
CSCE 235H – Advanced Topics 

Advanced Set Theory 

 

1. “Naïve” Set Theory  

 Uses natural language to define sets, not at all formal 

 We’ve already seen problems when attempting to reconcile natural language with logic 

(implication law, definition of “if” versus xor) 

 Created by Georg Cantor (late 19th Century) 

 Dominant foundation of “sets” prior to the early 20th century 

 Assumed that any operation could be used to define a set: any definable collection is a set 

 Still used as a “first step” in introducing basic concepts (ordinals, numbers, relations, 

functions) 

  

2. Russell’s Paradox (Bertrand Russell) 

 Bertrand Russell (1901) 

 Caused by the axiom of “Unrestricted Comprehension” (ie unrestricted definition) 

 Even if it is an unrestricted predicate 

 Forall w_1, …, w_n exists B forall x (x in B iff phi(x, w_1, …, w_n)) 

 Problem: let phi be the predicate (x not in x), that is: 

 R = { x | x not in x} then R in R iff R not in R (contradiction) 

 Argument: let R be in R, then by the definition of R, R cannot be contained in itself; let R not 

in R then R is in R! 

 Similar Paradoxes 

o Liar Paradox (this sentence is false) 

o Kleen-Rosser Paradox 

o Curry’s paradox 

3. Zermelo-Fraenkel Set Theory 

 Ernst Zermelo, Abraham Fraenkel (1908 - 1922) 

 9 Axioms 

 Competing systems 

o Peano Axioms (weaker, regarding the natural numbers: 0 exists; every natural 

number has a successor; except 0; distinctness; etc.) 

o Neumann-Bernays-Godel (NBG), “equivalent” to ZFC 

o Morse-Kelley (MK)  

o New Foundations (Willard Von Orman Quine, 1937) 

 Leads to Independence of some statements: some statements can be proven true (or false) 

in ZFC, while proven false (true) in another (ZF) 



4. Cantor’s Diagonalization 

 N, Z, Q are all countable: infinite, but enumerable 

 R, C are uncountable: no enumeration possible 

 Formally: A countable iff exists a bijective function between N and A 

 Informally: graphical enumeration (or functional) 

 R is not countable: Cantor’s diagonalization proof (1874) 

o Intuition: “more reals” than integers 

o But there are just as many integers as rationals! 

 Not all infinities are equal: aleph null, aleph 1, etc. 

 Controversial at the time: theological implications and philosophy of mathematics 

(Poincare), rejection of non-constructive proofs (Kronecker) 

5. Independence: Continuum Hypothesis 

 Does there exists a set S of intermediate cardinality between aleph0, aleph1? (asked Cantor) 

prior to axiomatic set theory, so unresolved 

 Hilbert’s 1st problem (1900) 

 Godel showed that it cannot be disproven in ZFC (1940) 

 Paul Cohen showed that it cannot be proven in ZFC either (1963) 

 Both assume that ZFC is consistent (not known, but believed) 

 Other results shown to be independent of ZFC: 

o Consistency of ZFC within itself (Godel) 

o Whitehead problem (extensions of Abelian Groups) 

6.  Godel’s Incompleteness Theorem (1931) 

 Metamathematics: math talking about math (axioms can be formalized as objects 

themselves) 

 An axiomatic system is consistent if it lacks contradiction (some statement can be proved 

and disproved) 

 An axiom is called independent if it cannot be derived from other axioms; a system is 

independent if all of its axioms are. 

 A system is complete if for every statement, either it or its negation can be derived 

 First Incompleteness theorem: no consistent system of axioms whose results can be 

enumerated by an algorithm is capable of proving all truths about the relations of natural 

numbers; there will always be true statements about N that are not provable by a Turing 

machine 

o Since we start with a finite number of axioms, all statements can be built via an 

enumeration algorithm 

 Second Incompleteness Theorem: Such a system cannot prove its own consistency (if you 

can prove its consistency, then it is inconsistent) 

 A system is either consistent or complete, but not both (enumerable systems that is) 

 A statement is independent if it can neither be proven nor disproven in a system 

 Intuition: No formula phi(x) can be shown from the axioms of ZF to have the property that 

the collection of all x satisfying phi(x) form a model for ZF 


