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Introduction 1

Introduction
Mathematics can help you solve many problems by training you to think well. This book will help you think well
about discrete problems: problems like chess, in which the moves you make are exact, problems where tools like
calculus fail because there's no continuity, problems that appear all the time in games, puzzles, and computer
science.
We hope you'll enjoy discovering discrete mathematics here, and we hope you'll find this a good reference for
quickly picking up the details you'll forget with time.
../Set theory/ >

Notice to contributors: If you wish to contribute images of any kind that contains labels, please use the Arial font, italic, at 16pts for consistency.

Set theory
Set Theory starts very simply: it examines whether an object belongs, or does not belong, to a set of objects which
has been described in some non-ambiguous way. From this simple beginning, an increasingly complex (and useful!)
series of ideas can be developed, which lead to notations and techniques with many varied applications.

Definition of a Set
The definition of a set sounds very vague at first. A set can be defined as a collection of things that are brought
together because they obey a certain rule.
These 'things' may be anything you like: numbers, people, shapes, cities, bits of text ..., literally anything.
The key fact about the 'rule' they all obey is that it must be well-defined. In other words, it enables us to say for sure
whether or not a given 'thing' belongs to the collection. If the 'things' we're talking about are English words, for
example, a well-defined rule might be:

'... has 5 or more letters'
A rule which is not well-defined (and therefore couldn't be used to define a set) might be:

'... is hard to spell'

Elements
A 'thing' that belongs to a given set is called an element of that set. For example:

Henry VIII is an element of the set of Kings of England

Notation
Curly brackets are used to stand for the phrase 'the set of ...'. These braces can be used in various ways. For
example:

We may list the elements of a set:

We may describe the elements of a set:

We may use an identifier (the letter for example) to represent a typical element, a symbol to stand for the
phrase 'such that', and then the rule or rules that the identifier must obey:

http://en.wikibooks.org/w/index.php?title=Calculus
http://en.wikibooks.org/w/index.php?title=../Set_theory/
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or

The last way of writing a set - called set comprehension notation - can be generalized as:

, where is a statement (technically a propositional function) about and the set is the
collection of all elements for which is true.

The symbol is used as follows:

means 'is an element of ...'. For example: 
means 'is not an element of ...'. For example: 

A set can be finite: 
... or infinite: 
(Note the use of the ellipsis to indicate that the sequence of numbers continues indefinitely.)
Sets will usually be denoted using upper case letters: , , ...
Elements will usually be denoted using lower case letters: , , ...

Some Special Sets

Universal Set
The set of all the 'things' currently under discussion is called the universal set (or sometimes, simply the universe). It
is denoted by U.
The universal set doesn’t contain everything in the whole universe. On the contrary, it restricts us to just those things
that are relevant at a particular time. For example, if in a given situation we’re talking about numeric values –
quantities, sizes, times, weights, or whatever – the universal set will be a suitable set of numbers (see below). In
another context, the universal set may be {alphabetic characters} or {all living people}, etc.

Empty set

The set containing no elements at all is called the null set, or empty set. It is denoted by a pair of empty braces: 
or by the symbol .
It may seem odd to define a set that contains no elements. Bear in mind, however, that one may be looking for
solutions to a problem where it isn't clear at the outset whether or not such solutions even exist. If it turns out that
there isn't a solution, then the set of solutions is empty.
For example:

If then .
If then .

Operations on the empty set

Operations performed on the empty set (as a set of things to be operated upon) can also be confusing. (Such
operations are nullary operations.) For example, the sum of the elements of the empty set is zero, but the product of
the elements of the empty set is one (see empty product). This may seem odd, since there are no elements of the
empty set, so how could it matter whether they are added or multiplied (since “they” do not exist)? Ultimately, the
results of these operations say more about the operation in question than about the empty set. For instance, notice
that zero is the identity element for addition, and one is the identity element for multiplication.
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Some special sets of numbers
Several sets are used so often, they are given special symbols.

The natural numbers

The 'counting' numbers (or whole numbers) starting at 1, are called the natural numbers. This set is sometimes
denoted by N. So N = {1, 2, 3, ...}
Note that, when we write this set by hand, we can't write in bold type so we write an N in blackboard bold font: 

Integers

All whole numbers, positive, negative and zero form the set of integers. It is sometimes denoted by Z. So Z = {..., -3,
-2, -1, 0, 1, 2, 3, ...}
In blackboard bold, it looks like this: 

Real numbers

If we expand the set of integers to include all decimal numbers, we form the set of real numbers. The set of reals is
sometimes denoted by R.
A real number may have a finite number of digits after the decimal point (e.g. 3.625), or an infinite number of
decimal digits. In the case of an infinite number of digits, these digits may:

recur; e.g. 8.127127127...

... or they may not recur; e.g. 3.141592653...
In blackboard bold: 

Rational numbers

Those real numbers whose decimal digits are finite in number, or which recur, are called rational numbers. The set
of rationals is sometimes denoted by the letter Q.
A rational number can always be written as exact fraction p/q; where p and q are integers. If q equals 1, the fraction
is just the integer p. Note that q may NOT equal zero as the value is then undefined.

For example: 0.5, -17, 2/17, 82.01, 3.282828... are all rational numbers.
In blackboard bold: 

Irrational numbers

If a number can't be represented exactly by a fraction p/q, it is said to be irrational.

Examples include: √2, √3, π.

Set Theory Exercise 1
Click the link for Set Theory Excercise 1

Relationships between Sets
We’ll now look at various ways in which sets may be related to one another.

Equality
Two sets A and B are said to be equal if and only if they have exactly the same elements. In this case, we simply
write:

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Set_theory/Exercises%23Set_Theory_Exercise_1
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A = B
Note two further facts about equal sets:

The order in which elements are listed does not matter.

If an element is listed more than once, any repeat occurrences are ignored.
So, for example, the following sets are all equal:

{1, 2, 3} = {3, 2, 1} = {1, 1, 2, 3, 2, 2}
(You may wonder why one would ever come to write a set like {1, 1, 2, 3, 2, 2}. You may recall that when we
defined the empty set we noted that there may be no solutions to a particular problem - hence the need for an empty
set. Well, here we may be trying several different approaches to solving a problem, some of which in fact lead us to
the same solution. When we come to consider the distinct solutions, however, any such repetitions would be
ignored.)

Subsets
If all the elements of a set A are also elements of a set B, then we say that A is a subset of B, and we write:

A ⊆ B
For example:

If T = {2, 4, 6, 8, 10} and E = {even integers}, then T ⊆ E

If A = {alphanumeric characters} and P = {printable characters}, then A ⊆ P

If Q = {quadrilaterals} and F = {plane figures bounded by four straight lines}, then Q ⊆ F
Notice that A ⊆ B does not imply that B must necessarily contain extra elements that are not in A; the two sets could
be equal – as indeed Q and F are above. However, if, in addition, B does contain at least one element that isn’t in A,
then we say that A is a proper subset of B. In such a case we would write:

A ⊂ B
In the examples above:

E contains 12, 14, ... , so T ⊂ E
P contains $, ;, &, ..., so A ⊂ P

But Q and F are just different ways of saying the same thing, so Q = F
The use of ⊂ and ⊆ is clearly analogous to the use of < and ≤ when comparing two numbers.
Notice also that every set is a subset of the universal set, and the empty set is a subset of every set.
(You might be curious about this last statement: how can the empty set be a subset of anything, when it doesn’t
contain any elements? The point here is that for every set A, the empty set doesn’t contain any elements that aren't
in A. So ø ⊆ A for all sets A.)
Finally, note that if A ⊆ B and B ⊆ A then A and B must contain exactly the same elements, and are therefore equal.
In other words:

If A ⊆ B and B ⊆ A then A = B
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Disjoint
Two sets are said to be disjoint if they have no elements in common. For example:

If A = {even numbers} and B = {1, 3, 5, 11, 19}, then A and B are disjoint.

Venn Diagrams
A Venn diagram can be a useful way of illustrating relationships between sets.
In a Venn diagram:

The universal set is represented by a rectangle. Points inside the rectangle represent elements that are in the
universal set; points outside represent things not in the universal set. You can think of this rectangle, then, as a
'fence' keeping unwanted things out - and concentrating our attention on the things we're talking about.

Other sets are represented by loops, usually oval or circular in shape, drawn inside the rectangle. Again, points
inside a given loop represent elements in the set it represents; points outside represent things not in the set.

Venn diagrams: Fig. 2

Venn diagrams: Fig. 1

On the left, the sets A and B are
disjoint, because the loops don't
overlap.

On the right A is a subset of B, because
the loop representing set A is entirely
enclosed by loop B.

http://en.wikibooks.org/w/index.php?title=File%3AVennSubset02.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennDisjoint.jpg
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Venn diagrams: Worked Examples

Venn diagrams: Fig. 3

Example 1

Fig. 3 represents a Venn diagram
showing two sets A and B, in the
general case where nothing is known
about any relationships between the
sets.

