
CSCE 120: Learning To Code
Module 6: Presenting Data II

Introduction

This module introduces you to working with Cascading Style Sheets and defining stylistic
elements in a web page.

Cascading Style Sheets

One of the main purposes of using HTML is to separate content from presentation. That
is, HTML includes the actual content (text) along with markup (tags) that define the
semantics of the content. However, it does not (or at least should not) specify how that
content is ultimately presented to the user. Stylistic element such as whether or not
paragraphs are indented or separated by some vertical space, or if some word is displayed
italicized or in bold font, or the size, color, and typeface of fonts in general are all defined
using Cascading Style Sheets instead. There are several ways to define CSS rules for the
styling of HTML elements.

Inline Styling

Any HTML element can have the style attribute. Using this attribute, you can specify
as many style elements as you want, each of which is separated by a semicolon. To specify
a style element, you need to specify a key-value pair called a CSS property. For example,
we could add a style attribute to a paragraph element:

<p style="color: red; font-weight: bold; font-family: calibri">Hello world!</p>

In this example, we’ve specified three elements of the paragraph: its font color (set to
red), its “weight” (bold), and its typeface (Calibri).

1

Inline styles are applied to the HTML element in which the style attribute is placed as
well as all of its child elements. This is known as inheritance; which defines a hierarchy
of styles. The browser itself has some predefined style defaults. Inline styles override
those defaults while inline styles specified in child elements override those settings. An
example:

1 <div style="color: red">

2 <p>This is a red paragraph, inherited style</p>

3 <p style="color: green">Now its green</p>

4 <p style="color: yellow">And now yellow</p>

5 <p>Now back to red</p>

6 </div>

There are hundreds of different CSS properties that are part of the official CSS spec-
ification and many more hundreds of non-standard properties supported by particular
browsers and rendering engines. A comprehensive list would span multiple CSS specifi-
cation documents. However, one good resource listing many of these properties as well
as valid values can be found here: http://meiert.com/en/indices/css-properties/.

The element

Sometimes you may want to specify styling of a particular piece of text that doesn’t
necessarily have a separate HTML element. For example, perhaps you want to highlight
a particular word in a paragraph. To do this you may use the HTML tag which
does not have any particular semantic meaning other than enabling you to define an
inline CSS style that is to be applied to (or span) the content inside the tag.
An example:

<p>Congratulations! You have won!</p>

In this example, only “Congratulations!” would be rendered in bold-font with the re-
maining sentence rendered in the style inherited from the paragraph’s parent.

Global Styling

Using inline styling somewhat defeats the purpose of using CSS: it embeds styling ele-
ments inside the document and makes maintenance or changes difficult. Instead, CSS
styling rules can be placed in an external style sheet and included in your HTML docu-
ment by using the <link> tag. In the <head> of your document you would include a
line similar to the following.

<link href="myStyles.css" rel="stylesheet" type="text/css">

Within your style file (myStyles.css), you would use the following syntax:

2

http://meiert.com/en/indices/css-properties/

1 /*

2 myStyles.css

3 Comments in CSS files are similar to JavaScript

4 however no single line comments using // are not allowed

5 */

6

7 body {

8 font-size: 80%;

9 }

10

11 /* this applies the style to all p (paragraph) elements: */

12 p {

13 color: red;

14 text-align: center;

15 }

16

17 h1 {

18 font-family: Helvetica, Verdana, sans-serif;

19 }

If you want multiple elements to have the same styling you can specify multiple selectors
delimited by a comma to have the same style applied to all of them. Moreover, you can
repeat selectors with different styles:

1 h1, h2 {

2 font-family: Helvetica;

3 font-weight: bold;

4 }

5

6 h1 {

7 color: red;

8 }

9

10 h2 {

11 margin-left: 2em;

12 }

In this example, h1 and h2 elements would be rendered as bold Helvetica. However,
h1 elements would be red and h2 tags would be indented by 2em (an em is a unit in
typography equal to 16-point).

Common Style Elements

There are several hundred CSS properties with dozens of possible values each. New
properties have been added with each new version of CSS (CSS3 is the current version

3

with various modules and recommendations currently under draft and consideration for
CSS4). We will only focus on a few of the most common ones here. For a complete list
of properties and documentation, the following is a good resource: http://meiert.com/
en/indices/css-properties/.

