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Combinatorics I
Introduction

Combinatorics is the study of collections of objects. Specifically,
counting objects, arrangement, derangement, etc. of objects along
with their mathematical properties.

Counting objects is important in order to analyze algorithms and
compute discrete probabilities.

Originally, combinatorics was motivated by gambling: counting
configurations is essential to elementary probability.

In addition, combinatorics can be used as a proof technique.

A combinatorial proof is a proof method that uses counting
arguments to prove a statement.

Combinatorics I
Motivating Example

How many arrangements are there of a deck of 52 cards?

The standard deck (The Mameluke deck) is thought to be 1000
years old. Have all possible 52! been dealt?

Suppose that 5 billion people have dealt 1 hand every second for
the last 1000 years. Percentage of deals that have occurred:

5× 109 · 1000 · 365.25 · 24 · 60 · 60
52!

≈ 1.9562× 10−48

To even deal 1% of all hands, we would require 5.11× 1048 years
(quindecillion).

Combinations

I Choosing k elements from a set of cardinality n is a
combination

I Notations:

Ck
n = C(n, k) =

(
n

k

)
=

n!

(n− k)!k!

I Combinations are unordered

I Common usage: choosing singletons:
(
n
1

)
= n

I Choosing pairs:
(
n
2

)
= n(n−1)

2

Permutations

I Arranging n elements is a permutation

I Number of permutations:
n!

I Permutations are ordered

Product Rule

If two events are not mutually exclusive (that is, we do them
separately), then we apply the product rule.

Theorem (Product Rule)

Suppose a procedure can be accomplished with two disjoint
subtasks. If there are n1 ways of doing the first task and n2 ways
of doing the second, then there are

n1 · n2

ways of doing the overall procedure.



Sum Rule I

If two events are mutually exclusive, that is, they cannot be done
at the same time, then we must apply the sum rule.

Theorem (Sum Rule)

If an event e1 can be done in n1 ways and an event e2 can be done
in n2 ways and e1 and e2 are mutually exclusive, then the number
of ways of both events occurring is

n1 + n2

Sum Rule II

There is a natural generalization to any sequence of m tasks;
namely the number of ways m mutually exclusive events can occur
is

n1 + n2 + · · ·nm−1 + nm

We can give another formulation in terms of sets. Let
A1, A2, . . . , Am be pairwise disjoint sets. Then

|A1 ∪A2 ∪ · · · ∪Am| = |A1|+ |A2|+ · · ·+ |Am|

In fact, this is a special case of the general Principle of
Inclusion-Exclusion.

Principle of Inclusion-Exclusion (PIE) I
Introduction

Say there are two events, e1 and e2 for which there are n1 and n2

possible outcomes respectively.

Now, say that only one event can occur, not both.

In this situation, we cannot apply the sum rule? Why?

Principle of Inclusion-Exclusion (PIE) II
Introduction

We cannot use the sum rule because we would be over counting
the number of possible outcomes.

Instead, we have to count the number of possible outcomes of e1
and e2 minus the number of possible outcomes in common to
both; i.e. the number of ways to do both “tasks”.

If again we think of them as sets, we have

|A1|+ |A2| − |A1 ∩A2|

Principle of Inclusion-Exclusion (PIE) III
Introduction

More generally, we have the following.

Lemma

Let A,B be subsets of a finite set U . Then

1. |A ∪B| = |A|+ |B| − |A ∩B|
2. |A ∩B| ≤ min{|A|, |B|}
3. |A \B| = |A| − |A ∩B| ≥ |A| − |B|
4. |A| = |U | − |A|
5. |A⊕B| = |A∪B|−|A∩B| = A+B−2|A∩B| = |A\B|+|B\A|
6. |A×B| = |A| · |B|

Principle of Inclusion-Exclusion (PIE) I
Theorem

Theorem

Let A1, A2, . . . , An be finite sets, then

|A1 ∪A2 ∪ · · · ∪An| =
∑

i

|Ai|

−
∑

i<j

|Ai ∩Aj |

+
∑

i<j<k

|Ai ∩Aj ∩Ak|

− · · ·
+(−1)n+1|A1 ∩A2 ∩ · · · ∩An|



Principle of Inclusion-Exclusion (PIE) II
Theorem

Each summation is over all i, pairs i, j with i < j, triples i, j, k
with i < j < k etc.