Note that the rectangle representing the
universal set is divided into four
regions, labelled i, ii, iii and iv.

What can be said about the sets A and
B if it turns out that:

(a) region ii is empty?
(b) region iii is empty?

(a) If region ii is empty, then A
contains no elements that are not in B. So A is a subset of B, and the diagram should be re-drawn like Fig 2 above.

(b) If region iii is empty, then A and B have no elements in common and are therefore disjoint. The diagram should
then be re-drawn like Fig 1 above.
Example 2

(a) Draw a Venn diagram to represent three sets A, B and C, in the general case where nothing is known about
possible relationships between the sets.
(b) Into how many regions is the rectangle representing U divided now?
(c) Discuss the relationships between the sets A, B and C, when various combinations of these regions are
empty.

Venn diagrams: Fig. 4

(a) The diagram in Fig. 4 shows the
general case of three sets where
nothing is known about any possible
relationships between them.

(b) The rectangle representing U is
now divided into 8 regions, indicated
by the Roman numerals i to viii.

(c) Various combinations of empty
regions are possible. In each case, the
Venn diagram can be re-drawn so that
empty regions are no longer included.
For example:

If region ii is empty, the loop
representing A should be made
smaller, and moved inside B and C to eliminate region ii.

If regions ii, iii and iv are empty, make A and B smaller, and move them so that they are both inside C (thus
eliminating all three of these regions), but do so in such a way that they still overlap each other (thus retaining
region vi).

http://en.wikibooks.org/w/index.php?title=File%3AVennTwoSetsGeneralCase.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennThreeSetsGeneralCase.jpg


Set theory 7

If regions iii and vi are empty, 'pull apart' loops A and B to eliminate these regions, but keep each loop
overlapping loop C.

...and so on. Drawing Venn diagrams for each of the above examples is left as an exercise for the reader.
Example 3

The following sets are defined:
U = {1, 2, 3, …, 10}
A = {2, 3, 7, 8, 9}
B = {2, 8}
C = {4, 6, 7, 10}

Using the two-stage technique described below, draw a Venn diagram to represent these sets, marking all the
elements in the appropriate regions.
The technique is as follows:

Draw a 'general' 3-set Venn diagram, like the one in Example 2.

Go through the elements of the universal set one at a time, once only, entering each one into the appropriate
region of the diagram.

Re-draw the diagram, if necessary, moving loops inside one another or apart to eliminate any empty regions.
Don't begin by entering the elements of set A, then set B, then C – you'll risk missing elements out or including them
twice!
Solution

After drawing the three empty loops in a diagram looking like Fig. 4 (but without the Roman numerals!), go through
each of the ten elements in U - the numbers 1 to 10 - asking each one three questions; like this:

Venn diagrams: Fig. 5

First element: 1
Are you in A? No
Are you in B? No
Are you in C? No

A 'no' to all three questions means that
the number 1 is outside all three loops.
So write it in the appropriate region
(region number i in Fig. 4).

Second element: 2
Are you in A? Yes
Are you in B? Yes
Are you in C? No

Yes, yes, no: so the number 2 is inside
A and B but outside C. Goes in region iii then.

...and so on, with elements 3 to 10.
The resulting diagram looks like Fig. 5.

http://en.wikibooks.org/w/index.php?title=File%3AVennThreeSetsAllocatingElements01.jpg
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Venn diagrams: Fig. 6

The final stage is to examine the
diagram for empty regions - in this
case the regions we called iv, vi and vii
in Fig. 4 - and then re-draw the
diagram to eliminate these regions.
When we've done so, we shall clearly
see the relationships between the three
sets.

So we need to:

pull B and C apart, since they
don't have any elements in
common.

push B inside A since it doesn't
have any elements outside A.

The finished result is shown in Fig. 6.

The regions in a Venn Diagram and Truth Tables
Perhaps you've realized that adding an additional set to a Venn diagram doubles the number of regions into which
the rectangle representing the universal set is divided. This gives us a very simple pattern, as follows:

With one set loop, there will be just two regions: the inside of the loop and its outside.

With two set loops, there'll be four regions.

With three loops, there'll be eight regions.

...and so on.
It's not hard to see why this should be so. Each new loop we add to the diagram divides each existing region into
two, thus doubling the number of regions altogether.

In A? In B? In C?

Y Y Y

Y Y N

Y N Y

Y N N

N Y Y

N Y N

N N Y

N N N

But there's another way of looking at this, and it's this. In the solution to Example 3 above, we asked three questions
of each element: Are you in A? Are you in B? and Are you in C? Now there are obviously two possible answers to
each of these questions: yes and no. When we combine the answers to three questions like this, one after the other,
there are then 23 = 8 possible sets of answers altogether. Each of these eight possible combinations of answers
corresponds to a different region on the Venn diagram.

http://en.wikibooks.org/w/index.php?title=File%3AVennThreeSetsAllocatingElements02.jpg
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The complete set of answers resembles very closely a Truth Table - an important concept in Logic, which deals with
statements which may be true or false. The table on the right shows the eight possible combinations of answers for 3
sets A, B and C.
You'll find it helpful to study the patterns of Y's and N's in each column.

As you read down column C, the letter changes on every row: Y, N, Y, N, Y, N, Y, N

Reading down column B, the letters change on every other row: Y, Y, N, N, Y, Y, N, N

Reading down column A, the letters change every four rows: Y, Y, Y, Y, N, N, N, N

Set Theory Exercise 2
Click link for Set Theory Exercise 2.

Operations on Sets
Just as we can combine two numbers to form a third number, with operations like 'add', 'subtract', 'multiply' and
'divide', so we can combine two sets to form a third set in various ways. We'll begin by looking again at the Venn
diagram which shows two sets A and B in a general position, where we don't have any information about how they
may be related.

Venn diagrams: Fig. 7

In A? In B? Region

Y Y iii

Y N ii

N Y iv

N N i

The first two columns in the table on the right show the four sets of possible answers to the questions Are you in A?
and Are you in B? for two sets A and B; the Roman numerals in the third column show the corresponding region in
the Venn diagram in Fig. 7.

http://en.wikibooks.org/w/index.php?title=Discrete_mathematics/Logic%23Truth_Tables
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Set_theory/Exercises%23Set_Theory_Exercise_2
http://en.wikibooks.org/w/index.php?title=File%3AVennTwoSetsGeneralCase.jpg
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Intersection
Region iii, where the two loops overlap (the region corresponding to 'Y' followed by 'Y'), is called the intersection of
the sets A and B. It is denoted by A ∩ B. So we can define intersection as follows:

The intersection of two sets A and B, written A ∩ B, is the set of elements that are in A and in B.
(Note that in symbolic logic, a similar symbol, , is used to connect two logical propositions with the AND
operator.)
For example, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then A ∩ B = {2, 4}.
We can say, then, that we have combined two sets to form a third set using the operation of intersection.

Union
In a similar way we can define the union of two sets as follows:

The union of two sets A and B, written A ∪ B, is the set of elements that are in A or in B (or both).
The union, then, is represented by regions ii, iii and iv in Fig. 7.
(Again, in logic a similar symbol, , is used to connect two propositions with the OR operator.)

So, for example, {1, 2, 3, 4} ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 6, 8}.
You'll see, then, that in order to get into the intersection, an element must answer 'Yes' to both questions, whereas to
get into the union, either answer may be 'Yes'.
The ∪ symbol looks like the first letter of 'Union' and like a cup that will hold a lot of items. The ∩ symbol looks
like a spilled cup that won't hold a lot of items, or possibly the letter 'n', for i'n'tersection. Take care not to confuse
the two.

Difference

The difference of two sets A and B (also known as the set-theoretic difference of A and B, or the relative
complement of B in A) is the set of elements that are in A but not in B.

This is written A - B, or sometimes A \ B.

The elements in the difference, then, are the ones that answer 'Yes' to the first question Are you in A?, but 'No' to the
second Are you in B?. This combination of answers is on row 2 of the above table, and corresponds to region ii in
Fig.7.

For example, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then A - B = {1, 3}.

Complement
So far, we have considered operations in which two sets combine to form a third: binary operations. Now we look at
a unary operation - one that involves just one set.

The set of elements that are not in a set A is called the complement of A. It is written A′ (or sometimes AC, or
).

Clearly, this is the set of elements that answer 'No' to the question Are you in A?.