Fonts

There are several CSS properties that control how fonts are displayed. Each property has
several possible values, but we’ll only focus on a small number of them.

font-style

This property can be used to italicize a font using the value italic . By default, the
value is normal .

font-weight

Various values can be used to provide a bolder (or lighter) font using the values normal

(default), bold bolder , lighter , etc.

font-size

Font size can be controlled using a variety of values that can be set with a variety of
units. Values can be expressed using a series keywords: xx-small , x-small , small ,
medium , large , x-large , xx-large . Alternatively, a font size can be expressed by

using pixels px , points pt , or ems em (a unit used in typography; 1em = 16pt). A
numerical value is associated with each unit with no space between them. For example:

1 font-size: 10pt;

2 font-size: 20px;

3 font-size: 2em;

You can also use a percentage (% which is relative to the default font size. For example,

font-size: 50% would be one half the size of the default font size, font-size: 200%

would be twice as big.

Layouts

Each HTML element has surrounding margins, borders, and padding which, for most
elements, do not effect how they are displayed. You can, however, change them using the

4

http://meiert.com/en/indices/css-properties/
http://meiert.com/en/indices/css-properties/

Figure 1: Relation between margins, borders, and padding in HTML elements

margin , border , and padding properties. Moreover, you can fine-tune each of these

by specifying different values for the top, right, bottom, and left margin/border/padding.

Figure 1 depicts the relationship between margins, borders, and padding in the layout of
an HTML element.

For margin and padding, you can use margin-top , margin-right , margin-bottom ,

margin-left and padding-top , padding-right , padding-bottom , padding-left

to fine-tune properties of each of the four sides. Values can be specified using similar
units to fonts, including pixels, points, ems, and percentage.

For convenience, all four sides can be specified with one rule using margin and padding

and providing 1, 2, 3, or 4 separate values delimited with a space. An example:

1 /* all four sides are 10px */

2 margin: 10px;

3

4 /* top and bottom are 10px, both sides are 20px */

5 margin: 10px 20px;

6

7 /* top is 10px, sides are 20px, bottom is 30px */

8 margin: 10px 20px 30px;

9

10 /* top, right, bottom left */

11 margin: 10px 20px 30px 40px;

Borders have different properties including width, style, and color that can each be speci-
fied using border-width , border-style , and border-color . Width can be specified
using pixels or other similar units. There are several styles to choose from including
none (default), dotted , dashed , and solid . Color can be specified in several differ-
ent ways that we explore in the next section. Finally, all three properties can be set by
the border property.

5

1 border-width: 3px;

2 border-style: solid;

3 border-color: black;

4

5 /* equivalently: */

6 border: 3px solid black;

The layout relationship between different elements can be defined using various properties
including width , height , float and clear . Elements can either float left , right

or none (default). A floating element allows the surrounding content to “flow” around
it. Often, you don’t want elements after a float to flow around it, in which case you can
use clear with values left , right or both to prevent content flowing around the
respective sides.

Colors

Each element has a foreground color (usually the text color) and a background color
which can be controlled using the color and background-color respectively.

There are many named colors such as red green , black , etc. (see http://www.

w3schools.com/cssref/css_colorsfull.asp). More fine-tuned colors can be defined
using the RGB (Red-Green-Blue) color model. In this model, you specify an additive
amount of each color using an integer value from 0 (no contribution) through 255 (full
contribution). These three values are defined using rgb(255, 255, 255) . Since it is
additive, full contribution of all colors corresponds to white. Black therefore would be
rgb(0, 0, 0) ; rgb(255, 0, 0) would be red; rgb(255, 255, 0) would be full red,
full green and no blue, giving yellow.

Alternatively, these three numbers are often expressed in hexadecimal (a base-16 number
system that uses 0, 1, 2, . . . , 8, 9, a, b, c, d, e, f). Two hexadecimals are used for each
value with a hash symbol. Some examples:

1 /* all of the following are equivalent */

2 color: red;

3 color: rgb(255, 0, 0);

4 color: #ff0000;

5

6 color: yellow;

7 color: rgb(255, 255, 0);

8 color: #ffff00;

9

10 /* sort of a light green */

11 color: rgb(168, 247, 178);

12 color: #a8f7b2;

Elements can also be made transparent using the opacity property and a value from

6

http://www.w3schools.com/cssref/css_colorsfull.asp
http://www.w3schools.com/cssref/css_colorsfull.asp

0.0 (completely transparent) and 1.0 (completely opaque). For example, opacity: 0.5;

would be 50% visible Any elements in the background will “bleed through”. Opacity can
also be included with a color using RGBA (“alpha channel”) and specifying the opacity
as a fourth component. For example, color: rgba(255, 0, 0, 0.5); corresponds to
red, but 50

Visibility

Another way that you can control the visibility of elements is to use the visibility and

display properties. With visibility, you can make an element either visible (default)

or hidden . With display , you can use inline , block or none . An inline element

does not start on a new line and takes only as much width as necessary (like a

element). A block element starts a new line and takes up the full width of parent element
(like a <div> element).