Principle of Inclusion-Exclusion (PIE) III
Theorem

To illustrate, when n = 3, we have

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3|
−
[
|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|

]

+|A1 ∩A2 ∩A3|

Principle of Inclusion-Exclusion (PIE) IV
Theorem

To illustrate, when n = 4, we have

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4|
−
[
|A1 ∩A2|+ |A1 ∩A3|++|A1 ∩A4|

|A2 ∩A3|+ |A2 ∩A4|+ |A3 ∩A4|
]

+
[
|A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+

|A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
]

−|A1 ∩A2 ∩A3 ∩A4|

Principle of Inclusion-Exclusion (PIE) I
Example I

Example

How many integers between 1 and 300 (inclusive) are

1. Divisible by at least one of 3, 5, 7?

2. Divisible by 3 and by 5 but not by 7?

3. Divisible by 5 but by neither 3 nor 7?

Let
A = {n | 1 ≤ n ≤ 300 ∧ 3 | n}
B = {n | 1 ≤ n ≤ 300 ∧ 5 | n}
C = {n | 1 ≤ n ≤ 300 ∧ 7 | n}

Principle of Inclusion-Exclusion (PIE) II
Example I

How big are each of these sets? We can easily use the floor
function;

|A| = b300/3c = 100
|B| = b300/5c = 60
|C| = b300/7c = 42

For (1) above, we are asked to find |A ∪B ∪ C|.

Principle of Inclusion-Exclusion (PIE) III
Example I

By the principle of inclusion-exclusion, we have that

|A ∪B ∪ C| = |A|+ |B|+ |C|
−
[
|A ∩B|+ |A ∩ C|+ |B ∩ C|

]

+|A ∩B ∩ C|

It remains to find the final 4 cardinalities.

All three divisors, 3, 5, 7 are relatively prime. Thus, any integer
that is divisible by both 3 and 5 must simply be divisible by 15.



Principle of Inclusion-Exclusion (PIE) IV
Example I

Using the same reasoning for all pairs (and the triple) we have

|A ∩B| = b300/15c = 20
|A ∩ C| = b300/21c = 14
|B ∩ C| = b300/35c = 8

|A ∩B ∩ C| = b300/105c = 2

Therefore,

|A ∪B ∪ C| = 100 + 60 + 42− 20− 14− 8 + 2 = 162

Principle of Inclusion-Exclusion (PIE) V
Example I

For (2) above, it is enough to find

|(A ∩B) \ C|

By the definition of set-minus,

|(A ∩B) \ C| = |A ∩B| − |A ∩B ∩ C| = 20− 2 = 18

Principle of Inclusion-Exclusion (PIE) VI
Example I

For (3) above, we are asked to find

|B \ (A ∪ C)| = |B| − |B ∩ (A ∪ C)|

By distributing B over the intersection, we get

|B ∩ (A ∪ C)| = |(B ∩A) ∪ (B ∩ C)|
= |B ∩A|+ |B ∩ C| − |(B ∩A) ∩ (B ∩ C)|
= |B ∩A|+ |B ∩ C| − |B ∩A ∩ C|
= 20 + 8− 2 = 26

So the answer is |B| − 26 = 60− 26 = 34.

Principle of Inclusion-Exclusion (PIE) I
Example II

The principle of inclusion-exclusion can be used to count the
number of onto functions.

I Let A = {a1, a2, . . . , am}, |A| = m

I Let B = {b1, b2, . . . , bn}, |B| = n

I Say m ≥ n (otherwise no onto functions exist)

I Observe: total number of functions is nm

I Consider all functions such that no element maps to b1:

(n− 1)m

I Generalize this: consider all functions such that no element
maps to bi for a particular i

Principle of Inclusion-Exclusion (PIE) II
Example II

I There are n such choices:
(
n

1

)

I Thus, the number of functions that do not map to (at least) a
single element is: (

n

1

)
(n− 1)m

I We’ve over counted though: when we exclude b2, then we are
recounting functions that also exclude b1

I Need to restore counts: consider pairs

I Consider all functions such that no element maps to a pair of
elements: (

n

2

)
(n− 2)m

Principle of Inclusion-Exclusion (PIE) III
Example II

I But observe: the first equation is for functions that do not
map to at least one element

I The second equation is for functions that do not map to at
least two elements

I I.e. the first equation took away too many functions; the
second restores this count

I Continuing for i = 3, . . . , n− 1 we can generalize this.

Theorem



Principle of Inclusion-Exclusion (PIE) IV
Example II

Let A,B be non-empty sets of cardinality m,n with m ≥ n. Then
there are

n−1∑

i=0

(−1)i
(
n

i

)
(n− i)m

i.e.

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − · · ·+ (−1)n−1

(
n

n− 1

)
1m

onto functions f : A→ B.

Principle of Inclusion-Exclusion (PIE) V
Example IIThis is related to Stirling Numbers of the Second Kind

Definition

Stirling numbers of the second kind represent the number of ways
that you can partition n elements into k non-empty subsets and is
defined as

S(n, k) =

{
n

k

}
=

1

k!

k∑

j=0

(−1)j
(
k

j

)
(k − j)n

I Only difference: for j = k, (k − j)n = 0

I Stirling numbers partition into unordered subsets

I Function mapping requires ordering n mapped elements

I n! possible mappings, so the 1
k! cancels out

Principle of Inclusion-Exclusion (PIE) VI
Example II

Example

How many ways of giving out 6 pieces of candy to 3 children if
each child must receive at least one piece?

