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Integer Division I

When talking about division over the integers, we mean division
with no remainder.

Definition

Let a, b ∈ Z, a 6= 0, we say that a divides b if there exists c ∈ Z
such that b = ac. We denote this, a | b and a - b when a does not
divide b. When a | b, we say a is a factor of b.

Integer Division II

Theorem

Let a, b, c ∈ Z then

1. If a | b and a | c then a | (b+ c).

2. If a | b, then a | bc for all c ∈ Z.

3. If a | b and b | c, then a | c.

proofs?

Integer Division III

Corollary

If a, b, c ∈ Z such that a | b and a | c then a | mb+ nc for
n,m ∈ Z.

Primes I

Definition

A positive integer p > 1 is called prime if its only positive factors
are 1 and p. If a positive integer is not prime, it is called composite

Primes II

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer n > 1 can be written uniquely as a prime or
as the product of the powers of two or more primes written in
nondecreasing size.

That is, for every n ∈ Z, n > 1, can be written as

n = p1
k1p2

k2 · · · plkl

where each pi is a prime and each ki ≥ 1 is a positive integer.



Sieve of Eratosthenes
Preliminaries

Given a positive integer, n > 1, how can we determine if n is prime
or not?

The Seive of Eratosthenes (“siv of air-o-toss-ten-ees”, Greek
mathematician, 276 - 195 BCE) provides a brute-force primality
test.

Lemma

If n is a composite integer, then n has a prime divisor x ≤ √n.

Sieve of Eratosthenes
Preliminaries

Proof.

I Let n be a composite integer.

I By definition, n has a prime divisor a with 1 < a < n, thus
n = ab.

I Its easy to see that either a ≤ √n or b ≤ √n. Otherwise, if
on the contrary, a >

√
n and b >

√
n, then

ab >
√
n
√
n = n

I Finally, either a or b is prime divisor or has a factor that is a
prime divisor by the Fundamental Theorem of Arithmetic,
thus n has a prime divisor x ≤ √n.

Sieve of Eratosthenes
Algorithm

This result gives us an obvious algorithm. To determine if a
number n is prime, we simple must test every prime number p with
2 ≤ p ≤ √n.

Sieve

Input : A positive integer n ≥ 4.

Output : true if n is prime.

1 foreach prime number p, 2 ≤ p ≤ √n do
2 if p | n then
3 output false

4 end

5 end

6 output true

Sieve of Eratosthenes
Efficiency?

I Sieve is old, but correct

I Efficiency?

I The outer for-loop runs for every prime p ≤ √n.

I Assume that we get such a list for free. The loop still
executes about √

n

ln
√
n

times (see distribution of primes; next topic).

I Assume also that division is our elementary operation.

I Then the algorithm is O(√n)
I Is this polynomial?

I What is the actual input size?

Sieve of Eratosthenes
Efficiency?

I Input is a number, input size is the representation of that
number

I Number of bits to represent n: dlog (n)e
I Let N = log (n)

I Then n = 2N , so √
n =
√
2N

I Thus the Sieve is exponential in the input size N .

The Sieve also gives an algorithm for determining the prime
factorization of an integer. To date, no one has been able to
produce an algorithm that runs in sub-exponential time. The
hardness of this problem is the basis of public-key cryptography.

Sieve of Eratosthenes I
Primality Testing

Take note of the difference between the two problems—primality is
a decision problem; we try to determine if the answer is “yes” or
“no”. However, factorization is a functional problem, we are
actually trying to find a number; a factor.

Numerous algorithms for primality testing have been developed
over the last 50 years, including randomized algorithms,
probabilistic algorithms and algorithms based on unproven, but
widely accepted conjectures.



Sieve of Eratosthenes II
Primality Testing

In 2002, three Indian computer scientists developed the first
deterministic polynomial-time algorithm for primality testing,
running in time O(log12 (n)).
M. Agrawal and N. Kayal and N. Saxena. Primes is in P. Annals
of Mathematics, 160(2):781-793, 2004.