Both visibility: hidden and display: none hide an element. The difference, how-

ever, is that using display: none does not affect the layout of the surrounding elements.

The layout is rendered as if the element does not exist. Using visibility: hidden ,
however hides the element, but takes up as much “empty” space as the element would if
it were visible.

Classes, Identifiers, Selectors, etc.

Classes

Another attribute that can be applied to any HTML element is the class attribute.
This attribute is commonly used in conjunction with CSS to apply styles to elements
that belong to a certain class rather than to all elements of a certain type (tag). When
defining an element, you can give it a class using the following syntax:

<p class="greeting">Greetings!</p>

You can apply more than one class to an element by separating class names with a space:

<p class="greeting strong">Hello!</p>

When defining a style for classes in an external style sheet, you use a period:

7

1 .greeting {

2 color: green;

3 }

4

5 .strong {

6 font-weight: bold;

7 }

You can further specify a styling to apply only to certain types of elements which belong
to a certain class:

1 div.greeting {

2 margin-left: 2em;

3 background-color: LightGray;

4 }

This CSS rule would apply to all div elements that had a greeting class added to it.

For example, the rule would apply to <div class="greeting"> but would not apply

to a normal <div> element.

Identifiers

Another common attribute that can be given to HTML elements is the identifier attribute,
id . The ID should be unique to each HTML element. If more than one HTML elements
have the same ID, odd and unexpected behavior can result. An example:

<p id="leadParagraph">Greetings...</p>

When applying a style to an element with a particular ID, you use a hash:

1 #leadParagraph {

2 font-size: 120%;

3 }

Combinators

Combinators give a way to combine selectors to form more complex rules.

• The universal selector (*) will apply a rule to every element in the document.

• The descendent selector allows you to combine two or more elements and applies
the rule to nested elements. For example, div p applies the rule to any paragraph

that is a descendent of a <div> element

• The child selector applies a rule to the immediate child(ren) of an element. For
example, div > p applies the rule to any paragraph that is an immediate child of

a <div> element but not to any descendants deeper in the tree.

8

• The adjacent sibling selector (div + p) and general sibling selector (div ~ p)
apply rules to the sibling immediately following and to all siblings. The examples
apply the rule to paragraphs that are immediately following and to all paragraphs
that are siblings of a <div> element respectively.

Attribute Selectors

Rules can be created to apply to elements with certain attributes. For example, you may
want a rule to apply to all links (anchors) that link to a PDF file or all images with an
alt (alternative) attribute.

• To apply a rule to any element that simply has an attribute, use the following
syntax: tag[attr] . For example, a[href] applies to all anchors that have any

href attribute

• To apply a rule to an element that has a particular attribute with a particu-
lar value, you can use the following syntax: tag[attr="value"] . For exam-

ple, a[href="syllabus.pdf"] would apply to any anchor that linked to the file

syllabus.pdf

• You can also apply a rule to an element whose attribute begins with a particular
string value. For example, a[href^="http"] would apply to all anchors that link
to an http address.

• Likewise, you can match attribute values that end with a certain string using
a[href$="jpg"] which applies to all anchors that link to a JPEG image file.

• Finally, you can match attribute values that contain a certain string value not just
at the start/end, but anywhere within the attribute’s value using a[href*="cse"]

Tools, Frameworks, Libraries

You can do very complex styling rules by combining elements, classes, and IDs as well as
other selectors (see Advanced CSS Selectors), “combinators”, and other special syntax
to achieve a myriad of behavior. This can get complicated rather quickly. For that
reason, many frameworks and tools have been created to allow developers to organize style
sheets. For example, LESS (http://lesscss.org/) and Sass (Syntactically Awesome
Stylesheets, http://sass-lang.com/) are CSS pre-processors that allows you to write
CSS in a more programming language-like syntax (with variables and functions) which
is then converted to plain CSS.

Moreover, many frameworks have been created that have defined a lot of nice stylistic
elements that you can use. For example, Twitter’s Bootstrap (http://getbootstrap.
com/), or HTML5 Boilerplate (http://html5boilerplate.com/) can be used so that you

9

http://www.w3.org/community/webed/wiki/Advanced_CSS_selectors
http://lesscss.org/
http://sass-lang.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://html5boilerplate.com/

don’t have to start from scratch. Many other CSS templates and resources can be found
in the wild as well, allowing you to start with a nearly complete page template. Finally,
many Content Management Systems (CMS) such as Drupal (https://www.drupal.org/)
or WordPress (http://wordpress.com/) allow users to edit entire webpages in a user
interface without having to directly modify the CSS or HTML.

10

https://www.drupal.org/
http://wordpress.com/

