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Introduction

Consider the following statements:

x > 3, x = y + 3, x+ y = z

The truth value of these statements has no meaning without
specifying the values of x, y, z.

However, we can make propositions out of such statements.

A predicate is a property that is affirmed or denied about the
subject (in logic, we say “variable” or “argument”) of a statement.

“ x︸︷︷︸
subject

is greater than 3”︸ ︷︷ ︸
predicate

Propositional Functions

Definition

A statement of the form P (x1, x2, . . . , xn) is the value of the
propositional function P . Here, (x1, x2, . . . , xn) is an n-tuple and
P is a predicate.

You can think of a propositional function as a function that

I Takes one or more arguments.

I Expresses a predicate involving the argument(s).

I Becomes a proposition when values are assigned to the
arguments.

Propositional Functions
Example

Example

Let Q(x, y, z) denote the statement “x2 + y2 = z2”. What is the
truth value of Q(3, 4, 5)? What is the truth value of Q(2, 2, 3)?
How many values of (x, y, z) make the predicate true?

Since 32 + 42 = 25 = 52, Q(3, 4, 5) is true.

Since 22 + 22 = 8 6= 32 = 9, Q(2, 2, 3) is false.

There are infinitely many values for (x, y, z) that make this
propositional function true—how many right triangles are there?

Universe of Discourse

Consider the previous example. Does it make sense to assign to x
the value “blue”?

Intuitively, the universe of discourse is the set of all things we wish
to talk about; that is, the set of all objects that we can sensibly
assign to a variable in a propositional function.

What would be the universe of discourse for the propositional
function P (x) = “The test will be on x the 23rd” be?

Universe of Discourse
Multivariate Functions

Moreover, each variable in an n-tuple may have a different universe
of discourse.

Let P (r, g, b, c) = “The rgb-value of the color c is (r, g, b)”.

For example, P (255, 0, 0, red) is true, while P (0, 0, 255, green) is
false.

What are the universes of discourse for (r, g, b, c)?



Quantifiers
Introduction

A predicate becomes a proposition when we assign it fixed values.
However, another way to make a predicate into a proposition is to
quantify it. That is, the predicate is true (or false) for all possible
values in the universe of discourse or for some value(s) in the
universe of discourse.

Such quantification can be done with two quantifiers: the universal
quantifier and the existential quantifier.

Universal Quantifier
Definition

Definition

The universal quantification of a predicate P (x) is the proposition
“P (x) is true for all values of x in the universe of discourse” We
use the notation

∀xP (x)

which can be read “for all x”

If the universe of discourse is finite, say {n1, n2, . . . , nk}, then the
universal quantifier is simply the conjunction of all elements:

∀xP (x) ⇐⇒ P (n1) ∧ P (n2) ∧ · · · ∧ P (nk)

Universal Quantifier
Example I

I Let P (x) be the predicate “x must take a discrete
mathematics course” and let Q(x) be the predicate “x is a
computer science student”.

I The universe of discourse for both P (x) and Q(x) is all UNL
students.

I Express the statement “Every computer science student must
take a discrete mathematics course”.

∀x(Q(x)→ P (x))

I Express the statement “Everybody must take a discrete
mathematics course or be a computer science student”.

∀x(Q(x) ∨ P (x))

I Are these statements true or false?

Universal Quantifier
Example II

Express the statement “for every x and for every y, x+ y > 10”

Let P (x, y) be the statement x+ y > 10 where the universe of
discourse for x, y is the set of integers.

Answer:
∀x∀yP (x, y)

Note that we can also use the shorthand

∀x, yP (x, y)

Existential Quantifier
Definition

Definition

The existential quantification of a predicate P (x) is the
proposition “There exists an x in the universe of discourse such
that P (x) is true.” We use the notation

∃xP (x)

which can be read “there exists an x”

Again, if the universe of discourse is finite, {n1, n2, . . . , nk}, then
the existential quantifier is simply the disjunction of all elements:

∃xP (x) ⇐⇒ P (n1) ∨ P (n2) ∨ · · · ∨ P (nk)

Existential Quantifier
Example I

Let P (x, y) denote the statement, “x+ y = 5”.

