CSCE 120: Learning To Code

Module 8.0: Processing Data |
Introduction to Loops

This module is designed to get you started working with loops which are control structures
that allow blocks of code to be repeatedly executed multiple times.

Introduction

Computers are really good at automation. A key aspect of automation is that we be able
to repeat a process over and over on different pieces of data until some condition is met.
For example, if we have a collection of numbers and we want to find their sum we would
iterate over each number, adding it to a total, until we have examined every number.
Another example may include sending an email message to each student in a course. To
automate the process, we could iterate over each student record and for each student we
would generate and send the email.

Automated repetition is where loops come in handy. Computers are perfectly suited for
performing such repetitive tasks. We can write a single block of code that performs some
action or processes a single piece of data, then we can write a loop around that block of
code to execute it a number of times.

Loops provide a much better alternative than repeating (cut-paste-cut-paste) the same
code over and over with different variables. Indeed, we wouldn’t even do this in real
life. Suppose that you took a 100 mile trip. How would you describe it? Likely, you
wouldn’t say, “I drove a mile, then I drove a mile, then I drove a mile, ...” repeated 100
times. Instead, you would simply state “I drove 100 miles” or maybe even, “I drove until
I reached my destination.”

Loops allow us to write concise, repeatable code that can be applied to each element in
a collection or perform a task over and over again until some condition is met. When
writing a loop, there are three essential components:

e An initialization statement that specifies how the loop begins

Initialization:
var i=1

Continuation: false
i<=107

loop body

- @@

Iteration: i++

remaining
|
program

Figure 1: A Typical Loop Flow Chart

repeat

e A continuation (or termination) condition that specifies whether the loop should
continue to execute or terminate

e An iteration statement that makes progress toward the termination condition

The initialization statement is executed before the loop begins and serves as a way to set
the loop up. Typically, the initialization statement involves setting the initial value of
some variable.

The continuation statement is a logical statement (that evaluates to true or false) that
specifies if the loop should continue (if the value is true) or should terminate (if the value
is false). Upon termination, code returns to a sequential control flow and the program
continues.

The iteration statement is intended to update the state of a program to make progress
toward the termination condition. If we didn’t make such progress, the loop would
continue on forever as the termination condition would never be satisfied. This is known
as an infinite loop , and results in a program that never terminates.

As a simple example, consider the following outline.

1. Initialize the value of a variable 7 to 1. ..

2. While the value of i is less than or equal to 10... (continuation condition). ..
3. Perform some action (this is sometimes referred to as the loop body)
4. Tterate the variable ¢ by adding one to its value

5. Return to step 2 to determine if we should stop or continue

The process outlined above is depicted as a flow chart in Figure 1. It specifies that some
action is to be performed once for each value: i = 1,7 = 2,...,7 = 10, after which the
loop terminates and the normal flow of control continues with the rest of the program.
Overall, the loop executes a total of 10 times. Prior to each of the 10 executions, the
value of 7 is checked; as it is less than or equal to 10, the action is performed. At the
end of each of the 10 iterations, the variable ¢ is incremented by 1 and the termination
condition is checked again, repeating the process.

There are several different types of loops that vary in syntax and style but they all have
the same three basic components.

For Loops

A for-loop allows you to specify the three components on the same line. An implemen-
tation of the pseudocode above in JavaScript would look something like the following.

1 for(var i=1; i<=10; i++) {
2 console.log(i);

s}
This snippet of code will print the values 1, 2, ..., 10 to the console.
Take note of the syntax:
e We use the keyword for along with parenthesis enclosing our three conditions

e The initialization statement, var i=1; declares a variable and sets it to one

e The continuation condition, i<=10; will continue the loop until the variable i
exceeds 10

e The iteration statement, i++ increments the variable i by one

e The code inside the opening/closing curly brackets is executed for each iteration of
the loop

Iterating Over Array Elements

Another general use case for loops is to iterate over elements in an array. Recall that
the elements in an array are referenced by an index which starts at zero. A for-loop

can be used to iterate over the elements in an array by defining an index variable and
incrementing it until it exceeds the size of the array. Recall that the size of an array can
be determined using the .length property. A full example:

1 var myNumbers = [2, 3, 10, 5, 2, 19, 12];

2 var sum = O;

s for(var i=0; i<myNumbers.length; i++) {

1 sum = sum + myNumbers[i];

5}

¢ console.log("Total: " + sum); //prints "Total: 53"

The code above iterates over the elements in the array myNumbers . It uses an index

variable, i which is initialized to zero, corresponding to the index of the first element in
the array. FEach iteration increments i by one, advancing the index to the next element
in the array. The loop stops short of myNumbers.length (which has a value of 7) by
using a strictly-less-than comparison operator. This is because the last element has an
index that is one less than the length (the element 12 is at index 6).

Inside the loop, the i-th element is accessed and added to the sum variable. After the
loop terminates, the total is logged to the console.

While Loops

Another type of loop is the while loop. The syntax is similar, but the location of the
three components is different.

1 var 1 = 1;
2 while(i<=10) {

3 console.log(i);
4 i++;
5 }

In this example, the initialization statement comes before the loop; the continuation
condition is still attached to the loop’s keyword (which is now while) but the iteration
statement comes at the end of the loop.

In general, a while loop is used if the number of iterations is not known (that is, the loop
should continue to execute until some condition that does not involve a counter variable
is satisfied). However, any while loop can be rewritten as a for-loop and vice versa.

Nested Loops

Within a loop, you can place any code you want to be executed each time the loop
iterates. This includes conditionals and even other loops. When you have a loop within

a loop, they are called nested loops. An example:

1 for(var i=0; i<5; i++) {

2 for(var j=0; j<3; j++) {

3 console.log("i, j ="+ 1 + ", " + j);
4 }

5}

In this example, the “outer” for loop will execute 5 times with ¢ running from 0 up to 4.
On each iteration of this loop, the “inner” for loop will fully execute 3 times (j running
from 0 to 2). Thus, in total, these nested loops will run 5 x 3 = 15 times. When using
nested loops, take care that the variables and conditions for each loop are separate (you
cannot reuse the counter variable ¢ in the inner for loop for example). The output of the
above code would look something like the following.

T = N =R =R =
| | | | | (| (| Y | | R [A 1}
B D WWWNNMNNRRROOO
NHFONFONRONRONEKRO

jQuery’s Each Loop

jQuery allows you to process elements in an array or the result of a selector query by
using a special each() function. The syntax and approach to using this function is
fundamentally different than directly using a for or while loop. The each() function
takes, as an argument, another function. This is known as a callback function.

Essentially what we are passing the function is an array of elements arr and a function
£() that will be applied to each element in that function. To think of it another way:
we could write a simple for-loop that iterated over each element e in the array and then
passed each individual element to the function, so f(e) . This alternative way of writing
a loop allows us to write code in a more functional programming way by just worrying
about the actual function.

There are two versions of the each() function. The first one can be applied to any array
type. An example:

1 var arr = [10, 20, 30, 40];
2 $.each(arr, function(index, value) {
3 console.log("index " + index + " has the value " + value);

1 });

In the example above, the $.each() function takes two arguments: the first is the array
and the second is a function that we want applied to each element in the array. The
callback function itself is defined to take two arguments, an index and a value. The
$.each() function applies this function to each element in the array. Each element has
a corresponding index and value which get passed to this function.

The other version of the each() function allows you to apply a function to elements
that are the result of a jQuery selector call. An example:

1 $("1i") .each(function(index, element) {
2 console.log(index + ": " + $(element).text());

5 1);

In this example, the selector will get all <1i> elements in the HTML document and then
apply the function to each of them. As with the other version, the function is passed the
index of the element as well as the DOM element itself.

Additionally, note that in line 3 we “wrap” the element in a call to jQuery. Recall
that the text() function is one that is provided by jQuery and is not part of standard
JavaScript. By wrapping the element inside a call to jQuery, $(element) it transforms
it into a jQuery object which does have the text() function available.

Since ECMAScript version 5 (the official specification for the language we call JavaScript),
the forEach function has been supported for arrays that essentially does the same thing
as the jQuery $.each() function (see https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Array/forEach for details). We prefer
jQuery’s version as it is more flexible for how we’ll typically use it.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