For example, if U = N and A = {odd numbers}, then A′ = {even numbers}.
Notice the spelling of the word complement: its literal meaning is 'a complementary item or items'; in other words,
'that which completes'. So if we already have the elements of A, the complement of A is the set that completes the
universal set.

http://en.wikibooks.org/w/index.php?title=Discrete_mathematics/Logic%23Compound_Propositions
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Summary

Intersection: things that are in A and in B Union: things that are in A or in B (or both)

Difference: things that are in A and not in B Symmetric Difference: things that are in A or in B but not both

Complement: things that are not in A

http://en.wikibooks.org/w/index.php?title=File%3AVennIntersection.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennUnion.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennDifference.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennSymmetricDifference.jpg
http://en.wikibooks.org/w/index.php?title=File%3AVennComplement.jpg
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Cardinality
Finally, in this section on Set Operations we look at an operation on a set that yields not another set, but an integer.

The cardinality of a finite set A, written | A | (sometimes #(A) or n(A)), is the number of (distinct) elements in
A. So, for example:
If A = {lower case letters of the alphabet}, | A | = 26.

Generalized set operations
If we want to denote the intersection or union of n sets, A1, A2, ..., An (where we may not know the value of n) then
the following generalized set notation may be useful:

A1 ∩ A2 ∩ ... ∩ An =  Ai
A1 ∪ A2 ∪ ... ∪ An =  Ai

In the symbol  Ai, then, i is a variable that takes values from 1 to n, to indicate the repeated intersection of all
the sets A1 to An.

Set Theory Exercise 3
Click link for Set Theory Exercise 3

Set Theory Page 2
Set Theory continues on Page 2.

Previous topic: ../Introduction/ | Contents:Discrete Mathematics | Next topic: ../Functions and relations/

Functions and relations
This article examines the concepts of the function and the relation.
A relation is any association between elements of one set, called the domain or (less formally) the set of inputs, and
another set, called the range or set of outputs. Some people mistakenly refer to the range as the codomain, but as we
will see, that really means the set of all possible outputs—even values that the relation does not actually use.
For example, if the domain is a set Fruits = {apples, oranges, bananas} and the codomain is a set Flavors =
{sweetness, tartness, bitterness}, the flavors of these fruits form a relation: we might say that apples are related to (or
associated with) both sweetness and tartness, while oranges are related to tartness only and bananas to sweetness
only. (We might disagree somewhat, but that is irrelevant to the topic of this book.) Notice that "bitterness", although
it is one of the possible Flavors (codomain), is not really used for any of these relationships; so it is not part of the
range {sweetness, tartness}.
Another way of looking at this is to say that a relation is a subset of ordered pairs drawn from the set of all possible
ordered pairs (of elements of two other sets, which we normally refer to as the Cartesian product of those sets).
Formally, R is a relation if

R ⊆ {(x, y) | x ∈ X, y ∈ Y}
for the domain X and codomain Y.
Using the example above, we can write the relation in set notation: {(apples, sweetness), (apples, tartness), (oranges,
tartness), (bananas, sweetness)}.

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Set_theory/Exercises%23Set_Theory_Exercise_3
http://en.wikibooks.org/w/index.php?title=../Set_theory/Page_2
http://en.wikibooks.org/w/index.php?title=../Introduction/
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics
http://en.wikibooks.org/w/index.php?title=../Functions_and_relations/
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One important kind of relation is the function. A function is a relation that has exactly one output for every possible
input in the domain. (Unlike the codomain, the domain does not necessarily have to include all possible objects of a
given type. In fact, we sometimes intentionally use a restricted domain in order to satisfy some desirable property.)
For example, the relation that we discussed above (flavors of fruits) is not a function, because it has two possible
outputs for the input "apples": sweetness and tartness.
The main reason for not allowing multiple outputs with the same input is that it lets us apply the same function to
different forms of the same thing without changing their equivalence. That is, if x = y, and f is a function with x (or
y) in its domain, then f(x) = f(y). For example, z - 3 = 5 implies that z = 8 because f(x) = x + 3 is a function defined
for all numbers x.
The converse, that f(x) = f(y) implies x = y, is not always true. When it is, f is called a one-to-one or invertible
function.

Relations
In the above section dealing with functions and their properties, we noted the important property that all functions
must have, namely that if a function does map a value from its domain to its co-domain, it must map this value to
only one value in the co-domain.
Writing in set notation, if a is some fixed value:

|{f(x)|x=a}| ∈ {0, 1}
The literal reading of this statement is: the cardinality (number of elements) of the set of all values f(x), such that
x=a for some fixed value a, is an element of the set {0, 1}. In other words, the number of outputs that a function f
may have at any fixed input a is either zero (in which case it is undefined at that input) or one (in which case the
output is unique).
However, when we consider the relation, we relax this constriction, and so a relation may map one value to more
than one other value. In general, a relation is any subset of the Cartesian product of its domain and co-domain.
All functions, then, can be considered as relations also.

Notations
When we have the property that one value is related to another, we call this relation a binary relation and we write it
as

x R y
where R is the relation.
For arrow diagrams and set notations, remember for relations we do not have the restriction that functions do and we
can draw an arrow to represent the mappings, and for a set diagram, we need only write all the ordered pairs that the
relation does take: again, by example

f = {(0,0),(1,1),(1,-1),(2,2),(2,-2)}
is a relation and not a function, since both 1 and 2 are mapped to two values, 1 and -1, and 2 and -2 respectively)
example let A=2,3,5;B=4,6,9 then A*B=(2,4),(2,6),(2,9),(3,4),(3,6),(3,9),(5,4),(5,6),(5,9) Define a relation
R=(2,4),(2,6),(3,6),(3,9) add functions and problems to one another
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Some simple examples
Let us examine some simple relations.
Say f is defined by

{(0,0),(1,1),(2,2),(3,3),(1,2),(2,3),(3,1),(2,1),(3,2),(1,3)}
This is a relation (not a function) since we can observe that 1 maps to 2 and 3, for instance.
Less-than, "<", is a relation also. Many numbers can be less than some other fixed number, so it cannot be a function.

Properties
When we are looking at relations, we can observe some special properties different relations can have.

Reflexive

A relation is reflexive if, we observe that for all values a:
a R a

In other words, all values are related to themselves.
The relation of equality, "=" is reflexive. Observe that for, say, all numbers a (the domain is R):

a = a
so "=" is reflexive.
In a reflexive relation, we have arrows for all values in the domain pointing back to themselves:

Note that ≤ is also reflexive (a ≤ a for any a in R). On the other hand, the relation < is not (a < a is false for any a in
R).

Symmetric

A relation is symmetric if, we observe that for all values a and b:
a R b implies b R a

The relation of equality again is symmetric. If x=y, we can also write that y=x also.
In a symmetric relation, for each arrow we have also an opposite arrow, i.e. there is either no arrow between x and y,
or an arrow points from x to y and an arrow back from y to x:

Neither ≤ nor < is symmetric (2 ≤ 3 and 2 < 3 but not 3 ≤ 2 nor 3 < 2 is true).

http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_reflexive.png
http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_symmetric.png
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Transitive

A relation is transitive if for all values a, b, c:
a R b and b R c implies a R c

The relation greater-than ">" is transitive. If x > y, and y > z, then it is true that x > z. This becomes clearer when we
write down what is happening into words. x is greater than y and y is greater than z. So x is greater than both y and z.
The relation is-not-equal "≠" is not transitive. If x ≠ y and y ≠ z then we might have x = z or x ≠ z (for example 1 ≠ 2
and 2 ≠ 3 and 1 ≠ 3 but 0 ≠ 1 and 1 ≠ 0 and 0 = 0).
In the arrow diagram, every arrow between two values a and b, and b and c, has an arrow going straight from a to c.

Antisymmetric

A relation is antisymmetric if we observe that for all values a and b:
a R b and b R a implies that a=b

Notice that antisymmetric is not the same as "not symmetric."

Take the relation greater than or equal to, "≥" If x ≥ y, and y ≥ x, then y must be equal to x. a relation is
anti-symmetric if and only if a∈A, (a,a)∈R

Trichotomy

A relation satisfies trichotomy if we observe that for all values a and b it holds true that: aRb or bRa

The relation is-greater-or-equal satisfies since, given 2 real numbers a and b, it is true that whether a ≥ b or b ≥ a
(both if a = b).

Problem set

Given the above information, determine which relations are reflexive, transitive, symmetric, or antisymmetric on the
following - there may be more than one characteristic. (Answers follow.) x R y if
1.1. x = y
2. x < y
3. x2 = y2

4. x ≤ y

Answers

1.1. Symmetric, Reflexive, Transitive and Antisymmetric
2.2. Transitive, Antisymmetric
3. Symmetric, Reflexive, Transitive and Antisymmetric (x2 = y2 is just a special case of equality, so all properties

that apply to x = y also apply to this case)
4.4. Reflexive, Transitive and Antisymmetric (and satisfying Trichotomy)

http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_transitive.png
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Equivalence relations
We have seen that certain common relations such as "=", and congruence (which we will deal with in the next
section) obey some of these rules above. The relations we will deal with are very important in discrete mathematics,
and are known as equivalence relations. They essentially assert some kind of equality notion, or equivalence, hence
the name.