Available at http://projecteuclid.org/Dienst/UI/1.0/
Summarize/euclid.annm/1111770735

How Many Primes?

How many primes are there?

Theorem

There are infinitely many prime numbers.

The proof is a simple proof by contradiction.

How Many Primes?
Proof

Proof.

I Assume to the contrary that there are a finite number of
primes, p1, p2, . . . , pn.

I Let
Q = p1p2 · · · pn + 1

I By the FTA, Q is either prime (in which case we are done) or
Q can be written as the product of two or more primes.

I Thus, one of the primes pj (1 ≤ j ≤ n) must divide Q, but
then if pj | Q, it must be the case that

pj | Q− p1p2 · · · pn = 1

I Since this is not possible, we’ve reached a
contradiction—there are not finitely many primes.

Distribution of Prime Numbers

Theorem

The ratio of the number of prime numbers not exceeding n and
n

lnn approaches 1 as n→∞.

In other words, for a fixed natural number, n, the number of
primes not greater than n is about

n

lnn

Mersenne Primes I

A Mersenne prime is a prime number of the form

2k − 1

where k is a positive integer. They are related to perfect numbers
(if Mn is a Mersenne prime, Mn(Mn+1)

2 is perfect).

Perfect numbers are numbers that are equal to the sum of their
proper factors, for example 6 = 1 · 2 · 3 = 1 + 2 + 3 is perfect.

Mersenne Primes II

It is an open question as to whether or not there exist odd perfect
numbers. It is also an open question whether or not there exist an
infinite number of Mersenne primes.

Such primes are useful in testing suites for large super computers.

As of February 2013, 48 Mersennne primes have been found,
largest:

257,885,161 − 1



Distribution of Prime Numbers I
Extended Riemann Hypothesis

One of the most important open conjectures about primes is the
Riemann Hypothesis.

In 1859, Riemann conjectured that the frequency of primes is
closely related to the Riemann zeta function,

ζ(s) = 1 +

(
1

2

)s

+

(
1

3

)s

+

(
1

4

)s

+ · · ·

His conjecture asserts that all non-trivial solutions to ζ(s) = 0 lie
on a critical line, 1

2 + ti with i imaginary and t ∈ R.

Distribution of Prime Numbers II
Extended Riemann Hypothesis

To date, no one has proven the conjecture, but it has been verified
for very large numbers.

Because of this, it is one of the Clay Mathematics Institutes’s
Millennium Problems. Anyone who comes up with a correct,
accepted proof will receive $1,000,000.

Future Work?

The study of primes continues to be an active research area.
Recently, it was shown that the primes contain arbitrarily long
arithmetic progressions; sequences of the form

{p+ kd}∞k=1

Ben Green and Terence Tao. The primes contain arbitrarily long
arithmetic progressions. In arXiv:
http://arxiv.org/abs/math.NT/0404188, April 2004.

Division

Theorem (The Division “Algorithm”)

Let a ∈ Z and d ∈ Z+ then there exists unique integers q, r with
0 ≤ r < d such that

a = dq + r

Some terminology:

I d is called the divisor.
I a is called the dividend.
I q is called the quotient.
I r is called the remainder.

We use the following notation:

q = a div d
r = a mod d

Greatest Common Divisor I

Definition

Let a and b be integers not both zero. The largest integer d such
that d | a and d | b is called the greatest common divisor of a and
b. It is denoted

gcd(a, b)

The gcd is always guaranteed to exist since the set of common
divisors is finite. Recall that 1 is a divisor of any integer. Also,
gcd(a, a) = a, thus

1 ≤ gcd(a, b) ≤ min{a, b}

Definition

Greatest Common Divisor II

Two integers a, b are called relatively prime if

gcd(a, b) = 1

Sometimes, such integers are called coprime.

Example

I gcd(60, 210) = 30

I gcd(7, 49) = 7

I gcd(7, 59) = 1

I gcd(7, 60) = 1



Greatest Common Divisor III

There is natural generalization to a set of integers.