This can be modeled by letting A represent the set of candies and
B be the set of children.

Then a function f : A→ B can be interpreted as giving candy ai
to child cj .

Since each child must receive at least one candy, we are
considering only onto functions.

Principle of Inclusion-Exclusion (PIE) VII
Example II

To count how many there are, we apply the theorem and get (for
m = 6, n = 3),

36 −
(
3

1

)
(3− 1)6 +

(
3

2

)
(3− 2)6 = 540

Derangements I

Consider the hatcheck problem.

I An employee checks hats from n customers.

I However, he forgets to tag them.

I When customer’s check-out their hats, they are given one at
random.

What is the probability that no one will get their hat back?

Derangements II

This can be modeled using derangements: permutations of objects
such that no element is in its original position.

Theorem

The number of derangements of a set with n elements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ · · · (−1)n 1

n!

]



Derangements III

Thus, the answer to the hatcheck problem is

Dn

n!

Its interesting to note that

e−1 = 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n 1

n!
· · ·

So that the probability of the hatcheck problem converges;

lim
n→∞

Dn

n!
= e−1 = .3679 . . .

Derangements IV

The formula for derangements can be derived as follows.

The number of derangements is equal to the number of
permutation (n!) minus any permutation that leaves at least one
element in its original place (non derangements).

I Total number of permutations: n!

I Number of permutations such that at least 1 element is in
place:

−
(
n

1

)
· (n− 1)! =

n!

1!

I We’ve over corrected; add back permutations such that at
least 2 elements are in place:

+

(
n

2

)
· (n− 2)! =

n!

2!

Derangements V

I In general:

(−1)k ·
(
n

k

)
· (n− k)! =

n!

k!

I Last term will be when k = n which is the identity
permutation

The Pigeonhole Principle I

The pigeonhole principle states that if there are more pigeons than
there are roosts (pigeonholes), for at least one pigeonhole, at least
two pigeons must be in it.

Theorem (Pigeonhole Principle)

If k + 1 or more objects are placed into k boxes, then there is at
least one box containing two or more objects.

This is a fundamental tool of elementary discrete mathematics. It
is also known as the Dirichlet Drawer Principle.

The Pigeonhole Principle II

It is seemingly simple, but very powerful.

The difficulty comes in where and how to apply it.

Some simple applications in computer science:

I Calculating the probability of Hash functions having a
collision.

I Proving that there can be no lossless compression algorithm
compressing all files to within a certain ratio.

Lemma

For two finite sets A,B there exists a bijection f : A→ B if and
only if |A| = |B|.

Generalized Pigeonhole Principle I

Theorem

If N objects are placed into k boxes then there is at least one box
containing at least ⌈

N

k

⌉

Example

In any group of 367 or more people, at least two of them must
have been born on the same date.



Probablistic Pigeonhole Principle I

A probabilistic generalization states that if n objects are randomly
put into m boxes with uniform probability (each object is placed in
a given box with probability 1/m) then at least one box will hold
more than one object with probability,

1− m!

(m− n)!mn

Probablistic Pigeonhole Principle II

Example

Among 10 people, what is the probability that two or more will
have the same birthday?

Here, n = 10 and m = 365 (ignore leapyears). Thus, the
probability that two will have the same birthday is

1− 365!

(365− 10)!36510
≈ .1169

So less than a 12% probability!

Only 23 people required for a better than 50% (50.7%) probability

With only 57, we have a better than 99% probability

Probablistic Pigeonhole Principle III

How many people do we need to have a better than 50%
probability?

For what n is

1− 365!

(365− n)!365n
≥ .50

Surprisingly small: for n = 23, probability is greater than 50.7%!

Known as the “Birthday paradox”

Probablistic Pigeonhole Principle IV

Derivation: consider the n-permutations of m pigeonholes:

P (m,n) =
m!

(m− n)!
= m(m− 1)(m− 2) · · · (m− n+ 1)

These are the pigeonholes that we will evenly distribute n objects
into. Order is important because the objects are distinct.

We place each object into distinct pigeonhole with probability 1
m ,

so in total: (
1

m

)n
=

1

mn

Thus the probability is:

1− m!

(m− n)!mn

Probablistic Pigeonhole Principle V

Alternatively: consider choosing n bins (from a total of m bins to
map n objects to: (

m

n

)
=

n!

(m− n)!n!

But now consider actually mapping objects o1, . . . , on to each bin.

Here, order matters, but in addition, we only want to map one
object to one bucket. That is, we want to count the total number
of one-to-one functions from o1, . . . , on to the n bins we chose.
Thus:

n!

(m− n)!n!
· n! = n!

(m− n)!

Again, viewing allocation of objects to buckets, how many
functions in total are there?

mn

Probablistic Pigeonhole Principle VI

Thus the probability of a random allocation resulting in all bins
having 0 or 1 objects is

n!

