a particular solution of the nonhomogeneous linear
recurrence relation with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + f(n)

then every solution is of the form {a(p)n + a
(h)
n }, where {a(h)n } is a

solution of the associated homogenous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k



Linear Nonhomogeneous Recurrences

There is no general method for solving such relations. However, we
can solve them for special cases.

In particular, if f(n) is a polynomial or exponential function (or
more precisely, when f(n) is the product of a polynomial and
exponential function), then there is a general solution.

Linear Nonhomogeneous Recurrences

Theorem (Theorem 6, p421)

Suppose that {an} satisfies the linear nonhomogeneous recurrence
relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k + f(n)

where c1, . . . , ck ∈ R and

f(n) = (btn
t + bt−1nt−1 + · · ·+ b1n+ b0) · sn

where b0, . . . , bn, s ∈ R.

Linear Nonhomogeneous Recurrences

Theorem (Continued)

When s is not a root of the characteristic equation of the
associated linear homogeneous recurrence relation, there is a
particular solution of the form

(ptn
t + pt−1nt−1 + · · ·+ p1n+ p0) · sn

When s is a root of this characteristic equation and its multiplicity
is m, there is a particular solution of the form

nm(ptn
t + pt−1nt−1 + · · ·+ p1n+ p0) · sn

Linear Nonhomogeneous Recurrences I

Examples (Rosen):

an = 3an−1 + 2n

I Homogenous solution form: a
(h)
n = α3n

I Hetrogeneous form: pn = cn+ d since f(n) = 2n is a linear
function

I Test: cn+ d = 3(c(n− 1) + d) + 2n

I Collect terms, factor out a negation: (2c+ 2)n+ (2d−3c) = 0

I Total solution: an = a
(h)
n + a

(p)
n = α3n + (−n− 3/2)

Linear Nonhomogeneous Recurrences II

an = 5an−1 − 6an−2 + 7n

I Homogenous solution form: a
(h)
n = α12

n + α23
n

I Hetrogeneous form: pn = c · 7n since f(n) = 7n is an
exponential funciton

I c7n = 5c7n−1 − 6c7n−2 + 7n (divide by 7n−2 and solve for c)

I Total solution: an = a
(h)
n + a

(p)
n = α12

n + α23
n + 49

20 · 7n

Linear Nonhomogeneous Recurrences I
Application

Recall that the number of additions performed by the recursive
fibonacci code can be characterized as:

A(n) = A(n− 1) +A(n− 2) + 1

We now recognize this as a linear, nonhomogeneous recurrence
relation of degree 2.

Solving the homogenous part we get:

an = α1(−.61803)n + α2(1.61803)n

Note that φ = 1.61803 . . . is the golden ratio.

To solve the non-homogeneous part (a constant function), we
assume it has a solution of the form an = c and so:

c = c+ c+ 1



Linear Nonhomogeneous Recurrences II
Application

thus c = −1; altogether:

an = a(h)n + a(p)n = α1(−φ+ 1)n + α2(φ)n − 1

For A(0) = A(1) = 0 we get the regular solution to the fibonacci
recurrence minus 1:

an = fn − 1

which is exponential in n.

Other Methods

When analyzing algorithms, linear homogenous recurrences of
order greater than 2 hardly ever arise in practice.

We briefly describe two “unfolding” methods that work for a lot of
cases.

Backward substitution – this works exactly as its name implies:
starting from the equation itself, work backwards, substituting
values of the function for previous ones.

Recurrence Trees – just as powerful but perhaps more intuitive,
this method involves mapping out the recurrence tree for an
equation. Starting from the equation, you unfold each recursive
call to the function and calculate the non-recursive cost at each
level of the tree. You then find a general formula for each level and
take a summation over all such levels.

Backward Substitution
Example

Example

Give a solution to

T (n) = T (n− 1) + 2n

where T (1) = 5.

We begin by unfolding the recursion by a simple substitution of the
function values.

Observe that

T (n− 1) = T ((n− 1)− 1) + 2(n− 1) = T (n− 2) + 2(n− 1)

Substituting this into the original equation gives us

T (n) = T (n− 2) + 2(n− 1) + 2n

Backward Substitution
Example – Continued

If we continue to do this, we get the following.

T (n) = T (n− 2) + 2(n− 1) + 2n
= T (n− 3) + 2(n− 2) + 2(n− 1) + 2n
= T (n− 4) + 2(n− 3) + 2(n− 2) + 2(n− 1) + 2n
...