Definition

Integers a1, a2, . . . , an are pairwise relatively prime if
gcd(ai, aj) = 1 for i 6= j.

Greatest Common Divisor
Computing

The gcd may be found by finding the prime factorization of two
numbers.

Let

a = p1
a1p2

a2 · · · pnan
b = p1

b1p2
b2 · · · pnbn

Where each power is a nonnegative integer (if a prime is not a
divisor, then the power is 0).

Then the gcd is simply

gcd(a, b) = p
min{a1,b1}
1 p

min{a2,b2}
2 · · · pmin{an,bn}

n

Greatest Common Divisor
Examples

Example

What is the gcd(6600, 12740)?

The prime decompositions are

6600 = 23315270111130

12740 = 22305172110131

So we have

gcd(6600, 12740) = 2min{2,3}3min{0,1}5min{1,2}7min{0,2}

11min{0,1}13min{0,1}

= 22305170110130

= 20

Least Common Multiple

Definition

The least common multiple of positive integers a, b is the smallest
positive integer that is divisible by both a and b. It is denoted

lcm(a, b)

The lcm may be computed similar to gcd using prime
decomposition: use the max rather than the min of powers.

lcm(a, b) = p
max{a1,b1}
1 p

max{a2,b2}
2 · · · pmax{an,bn}

n

Least Common Multiple
Example

Example

What is the lcm(6600, 12740)?

Again, the prime decompositions are

6600 = 23315270111130

12740 = 22305172110131

So we have

lcm(6600, 12740) = 2max{2,3}3max{0,1}5max{1,2}7max{0,2}

11max{0,1}13max{0,1}

= 23315272111131

= 4, 204, 200

Intimate Connection

There is a very close connection between the gcd and lcm.

Theorem

Let a, b ∈ Z+, then

ab = gcd(a, b) · lcm(a, b)

Proof?



Congruences
Definition

Often, rather than the quotient, we are only interested in the
remainder of a division operation. We introduced the notation
before, but we formally define it here.

Definition

Let a, b ∈ Z and m ∈ Z+. Then a is congruent to b modulo m if
m divides a− b. We use the notation

a ≡ b(mod m)

If the congruence does not hold, we write a 6≡ b(mod m)

Congruences
Another Characterization

An equivalent characterization can be given as follows.

Theorem

Let m ∈ Z+. Then a ≡ b(mod m) if and only if there exists q ∈ Z
such that

a = qm+ b

i.e. a quotient q.

Congruences
Properties

Theorem

Let a, b ∈ Z,m ∈ Z+. Then,

a ≡ b(mod m) ⇐⇒ a mod m = b mod m

Theorem

Let m ∈ Z+. If a ≡ b(mod m) and c ≡ d(mod m) then

a+ c ≡ b+ d(mod m)

and
ac ≡ bd(mod m)

Modular Arithmetic
Example

Example

I 36 ≡ 1(mod 5) since the remainder of 36
5 is 1.

I Similarly, −17 ≡ −1(mod 2), −17 ≡ 1(mod 2),
−17 ≡ 3(mod 2), etc.

I However, we prefer to express congruences in lowest positive
terms: 0 ≤ b < m

I 64 ≡ 0(mod 2), 64 ≡ 1(mod 3), 64 ≡ 4(mod 5),
64 ≡ 4(mod 6), 64 ≡ 1(mod 7), etc.

Inverses I

Definition

An inverse of an element x modulo m is an integer x−1 such that

xx−1 ≡ 1(mod m)

Example: find the inverse of a = 7 modulo m = 17

Inverses do not always exist; example: x = 5,m = 10.

Verify for b, 0 ≤ b < m

Inverses II

The following is a necessary and sufficient condition for an inverse
to exist.

Theorem

Let a and m be integers, m > 1. A (unique) inverse of a modulo
m exists if and only if a and m are relatively prime.

Intuition: if a,m are not coprime, then for b = 0, . . .m− 1, the
resulting congruences will be periodic, but never 1.