(m− n)!
÷mn =

m!

(m− n)!mn



Pigeonhole Principle I
Example I

Example

Show that in a room of n people with certain acquaintances, some
pair must have the same number of acquaintances.

Note that this is equivalent to showing that any symmetric,
irreflexive relation on n elements must have two elements with the
same number of relations.

We’ll show by contradiction using the pigeonhole principle.

Assume to the contrary that every person has a different number
of acquaintances; 0, 1, . . . , n− 1 (we cannot have n here because
it is irreflexive). Are we done?

Pigeonhole Principle II
Example I

No, since we only have n people, this is okay (i.e. there are n
possibilities).

We need to use the fact that acquaintanceship is a symmetric,
irreflexive relation.

In particular, some person knows 0 people while another knows
n− 1 people.

In other words, someone knows everyone, but there is also a person
that knows no one.

Thus, we have reached a contradiction.

Pigeonhole Principle I
Example II

Example

Show that in any list of ten nonnegative integers, a0, . . . , a9, there
is a string of consecutive items of the list al, al+1, . . . , ak whose
sum is divisible by 10.

Consider the following 10 numbers.

a0
a0 + a1
a0 + a1 + a2
...
a0 + a1 + a2 + · · ·+ a9

If any one of them is divisible by 10 then we are done.

Pigeonhole Principle II
Example II

Otherwise, we observe that each of these numbers must be in one
of the congruence classes

1 mod 10, 2 mod 10, . . . , 9 mod 10

By the pigeonhole principle, at least two of the integers above
must lie in the same congruence class. Say a, a′ lie in the
congruence class k mod 10.

Then

(a− a′) ≡ k − k(mod 10)

and so the difference (a− a′) is divisible by 10.

Pigeonhole Principle I
Example III

Example

Say 30 buses are to transport 2000 Cornhusker fans to Colorado.
Each bus has 80 seats. Show that

1. One of the buses will have 14 empty seats.

2. One of the buses will carry at least 67 passengers.

For (1), the total number of seats is 30 · 80 = 2400 seats. Thus
there will be 2400− 2000 = 400 empty seats total.

Pigeonhole Principle II
Example III

By the generalized pigeonhole principle, with 400 empty seats
among 30 buses, one bus will have at least

⌈
400

30

⌉
= 14

empty seats.

For (2) above, by the pigeonhole principle, seating 2000 passengers
among 30 buses, one will have at least

⌈
2000

30

⌉
= 67

passengers.



Permutations I

A permutation of a set of distinct objects is an ordered
arrangement of these objects. An ordered arrangement of r
elements of a set is called an r-permutation.

Theorem

The number of r permutations of a set with n distinct elements is

P (n, r) =
r−1∏

i=0

(n− i) = n(n− 1)(n− 2) · · · (n− r + 1)

Permutations II

It follows that

P (n, r) =
n!

(n− r)!

In particular,

P (n, n) = n!

Again, note here that order is important. It is necessary to
distinguish in what cases order is important and in which it is not.

Permutations
Example I

Example

How many pairs of dance partners can be selected from a group of
12 women and 20 men?

The first woman can be partnered with any of the 20 men. The
second with any of the remaining 19, etc.

To partner all 12 women, we have

P (20, 12)

Another perspective: choose 12 men to include, then order them

Permutations I
Variation

What if we allowed all 32 people to pair up in any combination?

I Number of permutations: 32!

I But a given pair, AB is the same as BA

I Correct for each pair: 216

I Now each pair’s ordering also doesn’t matter

I Correct for each such permutation: 16!

32!

21616!

Permutations II
Variation

Generalization: given kn objects, how many ways are there to form
n groups of size k?

(nk)!

(k!)n · n!

Permutations
Example II

Example

In how many ways can the English letters be arranged so that
there are exactly ten letters between a and z?

The number of ways of arranging 10 letters between a and z is
P (24, 10). Since we can choose either a or z to come first, there
are 2P (24, 10) arrangements of this 12-letter block.

For the remaining 14 letters, there are P (15, 15) = 15!
arrangements. In all, there are

2P (24, 10) · 15!



Permutations
Example III

Example

How many permutations of the letters a, b, c, d, e, f, g contain
neither the pattern bge nor eaf?

The number of total permutations is P (7, 7) = 7!.

If we fix the pattern bge, then we can consider it as a single block.
Thus, the number of permutations with this pattern is
P (5, 5) = 5!.

Permutations
Example III - Continued

Fixing the pattern eaf we have the same number, 5!.

Thus we have
7!− 2(5!)

Is this correct?

No. We have taken away too many permutations: ones containing
both eaf and bge.

Here there are two cases, when eaf comes first and when bge
comes first.

Permutations
Example III - Continued

eaf cannot come before bge, so this is not a problem.

If bge comes first, it must be the case that we have bgeaf as a
single block and so we have 3 blocks or 3! arrangements.