= T (n− i) +
∑i−1

j=0 2(n− j)

I.e. this is the function’s value at the i-th iteration. Solving the
sum, we get

T (n) = T (n− i) + 2n(i− 1) + 2
(i− 1)(i− 1 + 1)

2
+ 2n

Backward Substitution
Example – Continued

We want to get rid of the recursive term. To do this, we need to
know at what iteration we reach our base case; i.e. for what value
of i can we use the initial condition, T (1) = 5?

We can easily see that when i = n− 1, we get the base case.

Substituting this into the equation above, we get

T (n) = T (n− i) + 2n(i− 1)− i2 + i+ 2n
= T (1) + 2n(n− 1− 1)− (n− 1)2 + (n− 1) + 2n
= 5 + 2n(n− 2)− (n2 − 2n+ 1) + (n− 1) + 2n
= n2 + n+ 3

Recurrence Trees

When using recurrence trees, we graphically represent the
recursion.

Each node in the tree is an instance of the function. As we
progress downward, the size of the input decreases.

The contribution of each level to the function is equivalent to the
number of nodes at that level times the non-recursive cost on the
size of the input at that level.

The tree ends at the depth at which we reach the base case.

As an example, we consider a recursive function of the form

T (n) = αT

(
n

β

)
+ f(n), T (δ) = c



Recurrence Trees

T (n)

T (n/β)

T (n/β2) · · · α · · · T (n/β2)

· · · α · · · T (n/β)

T (n/β2) · · · α · · · T (n/β2)

Iteration

0

1

2

.

.

.

i

.

.

.

logβ n

Cost

f(n)

α · f
(
n
β

)

α2 · f
(
n
β2

)

.

.

.

αi · f
(
n
βi

)

.

.

.

α
logβ n · T (δ)

Recurrence Trees
Example

The total value of the function is the summation over all levels of
the tree:

T (n) =

logβ n∑

i=0

αi · f
(
n

βi

)

We consider the following concrete example.

Example

T (n) = 2T
(n

2

)
+ n, T (1) = 4

Recurrence Trees
Example – Continued

T (n)

T (n/2)

T (n/4)

T (n/8) T (n/8)

T (n/4)

T (n/8) T (n/8)

T (n/2)

T (n/4)

T (n/8) T (n/8)

T (n/4)

T (n/8) T (n/8)

Iteration

0

1

2

3

.

.

.

i

.

.

.

log2 n

Cost

n

n
2

+ n
2

4 ·
(
n
4

)

8 ·
(
n
8

)

.

.

.

2i ·

 n
2i




.

.

.

2log2 n · T (1)

Recurrence Trees
Example – Continued

The value of the function then, is the summation of the value of
all levels. We treat the last level as a special case since its
non-recursive cost is different.

T (n) = 4n+

(log2 n)−1∑

i=0

2i
n

2i
= n(log n) + 4n

Smoothness Rule I

In the previous example we make the following assumption: that n
was a power of two; n = 2k. This was necessary to get a nice
depth of log n and a full tree.

We can restrict consideration to certain powers because of the
smoothness rule.

Definition

A function f : N 7→ R is called smooth if it is monotonically
nondecreasing and

f(2n) ∈ Θ(f(n))

Most “slow” growing functions (logarithmic, polylogarithmic,
polynomial) are smooth while exponential functions are not.

Smoothness Rule II

Theorem

For a smooth function f(n) and a fixed constant b ∈ Z such that
b ≥ 2,

f(bn) ∈ Θ(f(n))

Thus the order of growth is preserved.



How To Cheat With Maple I

Maple and other math tools are great resources. However, they are
not substitutes for knowing how to solve recurrences yourself.

As such, you should only use Maple to check your answers.
Recurrence relations can be solved using the rsolve command
and giving Maple the proper parameters.

The arguments are essentially a comma-delimited list of equations:
general and boundary conditions, followed by the “name” and
variable of the function.

How To Cheat With Maple II

> rsolve({T(n) = T(n-1) + 2*n, T(1) = 5}, T(n));

1 + 2(n+ 1)

(
1

2
n+ 1

)
− 2n

You can clean up Maple’s answer a bit by encapsulating it in the
simplify command:

> simplify(rsolve({T(n) = T(n-1) + 2*n, T(1) = 5},
T(n)));

3 + n2 + n