Characteristics of equivalence relations

For a relation R to be an equivalence relation, it must have the following properties, viz. R must be:
•• symmetric
•• transitive
•• reflexive
(A helpful mnemonic, S-T-R)
In the previous problem set you have shown equality, "=", to be reflexive, symmetric, and transitive. So "=" is an
equivalence relation.
We denote an equivalence relation, in general, by .

Example proof

Say we are asked to prove that "=" is an equivalence relation. We then proceed to prove each property above in turn
(Often, the proof of transitivity is the hardest).
• Reflexive: Clearly, it is true that a = a for all values a. Therefore, = is reflexive.
• Symmetric: If a = b, it is also true that b = a. Therefore, = is symmetric
• Transitive: If a = b and b = c, this says that a is the same as b which in turn is the same as c. So a is then the

same as c, so a = c, and thus = is transitive.
Thus = is an equivalence relation.

Partitions and equivalence classes

It is true that when we are dealing with relations, we may find that many values are related to one fixed value.
For example, when we look at the quality of congruence, which is that given some number a, a number congruent to
a is one that has the same remainder or modulus when divided by some number n, as a, which we write

a ≡ b (mod n)
and is the same as writing

b = a+kn for some integer k.
(We will look into congruences in further detail later, but a simple examination or understanding of this idea will be
interesting in its application to equivalence relations)
For example, 2 ≡ 0 (mod 2), since the remainder on dividing 2 by 2 is in fact 0, as is the remainder on dividing 0 by
2.
We can show that congruence is an equivalence relation (This is left as an exercise, below Hint use the equivalent
form of congruence as described above).
However, what is more interesting is that we can group all numbers that are equivalent to each other.
With the relation congruence modulo 2 (which is using n=2, as above), or more formally:

x ~ y if and only if x ≡ y (mod 2)
we can group all numbers that are equivalent to each other. Observe:
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This first equation above tells us all the even numbers are equivalent to each other under ~, and all the odd numbers
under ~.
We can write this in set notation. However, we have a special notation. We write:

[0]={0,2,4,...}
[1]={1,3,5,...}

and we call these two sets equivalence classes.
All elements in an equivalence class by definition are equivalent to each other, and thus note that we do not need to
include [2], since 2 ~ 0.
We call the act of doing this 'grouping' with respect to some equivalence relation partitioning (or further and
explicitly partitioning a set S into equivalence classes under a relation ~). Above, we have partitioned Z into
equivalence classes [0] and [1], under the relation of congruence modulo 2.

Problem set

Given the above, answer the following questions on equivalence relations (Answers follow to even numbered
questions)
1.1. Prove that congruence is an equivalence relation as before (See hint above).
2. Partition {x | 1 ≤ x ≤ 9} into equivalence classes under the equivalence relation

Answers

2. [0]={6}, [1]={1,7}, [2]={2,8}, [3]={3,9}, [4]={4}, [5]={5}

Partial orders
We also see that "≥" and "≤" obey some of the rules above. Are these special kinds of relations too, like equivalence
relations? Yes, in fact, these relations are specific examples of another special kind of relation which we will
describe in this section: the partial order.
As the name suggests, this relation gives some kind of ordering to numbers.

Characteristics of partial orders

For a relation R to be a partial order, it must have the following three properties, viz R must be:
•• reflexive
•• antisymmetric
•• transitive
(A helpful mnemonic, R-A-T)
We denote a partial order, in general, by .
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Example proof

Say we are asked to prove that "≤" is a partial order. We then proceed to prove each property above in turn (Often,
the proof of transitivity is the hardest).

Reflexive

Clearly, it is true that a ≤ a for all values a. So ≤ is reflexive.

Antisymmetric

If a ≤ b, and b ≤ a, then a must be equal to b. So ≤ is antisymmetric

Transitive

If a ≤ b and b ≤ c, this says that a is less than b and c. So a is less than c, so a ≤ c, and thus ≤ is transitive.
Thus ≤ is a partial order.

Problem set

Given the above on partial orders, answer the following questions
1.1. Prove that divisibility, |, is a partial order (a | b means that a is a factor of b, i.e., on dividing b by a, no remainder

results).
2. Prove the following set is a partial order: (a, b) (c, d) implies ab≤cd for a,b,c,d integers ranging from 0 to 5.

Answers

2. Simple proof; Formalization of the proof is an optional exercise.
Reflexivity: (a, b) (a, b) since ab=ab.
Antisymmetric: (a, b) (c, d) and (c, d) (a, b) since ab≤cd and cd≤ab imply ab=cd.
Transitive: (a, b) (c, d) and (c, d) (e, f) implies (a, b) (e, f) since ab≤cd≤ef and thus ab≤ef

Posets

A partial order imparts some kind of "ordering" amongst elements of a set. For example, we only know that 2 ≥ 1
because of the partial ordering ≥.
We call a set A, ordered under a general partial ordering , a partially ordered set, or simply just poset, and write
it (A, ).

Terminology

There is some specific terminology that will help us understand and visualize the partial orders.
When we have a partial order , such that a  b, we write to say that a but a ≠ b. We say in this instance
that a precedes b, or a is a predecessor of b.
If (A, ) is a poset, we say that a is an immediate predecessor of b (or a immediately precedes b) if there is no x in
A such that a  x  b.
If we have the same poset, and we also have a and b in A, then we say a and b are comparable if a  b or b  a.
Otherwise they are incomparable.
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Hasse diagrams

Hasse diagrams are special diagrams that enable us to visualize the structure of a partial ordering. They use some of
the concepts in the previous section to draw the diagram.
A Hasse diagram of the poset (A, ) is constructed by
•• placing elements of A as points
• if a and b ∈ A, and a is an immediate predecessor of b, we draw a line from a to b
• if a  b, put the point for a lower than the point for b
• not drawing loops from a to a (this is assumed in a partial order because of reflexivity)

Operations on Relations
There are some useful operations one can perform on relations, which allow to express some of the above mentioned
properties more briefly.

Inversion

Let R be a relation, then its inversion, R-1 is defined by
R-1 := {(a,b) | (b,a) in R}.

Concatenation

Let R be a relation between the sets A and B, S be a relation between B and C. We can concatenate these relations by
defining
R • S := {(a,c) | (a,b) in R and (b,c) in S for some b out of B}

Diagonal of a Set

Let A be a set, then we define the diagonal (D) of A by
D(A) := {(a,a) | a in A}

Shorter Notations

Using above definitions, one can say (lets assume R is a relation between A and B):
R is transitive if and only if R • R is a subset of R.
R is reflexive if and only if D(A) is a subset of R.
R is symmetric if R-1 is a subset of R.
R is antisymmetric if and only if the intersection of R and R-1 is D(A).
R is asymmetric if and only if the intersection of D(A) and R is empty.
R is a function if and only if R-1 • R is a subset of D(B).
In this case it is a function A → B. Let's assume R meets the condition of being a function, then
R is injective if R • R-1 if a subset of D(A).
R is surjective if {b | (a,b) in R} = B.
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Functions
A function is a relationship between two sets of numbers. We may think of this as a mapping; a function maps a
number in one set to a number in another set. Notice that a function maps values to one and only one value. Two
values in one set could map to one value, but one value must never map to two values: that would be a relation, not
a function.

For example, if we write (define) a function as:

then we say:
'f of x equals x squared'

and we have

and so on.
This function f maps numbers to their squares.

Range, image, codomain
If D is a set, we can say

which forms a new set, called the range of f. D is called the domain of f, and represents all values that f takes.
In general, the range of f is usually a subset of a larger set. This set is known as the codomain of a function. For
example, with the function f(x)=cos x, the range of f is [-1,1], but the codomain is the set of real numbers.

Notations
When we have a function f, with domain D and range R, we write:

If we say that, for instance, x is mapped to x2, we also can add

Notice that we can have a function that maps a point (x,y) to a real number, or some other function of two variables
-- we have a set of ordered pairs as the domain. Recall from set theory that this is defined by the Cartesian product -
if we wish to represent a set of all real-valued ordered pairs we can take the Cartesian product of the real numbers
with itself to obtain

http://en.wikibooks.org/w/index.php?title=File:Allowed_mapping_for_a_function.png
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.
When we have a set of n-tuples as part of the domain, we say that the function is n-ary (for numbers n=1,2 we say
unary, and binary respectively).

