
CSCE 120: Learning To Code
Module 4: Making Decisions

Introduction

This module introduces you to logical statements and operators and their use in condi-
tional control structures in a program.

Conditional Statements

When writing code, its important to be able to distinguish between one or more situations.
Based on some condition being true or false, you may want to perform some action if
its true, while performing another, different action if it is false. Alternatively, you m ay
simply want to perform one action if and only if the condition is true, and do nothing
(move forward in your program) if it is false.

Normally, the control flow of a program is sequential : each statement is executed top-
to-bottom one after the other. A conditional statement interrupts this normal control
flow and executes statements only if some specified condition holds. The usual way of
achieving this in a programming languages is through the use of the key words, if ,
else , and else if .

The If Statement

The if statement is the simplest form of a conditional statement. The basic syntax is
presented here:

1 if(〈condition〉) {

2 //Conditioned Code

3 //code inside this block will execute only if

4 //the condition above evaluates to true

1

5 }

6 //rest of code...

The if keyword is followed by parentheses inside of which we put a condition. The
〈condition〉 part of the example above is not valid JavaScript. It is just a placeholder
that we will use temporarily; we will discuss logical statements in the sections below.
Following the condition is a code block denoted with opening and closing curly brackets.
Anything you place inside this code block will execute if and only if the condition that
you provide evaluates to true. Otherwise, if the condition is not satisfied, (evaluates to
false) then the code block is not executed and the program continues executing any code
after the closing curly bracket.

The If-Else Statement

The if-else statement is a generalization of the if statement. With an if statement,
code is executed or it is not. However, with an if-else statement, two blocks of code are
provided. Exactly one of these blocks of code will execute whether or not the condition
evaluates to true or false. In particular, if the condition evaluates to true, the first block
is executed. Otherwise, if the condition evaluates to false, the second block is executed.
It will never be the case that both (or neither) of the blocks of code will execute. These
blocks of code are usually referred to as being mutually exclusivity, as the execution of
one block precludes the execution of the other. The syntax for writing an if-else

statement is as follows.

1 if(〈condition〉) {

2 //Conditioned Code A

3 //code inside this block will execute if

4 //the condition above evaluates to true...

5 } else {

6 //Conditioned Code B

7 //otherwise this block will execute when

8 //the condition above evaluates to false

9 }

The If-Else-If Statement

Yet another generalization is the if-else-if statement. Here, more than one condition
can be specified. The code block associated with the first condition that evaluates to true
with be executed. No other code blocks will be executed.

2

1 if(〈condition 1〉) {

2 //Conditioned Code A

3 //code inside this block will execute if

4 //condition 1 above evaluates to true

5 } else if (〈condition 2〉) {

6 //Conditioned Code B

7 //code inside this block will execute if

8 //condition 1 above evaluates to false and

9 //condition 2 above evaluates to true

10 } else {

11 //Conditioned Code C

12 //otherwise this block will execute when

13 //both of the conditions evaluate to false

14 }

In this example, we’ve only provided 2 conditions with 3 code blocks. However, you can
generalize this and provide as many else if statements as you wish. Realize that since
the first satisfied statement executes, the ordering of your conditions matters! Another
thing to note about if-else-if statements is that the final else block is optional. If
none of the conditions is satisfied and you don’t wish for the program to do anything,
then you do not need to include the final else line.

For all of the previous examples, notice that each inner block of code was indented. This
is the preferred style of writing code as it is cleaner and easier to read. It is similar to
when writing an outline or lists/sublists: each subsection or sublist is indented, making it
more organized and easier to read. When blocks of code are properly indented it is clear
which conditional statements they are associated with. Failure to consistently indent
code doesn’t change the behavior of the code (in general, whitespace does not matter).
However, proper and consistent styling makes your code a lot more readable, easier to
maintain, and easier to find bugs.

Examples

Here is a example of a simple if statement:

1 if(amount < 0) {

2 console.log("Error: the amount cannot be negative!");

3 }

3

Here is an example of a simple if-else statement:

1 var isAdult;

2 if(age >= 18) {

3 isAdult = true;

4 } else {

5 isAdult = false;

6 }

Finally, here is a simple if-else-if statement:

1 var huskerScore;

2 var awayScore;

3

4 if(huskerScore > awayScore) {

5 console.log("Huskers win!");

6 } else if(huskerScore < awayScore) {

7 console.log("Huskers lose.");

8 } else {

9 console.log("Huskers tie, let's go to overtime");

10 }

Nesting

You can also nest conditional statements within other conditional statements. An exam-
ple:

1 if(〈condition A〉) {

2 if(〈condition 1〉) {

3 //Conditioned Code A-1

4 } else {

5 //Conditioned Code A-2

6 }

7 } else

8 //Conditioned Code B

9 }

In this example, if 〈condition A〉 evaluates to true, 〈condition 1〉 is then checked and
either code A-1 or code A-2 is executed. However if 〈condition A〉 evaluates to false,
then code B is executed.