Altogether we have

7!− 2(5!) + 3! = 4806

Combinations I
Definition

Whereas permutations consider order, combinations are used when
order does not matter.

Definition

A k-combination of elements of a set is an unordered selection of k
elements from the set. A combination is simply a subset of
cardinality k.

Combinations II
Definition

Theorem

The number of k-combinations of a set with cardinality n with
0 ≤ k ≤ n is

C(n, k) =

(
n

k

)
=

n!

(n− k)!k!

Note: the notation,
(
n
k

)
is read, “n choose k”. In TEX use {n

choose k} (with the forward slash).

Combinations III
Definition

A useful fact about combinations is that they are symmetric.

(
n

1

)
=

(
n

n− 1

)

(
n

2

)
=

(
n

n− 2

)

etc.



Combinations IV
Definition

This is formalized in the following corollary.

Corollary

Let n, k be nonnegative integers with k ≤ n, then

(
n

k

)
=

(
n

n− k

)

Combinations I
Example I

Example

In the Powerball lottery, you pick five numbers between 1 and 59
and a single “powerball” number between 1 and 35. How many
possible plays are there?

Order here doesn’t matter, so the number of ways of choosing five
regular numbers is (

59

5

)

Combinations II
Example I

We can choose among 35 power ball numbers. These events are
not mutually exclusive, thus we use the product rule.

35 ·
(
59

5

)
= 35

59!

(59− 5)!5!
= 175, 223, 510

So the odds of winning are

1

175, 223, 510
< 5.70699× 10−9 = .00000000570699675%

Combinations I
Example II

Example

In a sequence of 10 coin tosses, how many ways can 3 heads and 7
tails come up?

The number of ways of choosing 3 heads out of 10 coin tosses is

(
10

3

)

Combinations II
Example II

However, this is the same as choosing 7 tails out of 10 coin tosses;

(
10

3

)
=

(
10

7

)
= 120

This is a perfect illustration of the previous corollary.

Combinations III
Example II

Another perspective: what is the corresponding probability of 10
coin tosses ending up with 3 heads/7 tails?

It is the number of such outcomes divided by the total number of
possible outcomes:

C(10, 7)

210

Why 210? Each toss was an independent event with 2 possible
outcomes.

Another perspective: the total number of outcomes is equal to the
total number of ways to choose: (0 tails, 10 heads), (1 tails, 9
heads), (2 tails, 8 heads), . . . (10 tails, 0 heads)

Which is:
10∑

i=0

(
10

i

)
= 210



Combinations IV
Example II

That is, the sum of binomial coefficients is equal to 2n

Gambler’s Fallacy

Say that we’ve flipped a coin and heads has appeared 9 times in a
row.

What is the probability that the next flip will be tails? Heads?

Each event is independent: there is a fundamental difference
between probabilities involving a sequence of events (parlays) and
the probability of an event given a prior sequence.

August 18, 1913 Monte Carlo casino: black appeared 15 times in a
row. Gamblers rushed to bet on red. Black would appear a total of
26 times in a row; many lost their bets thinking that red was
“due”.

Krusty on why he bet against the Harlem Globetrotters: “I
thought the Generals were due!”

Combinations I
Example III

Example

How many possible committees of five people can be chosen from
20 men and 12 women if

1. if exactly three men must be on each committee?

2. if at least four women must be on each committee?

Combinations II
Example III

For (1), we must choose 3 men from 20 then two women from 12.
These are not mutually exclusive, thus the product rule applies.

(
20

3

)(
12

2

)

Combinations III
Example III

For (2), we consider two cases; the case where four women are
chosen and the case where five women are chosen. These two
cases are mutually exclusive so we use the addition rule.

For the first case we have

(
20

1

)(
12

4

)

Combinations IV
Example III

And for the second we have
(
20

0

)(
12

5

)

Together we have

(
20

1

)(
12

4

)
+

(
20

0

)(
12

5

)
= 10, 692



Binomial Coefficients I
Introduction

The number of r-combinations,
(
n
r

)
is also called a binomial

coefficient.

They are the coefficients in the expansion of the expression
(multivariate polynomial), (x+ y)n. A binomial is a sum of two
terms.

Binomial Coefficients II
Introduction

Theorem (Binomial Theorem)

Let x, y be variables and let n be a nonnegative integer. Then

(x+ y)n =
n∑

j=0

(
n

j

)
xn−jyj

Binomial Coefficients III
Introduction

Expanding the summation, we have

(x+ y)n =
(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·

+
(
n
n−1
)
xyn−1 +

(
n
n

)
yn

For example,

(x+ y)3 = (x+ y)(x+ y)(x+ y)
= (x+ y)(x2 + 2xy + y2)
= x3 + 3x2y + 3xy2 + y3)

Binomial Coefficients I
Example

Example

What is the coefficient of the term x8y12 in the expansion of
(3x+ 4y)20?