Other function notation
Functions can be written as above, but we can also write them in two other ways. One way is to use an arrow
diagram to represent the mappings between each element. We write the elements from the domain on one side, and
the elements from the range on the other, and we draw arrows to show that an element from the domain is mapped to
the range.
For example, for the function f(x)=x3, the arrow diagram for the domain {1,2,3} would be:

Another way is to use set notation. If f(x)=y, we can write the function in terms of its mappings. This idea is best to
show in an example.
Let us take the domain D={1,2,3}, and f(x)=x2. Then, the range of f will be R={f(1),f(2),f(3)}={1,4,9}. Taking the
Cartesian product of D and R we obtain F={(1,1),(2,4),(3,9)}.
So using set notation, a function can be expressed as the Cartesian product of its domain and range.

f(x)

This function is called f, and it takes a variable x. We substitute some value for x to get the second value, which is
what the function maps x to.

Previous topic: ../Functions and relations/ | Contents:Discrete Mathematics | Next topic: ../Number theory/

http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_example.jpg
http://en.wikibooks.org/w/index.php?title=File:Arrow_diagram_example.jpg
http://en.wikibooks.org/w/index.php?title=../Functions_and_relations/
http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics
http://en.wikibooks.org/w/index.php?title=../Number_theory/
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Logic
Overheard on the bus…

"I’ve heard it said that wearing a hat leads to baldness."
"Oh really? I’ve heard that bald men are generally good tempered."
"In that case, I’m glad to see that Jones has started wearing a hat. His temper has been rather short lately!"

In conventional algebra, we use letters and symbols to represent numbers and the operations associated with them: +,
-, ×, ÷, etc. By so doing we can simplify and solve complex problems. In Logic, we seek to express statements, and
the connections between them in algebraic symbols - again with the object of simplifying complicated ideas.
Unfortunately, like ordinary algebra, the opposite seems true initially. This is probably because simple examples
always seem easier to solve by common-sense methods!

Propositions
A proposition is a statement which has truth value: it is either true (T) or false (F).
Example 1

Which of the following are propositions?
(a) 17 + 25 = 42
(b) July 4 occurs in the winter in the Northern Hemisphere.
(c) The population of the United States is less than 250 million.
(d) Is the moon round?
(e) 7 is greater than 12.
(f) x is greater than y.

Answers

(a) is a proposition; and of course it has the 'truth value' true.
(b) is a proposition. Of course, it's false, but it's still a proposition.
(c) is a proposition, but we may not actually know whether it's true or false. Nevertheless, the fact is that the
statement itself is a proposition, because it is definitely either true or false.
(d) is not a proposition. It's a question.
(e) is a proposition. It's false again, of course.
(f) is a bit more debatable! It's certainly a potential proposition, but until we know the values of x and y, we
can't actually say whether it is true or false. Note that this isn't quite the same as (c), where we may not know
the truth value because we aren't well-enough informed. See the next paragraph.

Propositional Functions
A function is, loosely defined, an operation that takes as input one or more parameter values, and produces a single,
well-defined output.
You're probably familiar with the sine and cosine functions in trigonometry, for example. These are examples of
functions that take a single number (the size of an angle) as an input and produce a decimal number (which in fact
will lie between +1 and -1) as output.
If we want to, we can define a function of our own, say RectangleArea, which could take two numbers (the length
and width of a rectangle) as input, and produce a single number as output (formed by multiplying the two input
numbers together).
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In (f) above, we have an example of a Propositional Function. This is a function that produces as output not a
number like sine, cosine or RectangleArea, but a truth value. It's a statement, then, that becomes a proposition when
it is supplied with one or more parameter values. In (f), the parameters are x and y. So if x = 2 and y = 7, its output is
False; if x = 4 and y = -10, its output is True.
More about propositional functions later.

Notation
We shall often represent propositions by lower-case letters p, q, ...

Compound Propositions
Propositions may be modified by means of one or more logical operators to form what are called compound
propositions.
There are three logical operators:

conjunction: meaning AND

disjunction: ∨ meaning OR

negation: ¬ meaning NOT
Example 2

p represents the proposition "Henry VIII had six wives".
q represents the proposition "The English Civil War took place in the nineteenth century".
(a) Connect these two propositions with OR. Is the resulting compound proposition true or false?
(b) Now connect them with AND. Is this compound proposition true or false?
(c) Is the 'opposite' of p true or false?

Answers

(a) p ∨ q is "Henry VIII had six wives or the English Civil War took place in the nineteenth century"
This is true. The first part of the compound proposition is true, and this is sufficient to make the whole
statement true – if a little odd-sounding!

If you think that this example seems very artificial, imagine that you're taking part in a History Quiz; there are two
questions left, and you need to get at least one right to win the quiz. You make the two statements above about
Henry VIII and the Civil War. Do you win the quiz? Yes, because it is true that either Henry VIII had six wives or
the English Civil War took place in the nineteenth century.
Note that this is an inclusive OR: in other words, we don't rule out both parts being true. So p ∨ q means "Either p is
true, or q is true, or both".

(b) p  q is "Henry VIII had six wives and the English Civil War took place in the nineteenth century"
This is false.

To be true, both parts would have to be true. This is equivalent to your needing both questions right to win the quiz.
You fail, because you got the second one wrong.

(c) The opposite of p, which we write as ¬p, is "Henry VIII did not have six wives". This is clearly false. And
in general, if p is true, then ¬p is false, and vice versa.

Example 3

p is "The printer is off-line"
q is "The printer is out of paper"

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Logic/Page_2%23Propositional_Functions
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"r" is "The document has finished printing"
Write as English sentences, in as natural a way as you can:
(a) p ∨ q
(b) r  q
(c) q ¬r

(d) ¬(p ∨ q)
Answers

(a) The printer is off-line or out of paper.
Notice how we often leave words out when we're writing or speaking English. This sounds much more natural than
"The printer is off-line or the printer is out of paper".

(b) The document has finished printing and the printer is out of paper.
The subject of each part of the sentence is different now, so no words are missing this time.

(c) The printer is out of paper and the document has not finished printing.
But and And

The statement in (c) could be someone reporting a problem, and they might equally well say:
(c) The printer is out of paper but the document has not finished printing.

So note that, in logic, but and and mean the same thing. It's just that we use but to introduce a note of contrast or
surprise. For example, we might well say:

The sun is shining brightly, but it's freezing cold outside.
Logically, we could use and to connect both parts of this sentence, but(!) it's more natural to use but.
In (d) what does ¬(p ∨ q) mean? Well, p ∨ q means either p is true or q is true (or both). When we place ¬ in front,
we negate this. So it means (literally):

It is not true that either the printer is off-line or the printer is out of paper.
In other words:

(d) The printer is neither off-line nor out of paper.
Notice that it's often convenient to translate ¬ using the phrase 'It is not true that …'.

Logic Exercise 1
Click link for Logic Exercise 1.

Truth Tables
Consider the possible values of the compound proposition p  q for various combinations of values of p and q. The
only combination of values that makes p  q true is where p and q are both true; any other combination will include
a false and this will render the whole compound proposition false. On the other hand, the compound proposition p ∨
q will be true if either p or q (or both) is true; the only time p ∨ q is false is when both p and q are false.
We summarise conclusions like these in what is called a Truth Table, the truth table for AND being:

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Logic/Exercises%23Logic_Exercise_1
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p q p  q

T T T

T F F

F T F

F F F

The truth table for OR is:

p q p ∨ q

T T T

T F T

F T T

F F F

The order of the Rows in a Truth Table
Notice the pattern of T's and F's in the first two columns of each of the truth tables above. In the first column (the
truth values of p), there are 2 T's followed by 2 F's; in the second (the values of q), the T's and F's change on each
row. We shall adopt this order of the rows throughout this text. Adopting a convention for the order of the rows in a
Truth Table has two advantages:

It ensures that all combinations of T and F are included. (That may be easy enough with just two propositions
and only four rows in the Truth Table; it's not so easy with, say, 4 propositions where there will be 16 rows in
the table.)

It produces a standard, recognisable output pattern of T's and F's. So, for example, T, F, F, F is the output
pattern (or 'footprint' if you like) of AND ( ), and T, T, T, F is the footprint of OR (∨).

The truth table for NOT
Each of the two truth tables above had two 'input' columns (one for the values of p and one for q), and one 'output'
column. They each needed four rows, of course, because there are four possible combinations of T's and F's when
two propositions are combined. The truth table for NOT (¬) will be simpler, since ¬ is a unary operation – one that
requires a single proposition as input. So it just two columns – an input and an output – and two rows.

p ¬p

T F

F T
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Drawing up Truth Tables
The method for drawing up a truth table for any compound expression is described below, and four examples then
follow. It is important to adopt a rigorous approach and to keep your work neat: there are plenty of opportunities for
mistakes to creep in, but with care this is a very straightforward process, no matter how complicated the expression
is. So:

Step 1: Rows

Decide how many rows the table will require. One input requires only two rows; two inputs require 4 rows;
three require 8, and so on. If there are n propositions in the expression, 2n rows will be needed.

Step 2: Blank Table

Draw up a blank table, with the appropriate number of input columns and rows, and a single output column
wide enough to accommodate comfortably the output expression. If 8 or more rows are needed, you'll
probably find it helps to rule a horizontal line across the table every four rows, in order to keep your rows
straight.