What does the expression,

∃x∃yP (x, y)

mean?

What universe(s) of discourse make it true?



Existential Quantifier
Example II

Express the statement “there exists a real solution to
ax2 + bx− c = 0”

Let P (x) be the statement x = −b±
√
b2−4ac
2a where the universe of

discourse for x is the set of reals. Note here that a, b, c are all fixed
constants.

The statement can thus be expressed as

∃xP (x)

Existential Quantifier
Example II Continued

Question: what is the truth value of ∃xP (x)?

Answer: it is false. For any real numbers such that b2 < 4ac, there
will only be complex solutions, for these cases no such real number
x can satisfy the predicate.

How can we make it so that it is true?

Answer: change the universe of discourse to the complex numbers,
C.

Quantifiers
Truth Values

In general, when are quantified statements true/false?

Statement True When False When

∀xP (x) P (x) is true for every
x.

There is an x for
which P (x) is false.

∃xP (x) There is an x for
which P (x) is true.

P (x) is false for every
x.

Table : Truth Values of Quantifiers

Mixing Quantifiers I

Existential and universal quantifiers can be used together to
quantify a predicate statement; for example,

∃x∀yP (x, y)

is perfectly valid. However, you must be careful—it must be read
left to right.

You can commute similar quantifiers:

∃x∃yP (x, y) ≡ ∃y∃xP (x, y)

Which is why our shorthand was valid.

Mixing Quantifiers II

However, dissimilar quantifiers do not commute; in general,

∃x∀yP (x, y) 6≡ ∀y∃xP (x, y)

Consider as an example the additive inverse law for integers: for
every integer x, there is an integer y such that x+ y = 0; with
P (x, y) : x+ y = 0, we can define

∀x∃yP (x, y)

which holds because for each integer x, its additive inverse is −x.
The additive inverse for each integer is unique to that integer.
Now consider the statement with commuted quantifiers:

∃y∀xP (x, y)

There does not exist a single integer y that acts as an additive
inverse for all other integers x.

Mixing Quantifiers
Truth Values

Statement True When False When

∀x∀yP (x, y) P (x, y) is true for ev-
ery pair x, y.

There is at least one
pair, x, y for which
P (x, y) is false.

∀x∃yP (x, y) For every x, there is a
y for which P (x, y) is
true.

There is an x for
which P (x, y) is false
for every y.

∃x∀yP (x, y) There is an x for
which P (x, y) is true
for every y.

For every x, there is a
y for which P (x, y) is
false.

∃x∃yP (x, y) There is at least one
pair x, y for which
P (x, y) is true.

P (x, y) is false for ev-
ery pair x, y.

Table : Truth Values of 2-variate Quantifiers



Mixing Quantifiers
Example I

Express, in predicate logic, the axiom that there are an infinite
number of integers.

Let P (x, y) be the statement that x < y. Let the universe of
discourse be the integers, Z.

Then the statement can be expressed by the following.

∀x∃yP (x, y)

Mixing Quantifiers
Example II: More Mathematical Axioms

Express the commutative law of addition for R.

We want to express that for every pair of reals, x, y the following
identity holds:

x+ y = y + x

Then we have the following:

∀x∀y(x+ y = y + x)

Mixing Quantifiers
Example II: More Mathematical Axioms Continued

Express the multiplicative inverse law for (nonzero) rationals
Q \ {0}.
We want to express that for every real number x, there exists a
real number y such that xy = 1.

Then we have the following:

∀x∃y(xy = 1)

Mixing Quantifiers
Example II: False Mathematical Axioms

Is commutativity for subtraction valid over the reals?

That is, for all pairs of real numbers x, y does the identity
x− y = y − x hold? Express this using quantifiers.

The expression is
∀x∀y(x− y = y − x)

This is clearly false: x = 2, y = 3 so the negation is true:

¬∀x, y[x− y = y − x] ≡ ∃x, y[x− y 6= y − x]

Negation

Just as we can use negation with propositions, we can use them
with quantified expressions.

Lemma

Let P (x) be a predicate. Then the following hold.