By the Binomial Theorem, we have

(3x+ 4y)n =
20∑

j=0

(
20

j

)
(3x)20−j(4y)j

So when j = 12, we have
(
20

12

)
(3x)8(4y)12

so the coefficient is 20!
12!8!3

8412 = 13866187326750720.

Binomial Coefficients I
More

A lot of useful identities and facts come from the Binomial
Theorem.

Corollary

Binomial Coefficients II
More

n∑

k=0

(
n

k

)
= 2n

n∑

k=0

(−1)k
(
n

k

)
= 0 n ≥ 1

n∑

k=0

xk
(
n

k

)
= (1 + x)n

n∑

k=0

2k
(
n

k

)
= 3n

And many more.



Binomial Coefficients III
More

Most of these can be proven by either induction or by a
combinatorial argument.

Theorem (Vandermonde’s Identity)

Let m,n, r be nonnegative integers with r not exceeding either m
or n. Then (

m+ n

r

)
=

r∑

k=0

(
m

r − k

)(
n

k

)

Binomial Coefficients IV
More

Corollary

If n is a nonnegative integer, then

(
2n

n

)
=

n∑

k=0

(
n

k

)2

Corollary

Let n, r be nonnegative integers, r ≤ n. Then

(
n+ 1

r + 1

)
=

n∑

j=r

(
j

r

)

Binomial Coefficients I
Pascal’s Identity & Triangle

The following is known as Pascal’s Identity which gives a useful
identity for efficiently computing binomial coefficients.

Theorem (Pascal’s Identity)

Let n, k ∈ Z+ with n ≥ k. Then

(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

Pascal’s Identity forms the basis of a geometric object known as
Pascal’s Triangle.

Pascal’s Triangle
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Generalized Permutations I

Sometimes we are concerned with permutations and combinations
in which repetitions are allowed.

Theorem

The number of r-permutations of a set of n objects with repetition
allowed is nr.

Generalized Combinations I

Theorem

There are (
n+ r − 1

r

)
=

(
n+ r − 1

n− 1

)

r-combinations from a set with n elements when repetition of
elements is allowed.

Generalized Combinations II

To see this consider:

I n− 1 bars (so n “cells” that represent that types of items)

I r stars: (if x stars are placed into a given cell, its the number
of elements of that type that we choose)

I So n− 1 + r “things” to be arranged

I However, we’ve over counted: stars and bars are
indistinguishable

I Any sequence of contiguous stars/bars is the same under any
ordering, so we need to divide out by permutations of n− 1
and r:

(n− 1 + r)!

(n− 1)!r!
=

(n− 1 + r)!

(n+ r − 1− r)!r!
=

(
n+ r − 1

r

)

Generalized Combinations I
Example

Example

There are 30 varieties of donuts from which we wish to buy a
dozen. How many possible orders are there?

Here n = 30 and we wish to choose r = 12. Order does not
matter and repetitions are possible, so we apply the previous
theorem to get that there are

(
30 + 12− 1

12

)

possible orders.

Generalized Combinations II
Example

Theorem

The number of different permutations of n objects where there are
n1 indistinguishable objects of type 1, n2 of type 2, . . ., and nk of
type k is

n!

n1!n2! · · ·nk!

An equivalent way of interpreting this theorem is the number of
ways to distribute n distinguishable objects into k distinguishable
boxes so that ni objects are placed into box i for i = 1, 2, . . . , k.

Generalized Combinations III
Example

Example

How many permutations of the word “Mississippi” are there?

“Mississippi” contains 4 distinct letters, M , i, s and p; with
1, 4, 4, 2 occurrences respectively.

Therefore there are
11!

1!4!4!2!

permutations.



Distinguishable Objects into Distinguishable Boxes

Example: how many ways are there to deal a 52 card deck into 5
card hands to four players?

(
52

5

)(
47

5

)(
42

5

)(
37

5

)

Theorem

The number of ways to distribute n distinguishable objects into k
distinguishable boxes such that each box has ni objects for
i = 1, . . . , k is

n!

n1!n2! · · ·nk!

Card example: the 5 box should contain the remaining 32 undealt
cards

Indistinguishable Objects into Distinguishable Boxes

Indistinguishable objects into distinguishable boxes: equivalent to
n-combinations of k elements when repetition is allowed
(parameters are switched).

Theorem

The number of ways to distribute n indistinguishable objects into k
distinguishable boxes is

(
k + n− 1

n

)
=

(
k + n− 1

k − 1

)

Distinguishable Objects into Indistinguishable Boxes

Distinguishable objects into indistinguishable boxes: not the same
as vice versa.

Equivalent to Stirling numbers of the 2nd kind (the 1
k! factor

recognizes that boxes are indistinguishable and corrects for it)

Theorem

The number of ways to distribute n distinguishable objects into k
indistinguishable boxes is

1

k!

k∑

j=0

(−1)j
(
k

j

)
(k − j)n

Indistinguishable Objects into Indistinguishable Boxes I

I Far more complicated

I Example: 6 copies of the same book into 4 identical boxes:
(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), . . .