Step 3: Input Values

Fill in all the input values, using the convention above for the Order of Rows in a Truth Table; that is to say,
begin with the right-most input column and fill in the values T and F, alternating on every row. Then move to
the next column to the left, and fill in T's and F's changing on every second row. And so on for all the
remaining columns. The left-most column will then contain T's in the first half of all the rows in the table, and
F's in the second half.

Step 4: Plan your strategy

Study carefully the order in which the operations involved in evaluating the expression are carried out, taking
note of any brackets there may be. As in conventional algebra, you don't necessarily work from left to right.
For example, the expression p ∨ ¬q will involve working out ¬q first, then combining the result with p using
∨. When you've worked out the order in which you need to carry out each of the operations, rule additional
columns under the output expression - one for each stage in the evaluation process. Then number each of the
columns (at its foot) in the order in which it will be evaluated. The column representing the final output will
be the last stage in the evaluation process, and will therefore have the highest number at its foot.

Step 5: Work down the columns

The final stage is to work down each column in the order that you've written down in Step 4. To do this, you'll
use the truth tables for AND, OR and NOT above using values from the input columns and any other columns
that have already been completed. Remember: work down the columns, not across the rows. That way, you'll
only need to think about one operation at a time.

You're probably thinking that this all sounds incredibly complicated, but a few examples should make the method
clear.
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Worked examples
Example 4

Produce truth tables for:
(a) ¬(¬p)
(b) p (¬q)
(c) (p  q) ∨ (¬p ∨ ¬q)
(d) q (p ∨ r)

Solutions

(a) ¬(¬p) is pretty obviously the same as p itself, but we'll still use the above method in this simple case, to show
how it works, before moving on to more complicated examples. So:

Step 1: Rows

There's just one input variable here, so we shall need two rows.

Step 2: Blank Table

So the table is:

p ¬(¬p)

.

.

Step 3: Input Values

Next, we fill in the input values: just one T and one F in this case:

p ¬(¬p)

T

F

Step 4: Plan your strategy

As in 'ordinary' algebra we evaluate whatever's in brackets first, so we shall first (1) complete the (¬p) values,
followed (2) by the left-hand ¬ symbol, which gives us the final output values of the whole expression. We rule an
extra column to separate these two processes, and write the (1) and (2) at the foot of these two columns. Thus:

p ¬ (¬p)

T

F

(2) Output (1)

Step 5: Work down the columns

Finally we insert the values in column (1) – F followed by T – and then use these values to insert the values in
column (2). So the completed truth table is:
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p ¬ (¬p)

T T F

F F T

(2) Output (1)

As we said at the beginning of this example, ¬(¬p) is clearly the same as p, so the pattern of the output values, T
followed by F, is identical to the pattern of the input values. Although this may seem trivial, the same technique
works in much more complex examples, where the results are far from obvious!
(b) p (¬q)

Step 1

There are two input variables, p and q, so we shall need four rows in the table.

Steps 2 & 3

In the q column write T's and F's alternating on every row; in the p column alternate every two rows. At this stage,
the table looks like this:

p q p (¬q)

T T

T F

F T

F F

Steps 4 & 5

As Example (a), we begin (1) by evaluating the expression in brackets, (¬q), and then (2) we combine these results
with p using the operator. So we divide the output section of the table into two columns; then work down column
(1) and finally column (2). The completed table is:

p q p (¬q)

T T F F

T F T T

F T F F

F F F T

(2) output (1)

(c) (p  q) ∨ (¬p ∨ ¬q)

Steps 1 to 3

As in Example (b).

Steps 4 & 5

There will be 5 stages in evaluating the expression (p  q) ∨ (¬p ∨ ¬q). In order, they are:
(1) The first bracket: (p  q)
(2) The ¬p in the second bracket
(3) The ¬q in the second bracket
(4) The ∨ in the second bracket
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(5) The ∨ between the two brackets. This final stage, then, represents the output of the complete expression.
Reminder: Don't work across the rows; work down the columns in order (1) to (5). That way, you'll only have to
deal with a single operation at a time.
The completed table is:

p q (p  q) ∨ (¬p ∨ ¬q)

T T T T F F F

T F F T F T T

F T F T T T F

F F F T T T T

(1) (5) output (2) (4) (3)

Notice that the output consist solely of T's. This means that (p  q) ∨ (¬p ∨ ¬q) is always true whatever the values
of p and q. It is therefore a tautology (see below).
(d) q (p ∨ r)
This simple expression involves 3 input variables, and therefore requires 23 = 8 rows in its truth table. When drawing
this truth table by hand, rule a line below row 4 as an aid to keeping your working neat. It is shown as a double line
in this table. The completed table is shown below.

p q r q (p ∨ r)

T T T T T

T T F T T

T F T F T

T F F F T

F T T T T

F T F F F

F F T F T

F F F F F

(2) output (1)

Tautology
An expression which always has the value true is called a tautology.
In addition, any statement which is redundant, or idempotent, is also referred to as a tautology, and for the same
reason previously mentioned. If P is True then we can be sure that P ∨ P is true, and P ∧ P is also true.

Logic Exercise 2
Click link for Logic Exercise 2.

Order of Precedence
In 'ordinary' algebra, the order of precedence in carrying out operations is:

1 brackets
2 exponents (powers)

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Logic/Exercises%23Logic_Exercise_2


Logic 30

3 × and ÷
4 + and -

In the algebra of logic, brackets will often be inserted to make clear the order in which operations are to be carried
out. To avoid possible ambiguity, the agreed rules of precedence are:

1 brackets
2 NOT (¬)
3 AND ( )
4 OR (∨)

So, for example, p ∨ q  r means:
Evaluate q  r first.
Then combine the result with p ∨.

Since it would be easy to misinterpret this, it is recommended that brackets are included, even if they are not strictly
necessary. So p ∨ q  r will often be written p ∨ (q  r).

Logically Equivalent Propositions
Look back to your answers to questions 2 and 3 in Exercise 2. In each question, you should have found that the last
columns of the truth tables for each pair of propositions were the same.
Whenever the final columns of the truth tables for two propositions p and q are the same, we say that p and q are
logically equivalent, and we write:

p ≡ q
Example 5

Construct truth tables for
(i) p ∨ (q  r), and
(ii) (p ∨ q) (p ∨ r),

and hence show that these propositions are logically equivalent.
Solution

(i)

p q r p ∨ (q  r)

T T T T T

T T F T F

T F T T F

T F F T F

F T T T T

F T F F F

F F T F F

F F F F F

(2) output (1)

(ii)

http://en.wikibooks.org/w/index.php?title=Discrete_Mathematics/Logic/Exercises%23Logic_Exercise_2
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p q r (p ∨ q) (p ∨ r)

T T T T T T

T T F T T T

T F T T T T

T F F T T T

F T T T T T

F T F T F F

F F T F F T

F F F F F F

(1) (3) output (2)

The outputs in each case are T, T, T, T, T, F, F, F. The propositions are therefore logically equivalent.
Example 6

Construct the truth table for ¬(¬p ∨ ¬q), and hence find a simpler logically equivalent proposition.
Solution

p q ¬ (¬p ∨ ¬q)

T T T F F F

T F F F T T

F T F T T F

F F F T T T

(4) output (1) (3) (2)

We recognise the output: T, F, F, F as the 'footprint' of the AND operation. So we can simplify ¬(¬p ∨ ¬q) to
p  q

Laws of Logic
Like sets, logical propositions form what is called a Boolean Algebra [1]: the laws that apply to sets have
corresponding laws that apply to propositions also. Namely:
Commutative Laws

p  q ≡ q  p
p ∨ q ≡ q ∨ p

Associative Laws

(p  q)  r ≡ p (q  r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive Laws

p (q ∨ r) ≡ (p  q) ∨ (p  r)
p ∨ (q  r) ≡ (p ∨ q) ( p ∨ r)

Idempotent Laws

p  p ≡ p
p ∨ p ≡ p

http://en.wikipedia.org/wiki/Boolean_algebra
http://en.wikibooks.org/w/index.php?title=../Set_theory/Page_2%23The_Laws_of_Sets
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Identity Laws

p F ≡ F
p ∨ F ≡ p
p T ≡ p
p ∨ T ≡ T

Involution Law

¬(¬p) ≡ p
De Morgan’s Laws

¬(p ∨ q) ≡ (¬p) (¬q)
(sometimes written p NOR q)
¬(p  q) ≡ (¬p) ∨ (¬q)
(sometimes written p NAND q)

Complement Laws

p ¬p ≡ F
p ∨ ¬p ≡ T
¬T ≡ F
¬F ≡ T

Worked Examples
Example 7

Propositional functions p, q and r are defined as follows:
p is "n = 7"
q is "a > 5"
r is "x = 0"

Write the following expressions in terms of p, q and r, and show that each pair of expressions is logically equivalent.
State carefully which of the above laws are used at each stage.
(a)

((n = 7) ∨ (a > 5)) (x = 0)
((n = 7) (x = 0)) ∨ ((a > 5) (x = 0))

(b)
¬((n = 7) (a ≤ 5))
(n ≠ 7) ∨ (a > 5)

(c)
(n = 7) ∨ (¬((a ≤ 5) (x = 0)))
((n = 7) ∨ (a > 5)) ∨ (x ≠ 0)

Solutions

(a)
(p ∨ q)  r
(p  r) ∨ (q  r)
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(p ∨ q)  r = r (p ∨ q) Commutative Law

= (r  p) ∨ r  q) Distributive Law

= (p  r) ∨ (q  r) Commutative Law (twice)

(b)
First, we note that

¬q is "a ≤ 5"; and
¬p is "n ≠ 7".