¬∀xP (x) ≡ ∃x¬P (x)

¬∃xP (x) ≡ ∀x¬P (x)

This is essentially a quantified version of De Morgan’s Law (in fact
if the universe of discourse is finite, it is exactly De Morgan’s law).

Negation
Truth Values

Statement True When False When

¬∃xP (x) ≡
∀x¬P (x)

For every x, P (x) is
false.

There is an x for
which P (x) is true.

¬∀xP (x) ≡
∃x¬P (x)

There is an x for
which P (x) is false.

P (x) is true for every
x.

Table : Truth Values of Negated Quantifiers



Mixing Quantifiers
Example II: False Mathematical Axioms Continued

Is there a multiplicative inverse law over the nonzero integers?

That is, for every integer x does there exists a y such that xy = 1?

This is false, since we can find a counter example. Take any
integer, say 5 and multiply it with another integer, y. If the axiom
held, then 5 = 1/y, but for any (nonzero) integer y, |1/y| ≤ 1.

Mixing Quantifiers
Exercise

Express the statement “there is a number x such that
when it is added to any number, the result is that
number, and if it is multiplied by any number, the result
is x” as a logical expression.

Solution:

I Let P (x, y) be the expression “x+ y = y”.

I Let Q(x, y) be the expression “xy = x”.

I Then the expression is

∃x∀y (P (x, y) ∧Q(x, y))

I Over what universe(s) of discourse does this axiom hold?

I This is the additive identity law and holds for N,Z,R,Q but
does not hold for Z+.

Distributivity with Quantifiers

I Quantifiers can be distributed in certain cases

I Universal quantifiers distribute over conjunctions:

∀x [P (x) ∧Q(x)] ≡ ∀xP (x) ∧ ∀xQ(x)

I Existential quantifiers distribute over disjnctions

∃x [P (x) ∨Q(x)] ≡ ∃xP (x) ∨ ∃xQ(x)

I Universal quantifiers do not distribute over disjunctions:

∀x [P (x) ∨Q(x)] 6≡ ∀xP (x) ∨ ∀xQ(x)

I Existential quantifiers do not distribute over conjunctions:

∃x [P (x) ∧Q(x)] 6≡ ∃xP (x) ∧ ∃xQ(x)

Separating Mixed quantifies do not commute

I Does the following equivalence hold?

∀x, yP (x, y) ≡ ∀xP (x, y) ∧ ∀yP (x, y)

I The above is false

I Left-hand side: both variables are bound

I Right-hand side, first expression: x is bound, y is free

I Second expression: y is bound, x is free

I All variables that occur in a propositional function must be
bound to turn it into a proposition.

I The left-hand side is a proposition, but the right-hand side is
not

Binding Variables I

When a quantifier is used on a variable x, we say that x is bound.
If no quantifier is used on a variable in a predicate statement, it is
called free.

Example

In the expression ∃x∀yP (x, y) both x and y are bound.

In the expression ∀xP (x, y), x is bound, but y is free.

Binding Variables II

The set of all variables bound by a common quantifier is the scope
of that quantifier.

Example

In the expression ∃x, y∀zP (x, y, z, c) the scope of the existential
quantifier is {x, y}, the scope of the universal quantifier is just z
and c has no scope since it is free.



Vacuousness

For any universe of discourse that is empty, then for any predicate,

∃xP (x)

is always false, and
∀xP (x)

is always true. The second is always vacuously true (P (x) holds for
every x in the universe of discourse because there is no such x).

Conclusion

Examples? Exercises?

I Rewrite the expression, ¬∀x
(
∃y∀zP (x, y, z)∧ ∃z∀yP (x, y, z)

)

I Answer: Use the negated quantifiers and De Morgan’s law.

∃x
(
∀y∃z¬P (x, y, z) ∨ ∀z∃y¬P (x, y, z)

)

I Let P (x, y) denote “x is a factor of y” where x ∈ {1, 2, 3, . . .}
and y ∈ {2, 3, 4, . . .}. Let Q(y) denote
“∀x

[
P (x, y)→ ((x = y) ∨ (x = 1))

]
”. When is Q(y) true?

I Answer: Only when y is a prime number.