I Equivalent to partitions of an integer sum

I No closed form, requires a generating function:

Generating Function Example I

How many ways are there to make change for a dollar (using
half-dollars, quarters, dimes, nickels, pennies)?

The generating function:

C(x) =
1

(1− x)(1− x5)(1− x10)(1− x25)(1− x50)

gives us the answer: for any amount of change c, we want the
coefficient of xc in the expansion of C(x).

For c = 100, the coefficient of x100 is 292.

Related: Set Partitions I

The number of ways to partition a set into disjoint non-empty
subsets (such that their union is the original set).

Example: S = {1, 2, 3} then the partitions are:

{{a}, {b}, {c}}
{{a}, {b, c}}
{{b}, {a, c}}
{{c}, {a, b}}
{{a, b, c}}

Theorem



Related: Set Partitions II

The number of ways to partition a set of size n into disjoint
non-empty subsets corresponds to the n-th Bell Number:

Bn+1 =

n∑

k=0

(
n

k

)
Bk

Note: B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 =
15, 52, 203, 877, 4140, 21147, 115975, . . .

Basic Idea:

I Consider a new element en+1

I It could be in its own partition, thus there are
(
n
0

)
·Bn

partitionings of the remaining elements

Related: Set Partitions III

I It could be paired with one other element, leaving
(
n
1

)
·Bn−1

partitionings of remaining elements

I It could be paired with two other element, leaving
(
n
2

)
·Bn−2

partitionings of remaining elements

I All the way to
(
n
n

)
·B0

Each Bell number is the sum of Stirling numbers of the second
kind:

Bn =

n∑

k=0

{n
k

}

Idea: Stirling numbers give the number of ways to partition into k
non-empty subsets; summing over all such k gives us the formula.

Generating Permutations & Combinations I
Introduction

In general, it is inefficient to solve a problem by considering all
permutations or combinations since there are an exponential
number of such arrangements.

Nevertheless, for many problems, no better approach is known.
When exact solutions are needed, back-tracking algorithms are
used.

Generating permutations or combinations are sometimes the basis
of these algorithms.

Generating Permutations & Combinations II
Introduction

Example (Traveling Sales Person Problem)

Consider a salesman that must visit n different cities. He wishes to
visit them in an order such that his overall distance traveled is
minimized.

Generating Permutations & Combinations III
Introduction

This problem is one of hundreds of NP-complete problems for
which no known efficient algorithms exist. Indeed, it is believed
that no efficient algorithms exist. (Actually, Euclidean TSP is not
even known to be in NP!)

The only known way of solving this problem exactly is to try all n!
possible routes.

We give several algorithms for generating these combinatorial
objects.

Generating Combinations I

Recall that combinations are simply all possible subsets of size r.
For our purposes, we will consider generating subsets of

{1, 2, 3, . . . , n}

The algorithm works as follows.

I Start with {1, . . . , r}
I Assume that we have a1a2 · · · ar, we want the next

combination.

I Locate the last element ai such that ai 6= n− r + i.

I Replace ai with ai + 1.

I Replace aj with ai + j − i for j = i+ 1, i+ 2, . . . , r.



Generating Combinations II

The following is pseudocode for this procedure.

Algorithm (Next r-Combination)

Input : A set of n elements and an r-combination, a1 · · · ar.
Output : The next r-combination.

1 i = r

2 while ai = n− r + i do
3 i = i− 1

4 end

5 ai = ai + 1

6 for j = (i+ 1) . . . r do
7 aj = ai + j − i
8 end

Generating Combinations III

Example

Find the next 3-combination of the set {1, 2, 3, 4, 5} after {1, 4, 5}

Here, a1 = 1, a2 = 4, a3 = 5.

The last i such that ai 6= 5− 3 + i is 1.

Thus, we set
a1 = a1 + 1 = 2
a2 = a1 + 2− 1 = 3
a3 = a1 + 3− 1 = 4

So the next r-combination is {2, 3, 4}.

Generating Permutations

The text gives an algorithm to generate permutations in
lexicographic order. Essentially the algorithm works as follows.

Given a permutation,

I Choose the left-most pair aj , aj+1 where aj < aj+1.

I Choose the least item to the right of aj greater than aj .

I Swap this item and aj .

I Arrange the remaining (to the right) items in order.

Generating Permutations
Lexicographic Order

Algorithm (Next Permutation (Lexicographic Order))

Input : A set of n elements and an r-permutation, a1 · · · ar.
Output : The next r-permutation.

1 j = n− 1

2 while aj > aj+1 do
3 j = j − 1

4 end

//j is the largest subscript with aj < aj+1

5 k = n

6 while aj > ak do
7 k = k − 1

8 end

//ak is the smallest integer greater than aj to the right of aj

9 swap(aj , ak)

10 r = n

11 s = j + 1

12 while r > s do
13 swap(ar, as)

14 r = r − 1

15 s = s+ 1

16 end

Generating Permutations I

Often there is no reason to generate permutations in lexicographic
order. Moreover, even though generating permutations is
inefficient in itself, lexicographic order induces even more work.