So the expressions are:
¬(p ¬q)
¬p ∨ q

¬(p ¬q) = ¬p ∨ ¬(¬q) De Morgan's Law

= ¬p ∨ q Involution Law

(c)
First, we note that

¬r is "x ≠ 0".
So the expressions are:

p ∨ (¬(¬q  r))
(p ∨ q) ∨ ¬r

p ∨ (¬(¬q  r)) = p ∨ (¬(¬q) ∨ ¬r) De Morgan's Law

= p ∨ (q ∨ ¬r) Involution Law

= (p ∨ q) ∨ ¬r Associative Law

Logic Exercise 3
Click link for Logic Exercise 3.

Logic Page 2
Logic continues on Page 2.

Previous topic:../Number theory/|Contents:Discrete Mathematics|Next topic:../Enumeration/
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Graph theory
A graph is a mathematical way of representing the concept of a "network".

Introduction
A network has points, connected by lines. In a graph, we have special names for these. We call these points vertices
(sometimes also called nodes), and the lines, edges.
Here is an example graph. The edges are red, the vertices, black.

In the graph, are vertices, and are edges.

Definitions of graph
There are several roughly equivalent definitions of a graph. Most commonly, a graph is defined as an ordered
pair , where is called the graph's vertex-set and

is called the graph's edge-set. Given a graph , we often denote
the vertex—set by and the edge—set by . To visualize a graph as described above, we draw dots
corresponding to vertices . Then, for all we draw a line between the dots
corresponding to vertices if and only if there exists an edge . Note that the placement of the
dots is generally unimportant; many different pictures can represent the same graph.Alternately, using the graph above as a guide, we can define a graph as an ordered triple :
•• a set of vertices, commonly called V
•• a set of edges, commonly called E
• a relation that maps to each edge a set of endpoints, known as the

edge-endpoint relation. We say an edge is incident to a vertex iff .
In the above example,
• V={v1, v2, v3, v4}
• E={e1, e2, e3, e4, e5}
• f such that e1 maps to {v1, v2}, e2 maps to {v1, v3}, e3 maps to {v1, v4}, e4 maps to {v2, v4}, and e5 maps to {v3,

v4}.

If is not injective — that is, if such that  — then we say that is a
multigraph and we call any such edges  multiple edges. Further, we call edges such that

 loops. Graphs without multiple edges or loops are known as simple graphs.
Graphs can, conceivably, be infinite as well, and thus we place no bounds on the sets V and E. We will not look at
infinite graphs here.

http://en.wikibooks.org/w/index.php?title=File:Discrete_Mathematics_Example_Graph.png
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Directions, Weights, and Flows

We define a directed graph as a graph such that maps into the set of ordered pairs rather
than into the family of two-element sets . We can think of an edge such that

as 'pointing' from to . As such we would say that is the tail of edge and that is the
head. This is one of the vagaries of graph theory notation, though. We could just as easily think of as the head and

as the tail. To represent a directed graph, we can draw a picture as described and shown above, but place arrows
on every edge corresponding to its direction.
In general, a weight on a graph is some function .
A flow is a directed graph paired with a weight function such that the weight "going into"
any vertex is the same amount as the weight "going out" of that vertex. To make this more formal, define sets
•
•

Then, formally stated, our requirement on the weight function is 

Special Graphs

The complete graph on 6 vertices

Some graphs occur frequently enough in graph theory that they deserve
special mention. One such graphs is the complete graph on n vertices,
often denoted by Kn. This graph consists of n vertices, with each vertex
connected to every other vertex, and every pair of vertices joined by
exactly one edge. Another such graph is the cycle graph on n vertices,
for n at least 3. This graph is denoted Cn and defined by V := {1,2,..,n}
and E := Template:1,2,{2,3}, ..., {n-1,n},Template:N,1. Even easier is
the null graph on n vertices, denoted Nn; it has n vertices and no edges!
Note that N1 = K1 and C3 = K3.

Some Terms

Two vertices are said to be adjacent if there is an edge joining them.
The word incident has two meanings:

• An edge e is said to be incident to a vertex v if v is an endpoint of e.
•• Two edges are also incident to each other if both are incident to the same vertex.
Two graphs G and H are said to be isomorphic if there is a one-to-one function from (or, if you prefer, one-to-one
correspondence between) the vertex set of G to the vertex set of H such that two vertices in G are adjacent if and
only if their images in H are adjacent. (Technically, the multiplicity of the edges must also be preserved, but our
definition suffices for simple graphs.)

http://en.wikibooks.org/w/index.php?title=File%3ACompletegraphon6vertices.png
http://en.wikibooks.org/w/index.php?title=Template:1%2C2
http://en.wikibooks.org/w/index.php?title=Template:N%2C1
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Subgraphs

Generated Subgraphs

A subgraph is a concept akin to the subset. A subgraph has a subset of
the vertex set V, a subset of the edge set E, and each edge's endpoints
in the larger graph has the same edges in the subgraph. A

A subgraph of is generated by the vertices { }
if the edge set of consists of all edges in the edge set of 

that joins the vertices in { }.
A path is a sequence of edges such that ei is adjacent
to ei+1 for all i from 1 to N-1. Two vertices are said to be connected if
there is a path connecting them.

Trees and Bipartite Graphs
A tree is a graph that is (i) connected, and (ii) has no cycles. Equivalently, a tree is a connected graph with exactly

edges, where there are nodes in the tree.
A Bipartite graph is a graph whose nodes can be partitioned into two disjoint sets U and W such that every edge in
the graph is incident to one node in U and one node in W. A tree is a bipartite graph.
A complete bipartite graph is a bipartite graph in which each node in U is connected to every node in W; a complete
bipartite graph in which U has vertices and V has vertices is denoted .
Adjacent,Incident,End Vertices
Self loops,Parallel edges,Degree of Vertex
Pendant Vertex : Vertex Degree one "Pendant Vertex" Isolated Vertex : Vertex Degree zero "Isolated Vertex"

Hamiltonian and Eulerian Paths
Hamiltonian Cycles: A Hamiltonian Cycle received its name from Sir William Hamilton who first studied the
travelling salesman problem. A Hamiltonian cycle is a path that visits every vertex once and only once i.e. it is a
walk, in which no edge is repeated (a trail) and therefore a trail in which no vertex is repeated (a path). Note also it is
a cycle, the last vertex is joined to the first.
A graph is said to be Eulerian if it is possible to traverse each edge once and only once, i.e. it has no odd vertices or
it has an even number of odd vertices (semi-Eulerian). This has implications for the Königsberg problem. It may be
easier to imagine this as if it is possible to trace the edges of a graph with a pencil without lifting the pencil off the
paper or going over any lines.

Planar Graphs
A planar graph is an undirected graph that can be drawn on the plane or on a sphere in such a way that no two edges
cross, where an edge is drawn as a continuous curve (it need not be a straight line) from u to v.
Kuratowski proved a remarkable fact about planar graphs: A graph is planar if and only if it does not contain a
subgraph homeomorphic to or to . (Two graphs are said to be homeomorphic if we can shrink some
components of each into single nodes and end up with identical graphs. Informally, this means that non-planar-ness
is caused by only two things—namely, having the structure of or within the graph).

http://en.wikibooks.org/w/index.php?title=File%3ASubgraph.svg
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Coloring Graphs
A graph is said to be planner if it can be drawn on a plane in such way that no edges cross one anather except of
course of vertices
Each term, the Schedules Office in some university must assign a time slot for each final exam. This is not easy,
because some students are taking several classes with finals, and a student can take only one test during a particular
time slot. The Schedules Office wants to avoid all conflicts, but to make the exam period as short as possible.
We can recast this scheduling problem as a question about coloring the vertices of a graph. Create a vertex for each
course with a final exam. Put an edge between two vertices if some student is taking both courses. For example, the
scheduling graph might look like this: Next, identify each time slot with a color. For example, Monday morning is
red, Monday afternoon is blue, Tuesday morning is green, etc.
Assigning an exam to a time slot is now equivalent to coloring the corresponding vertex. The main constraint is that
adjacent vertices must get different colors; otherwise, some student has two exams at the same time. Furthermore, in
order to keep the exam period short, we should try to color all the vertices using as few different colors as possible.
For our example graph, three colors suffice: red, green, blue.
The coloring corresponds to giving one final on Monday morning (red), two Monday afternoon (blue), and two
Tuesday morning (green)...