An alternate method is to fix an element, then recursively permute
the n− 1 remaining elements.

Another method has the following attractive properties.

I It is bottom-up (non-recursive).

I It induces a minimal-change between each permutation.

Generating Permutations II

The algorithm is known as the Johnson-Trotter algorithm.

We associate a direction to each element, for example:

−→
3
←−
2
−→
4
←−
1

A component is mobile if its direction points to an adjacent
component that is smaller than itself. Here 3 and 4 are mobile and
1 and 2 are not.



Generating Permutations III

Algorithm (JohnsonTrotter)

Input : An integer n.

Output : All possible permutations of 〈1, 2, . . . n〉.
1 π ←←−1←−2 . . .←−n
2 while There exists a mobile integer k ∈ π do
3 k ← largest mobile integer

4 swap k and the adjacent integer k points to

5 reverse direction of all integers > k

6 Output π

7 end

Johnson-Trotter Examples

Example A: consider permutations of (1, . . . , 6):

←−
4 ,
←−
3 ,
←−
1 ,
←−
2 ,
−→
6 ,
−→
5

2, 6 are mobile, so swap 6, 5; no orientation changes:

←−
4 ,
←−
3 ,
←−
1 ,
←−
2 ,
−→
5 ,
−→
6

2 is the only mobile element, flip 1, 2; orientation of 4, 3, 5, 6 gets
reversed:

−→
4 ,
−→
3 ,
←−
2 ,
←−
1 ,
←−
5 ,
←−
6

More Examples

As always, the best way to learn new concepts is through practice
and examples.

Example I I

Example

How many bit strings of length 4 are there such that 11 never
appears as a substring?

We can represent the set of string graphically using a tree.

Example I II

0000

0

0001

1

0

1000

0

1

0

0100

0

0101

1

0

1

0

0010

0

1001

1

0

1010

0

1

0

1

Therefore, the number of such bit string is 8.

Example: Counting Functions I I

Example

Let S, T be sets such that |S| = n, |T | = m. How many functions
are there mapping f : S → T? How many of these functions are
one-to-one?

A function simply maps each si to some tj , thus for each n we can
choose to send it to any of the elements in T .



Example: Counting Functions I II

Each of these is an independent event, so we apply the
multiplication rule;

m×m× · · · ×m︸ ︷︷ ︸
n times

= mn

If we wish f to be one-to-one, we must have that n ≤ m,
otherwise we can easily answer 0.

Now, each si must be mapped to a unique element in T . For s1,
we have m choices. However, once we have made a mapping (say
tj), we cannot map subsequent elements to tj again.

Example: Counting Functions I III

In particular, for the second element, s2, we now have m− 1
choices. Proceeding in this manner, s3 will have m− 2 choices,
etc. Thus we have

m · (m− 1) · (m− 2) · · · · · (m− (n− 2)) · (m− (n− 1))

An alternative way of thinking about this problem is by using the
choose operator: we need to choose n elements from a set of size
m for our mapping;

(
m

n

)
=

m!

(m− n)!n!

Example: Counting Functions I IV

Once we have chosen this set, we now consider all permutations of
the mapping, i.e. n! different mappings for this set. Thus, the
number of such mappings is

m!

(m− n)!n!
· n! = m!

(m− n)!

Example: Counting Functions II

Recall this question from the 1st exam:

Example

Let S = {1, 2, 3}, T = {a, b}. How many onto functions are there
mapping S → T? How many one-to-one functions are there
mapping T → S?

Example: Counting Primes I

Example

Give an estimate for how many 70 bit primes there are.

Recall that the number of primes not more than n is about

n

lnn

Using this fact, the number of primes not exceeding 270 is

270

ln 270

Example: Counting Primes II

However, we have over counted—we’ve counted 69-bit, 68-bit, etc
primes as well.

The number of primes not exceeding 269 is about

269

ln 269

Thus the difference is

270

ln 270
− 269

ln 269
≈ 1.19896× 1019



Example: More sets I

Example

How many integers in the range 1 ≤ k ≤ 100 are divisible by 2 or
3?

Let
A = {x | 1 ≤ x ≤ 100, 2 | x}
B = {y | 1 ≤ x ≤ 100, 3 | y}

Clearly, |A| = 50, |B| = b1003 c = 33, so is it true that
|A ∪B| = 50 + 33 = 83?

Example: More sets II

No; we’ve over counted again—any integer divisible by 6 will be in
both sets. How much did we over count?

The number of integers between 1 and 100 divisible by 6 is
b1006 c = 16, so the answer to the original question is

|A ∪B| = (50 + 33)− 16 = 67