K Coloring
Many other resource allocation problems boil down to coloring some graph. In general, a graph G is kcolorable if
each vertex can be assigned one of k colors so that adjacent vertices get different colors. The smallest sufficient
number of colors is called the chromatic number of G. The chromatic number of a graph is generally difficult to
compute, but the following theorem provides an upper bound:
Theorem 1. A graph with maximum degree at most k is (k + 1)colorable.

Proof. We use induction on the number of vertices in the graph, which we denote by n. Let P(n) be the proposition
that an nvertex graph with maximum degree at most k is (k + 1)colorable. A 1 vertex graph has maximum degree 0
and is 1colorable, so P(1) is true.
Now assume that P(n) is true, and let G be an (n + 1)vertex graph with maximum degree at most k. Remove a vertex
v, leaving an nvertex graph G . The maximum degree of G is at most k, and so G is (k + 1)colorable by our
assumption P(n). Now add back vertex v. We can assign v a color different from all adjacent vertices, since v has
degree at most k and k + 1 colors are available. Therefore, G is (k + 1)colorable. The theorem follows by induction.

Weighted Graphs
A weighted graph associates a label (weight) with every edge in the graph. Weights are usually real numbers, and
often represent a "cost" associated with the edge, either in terms of the entity that is being modeled, or an
optimization problem that is being solved.
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Recursion
In this section we will look at certain mathematical processes which deal with the fundamental property of recursion
at its core.

What is recursion?
Recursion, simply put, is the process of describing an action in terms of itself. This may seem a bit strange to
understand, but once it "clicks" it can be an extremely powerful way of expressing certain ideas.
Let's look at some examples to make things clearer.

Exponents
When we calculate an exponent, say x3, we multiply x by itself three times. If we have x5, we multiply x by itself five
times.
However, if we want a recursive definition of exponents, we need to define the action of taking exponents in terms
of itself. So we note that x4 for example, is the same as x3 × x. But what is x3? x3 is the same as x2 × x. We can
continue in this fashion up to x0=1. What can we say in general then? Recursively,

xn = x × (xn-1)
with the fact that

x0=1
We need the second fact because the definitions fail to make sense if we continue with negative exponents, and we
would continue indefinitely!

Recursive definitions
Reducing the problem into same problem by smaller inputs. for example

            a power n

            2 power 4

   the recursion(smaller inputs) of this function is = 2.2.2.2.1

   for this we declare some recursive definitions 

  a=2

  n=4

  f(0)=1

  f(1)=2

  f(2)=2

  f(3)=2

  f(4)=2

  for this recursion we form a formula f(x)= a.f(n-1)

  by putting these samaller values we get the same answer.
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Recurrence relations
In mathematics, we can create recursive functions, which depend on its previous values to create new ones. We often
call these recurrence relations.
For example, we can have the function :f(x)=2f(x-1), with f(1)=1 If we calculate some of f's values, we get

1, 2, 4, 8, 16, ...
However, this sequence of numbers should look familiar to you! These values are the same as the function 2x, with x
= 0, 1, and so on.
What we have done is found a non-recursive function with the same values as the recursive function. We call this
solving the recurrence relation.

Linear recurrence relations
We will look especially at a certain kind of recurrence relation, known as linear.
Here is an example of a linear recurrence relation:

f(x)=3f(x-1)+12f(x-2), with f(0)=1 and f(1)=1
Instead of writing f(x), we often use the notation an to represent a(n), but these notations are completely
interchangeable.
Note that a linear recurrence relation should always have stopping cases, otherwise we would not be able to calculate
f(2), for example, since what would f(1) be if we did not define it? These stopping cases when we talk about linear
recurrence relations are known as initial conditions.
In general, a linear recurrence relation is in the form

an=A1an-1 + A2an-2 + ... + Ajan-j
with f(t1)=u1, f(t2)=u2, ..., f(tj)=uj as initial conditions.

The number j is important, and it is known as the order of the linear recurrence relation. Note we always need at
least j initial conditions for the recurrence relation to make sense.
Recall in the previous section we saw that we can find a nonrecursive function (a solution) that will take on the same
values as the recurrence relation itself. Let's see how we can solve some linear recurrence relations - we can do so in
a very systematic way, but we need to establish a few theorems first.

Solving linear recurrence relations

Sum of solutions

This theorem says that:
If f(n) and g(n) are both solutions to a linear recurrence relation an=Aan-1+Ban-2, their sum is a solution also.

This is true, since if we rearrange the recurrence to have an-Aan-1-Ban-2=0 And we know that f(n) and g(n) are
solutions, so we have, on substituting into the recurrence

f(n)-Af(n-1)-Bf(n-2)=0
g(n)-Ag(n-1)-Bg(n-2)=0

If we substitute the sum f(n)+g(n) into the recurrence, we obtain
(f(n)+g(n))-A(f(n-1)+g(n-1))-B((f(n-2)+g(n-2))=0

On expanding out, we have
f(n)-Af(n-1)-Bf(n-2)+g(n)-Ag(n-1)-Bg(n-2)

But using the two facts we established first, this is the same as



Recursion 40

0+0=0
So f(n)+g(n) is indeed a solution to the recurrence.

General solution

The next theorem states that:
Say we have a second-order linear recurrence relation, an-Aan-1-Ban-2=0, with supplied initial conditions.

Then αrn is a solution to the recurrence, where r is a solution of the quadratic equation
x2-Ax-B=0

which we call the characteristic equation.
We guess (it doesn't matter why, accept it for now) that αrn may be a solution. We can prove that this is a solution IF
(and only if) it solves the characteristic equation ;
We substitute αrn (r not zero) into the recurrence to get

αrn-Aαrn-1-Bαrn-2=0
then factor out by αrn-2, the term farthest on the right

αrn-2(r2-Ar-B)=0
and we know that r isn't zero, so rn-2 can never be zero. So r2-Ar-B must be zero, and so αrn, with r a solution of
r2-Ar-B=0, will indeed be a solution of the linear recurrence. Please note that we can easily generalize this fact to
higher order linear recurrence relations.
Where did this come from? Why does it work (beyond a rote proof)? Here's a more intuitive (but less
mathematically rigorous) explanation.
Solving the characteristic equation finds a function that satisfies the linear recurrence relation, and conveniently
doesn't require the summation of all n terms to find the nth one.
We want : a function F(n) such that F(n) = A * F(n-1) + B * F(n-2)
We solve : x2 = A* x + B, and call the solution(s) r. There can be more than one value of r, like in the example
below!
We get : a function F(n) = rn that satisfies F(n) = A * F(n-1) + B * F(n-2)
Let's check: Does rn = A*rn-1 + B*rn-2 ? Divide both sides by rn-2 and you get r2 = A*r + B, which must be true
because r is a solution to x2 = A* x + B
Why does a*rn also satisfy the recurrence relation? If F(n)is a solution to the recurrence relation, so is F(n)+ F(n),
based on the "Sum of Solutions" theorem above. One can then take that sum, 2*F(n), and add another F(n) to get
3*F(n), and it will still satisfy the recurrence (and so on...). Thus any whole number multiple of F(n), such as a*F(n)
will satisfy the recurrence relation (a can also be any fraction and probably any real number at all, but I'm too lazy to
adapt the current explanation). Because rn satisfies the recurrence, so does a*rn.
Because we have a second order recurrence, the general solution is the sum of two solutions, corresponding to the
two roots of the characteristic equation. Say these are r and s. The the general solution is C(rn)+D(sn) where C,D are
some constants. We find them using the two (there must be two so that we can find C and D) starting values of the
relation. Substituting these into the general solution will give two equtions which we can (hopefully) solve.
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Example

Let's work through an example to see how we can use the above theorems to solve linear recurrence relations.
Examine the function a(n) given here

a(n)=a(n-1)+2a(n-2)
The characteristic equation of this recurrence relation is

r2-r-2 = 0 from above, as A=1 and B=2
i.e. (r-2)(r+1)=0 which has roots 2, -1.
So the general solution is C(2n)+D(-1)n.
To find C and D for this specific case, we need two starting values, let's say a(1) = 0 and a(2) = 2. These give a
system of two equations
0 = C(21)+D(-1)1

2 = C(22)+D(-1)2

Solving these two equations yields: C = 1/3 , D = 2/3, so the solution is 1/3*(2n)+2/3*(-1)n.
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