4

Comparison & Logical Operators

Comparison Operators

We now discuss how to write the conditions used in the conditional statements. There
are several comparison operators that we can use on numeric and string types. These are
summarized in Table 1.

Operator Meaning Examples

=== Equality, true if the two operands are the same type
and have the same value, false otherwise.

a === 5

a === "five"

a === b

!== Inequality, true if the two operands are either different
types or do not have the same value, false otherwise.

a !== 5

"5" !== 5

a !== b

< Strictly Less Than, true if the left-hand-size is strictly
less than the right-hand-side, false otherwise. Works
for both numeric and string types.

a < 5

a < b

"a" < "b"

a < "five"

> Strictly Greater Than, true if the left-hand-size is
strictly greater than the right-hand-side, false other-
wise. Works for both numeric and string types.

a > 5

a > b

"a" > "b"

a > "five"

<= Less-than-or-equal-to, true if the left-hand-side is less
than or equal to the right-hand-side, false otherwise.

a <= 5

a <= b

"a" <= "b"

a <= "five"

>= Greater-than-or-equal-to, true if the left-hand-side is
greater than or equal to the right-hand-side, false oth-
erwise.

a >= 5

a >= b

"a" >= "b"

a >= "five"

Table 1: Comparison Operators

Lexicographic Ordering

When applied to numbers (either literals or variables whose value is a number), the
operators in Table 1 act as expected. When applied to string types (either literals or
variables whose value is a string), the operators rely on something called lexicographic
ordering. For the most part, this is simply alphabetic ordering so that "alpha" would

come before "beta" (that is, "alpha" < "beta" is true). However, strings can include
other types of characters. The exact ordering of characters is determined by the ASCII
text table (see http://en.wikipedia.org/wiki/ASCII for details). For our purposes

5

http://en.wikipedia.org/wiki/ASCII

just know that: numerical characters come before uppercase letters which come before
lowercase letters. Moreover, each of these three types of characters is ordered in the usual
manner. Finally, just as in alphabetic ordering, shorter words come before longer words
when equal ("race" comes before "racer").

Boolean Variables

Recall that we can use the keywords true and false in JSON data. We can also assign
these values to a variable or we can assign the result of an expression to a variable which
then takes on the values true or false . This allows us to use a single variable as a
flag variable in a conditional statement:

1 var a = true; //example of assigning a boolean value to a variable

2 ...

3 var isAdult = (age >= 18);

4 if(isAdult) {

5 console.log("Get a job!");

6 }

In line 3, the expression (age >= 18) is evaluated (and evaluates to either true or false)

with the result (true or false) being placed into the variable isAdult .

Other Equality Operators

You may see code snippets or other examples that use the equality operators ==, !=

(sometimes referred to as loose equality operators) which have a similar meaning to the
two equality operators presented in Table 1 (called strict equality operators). However
there is a subtle (and potentially dangerous) difference. When applied to variables or
expressions of the same type (that is they are both numbers or both strings), there is no
difference. However, when applied to variables or expressions that have different types,
weird things happen.

For example, the expression, "5" == 5 would evaluate to true ! When these operators
are used, a complex set of rules involving something called type coercion occurs. The
situations in which you’d actually want this behavior are rare. Given the pitfalls, we’ll
be avoiding these issues altogether. As a general rule, always use === and !== .

Logical Operators

We now create more complex logical statements using logical operators. Suppose you
want to condition a block of code on two conditions or expressions. That is, you want a
block of code to execute if condition A is true and if condition B is true. Alternatively,

6

you could condition a block of code on two conditions such that the code will execute if
condition A is true or if condition B is true.

Both of these statements can be achieved using the logical and operator using two am-
persands, && and the logical or operator using two vertical bars, || respectively. The
syntax and details for these two operations are summarized in Table 2.

Operator Meaning Examples

! Logical not operator. Applied to one expression, it
“flips” the value of the expression; true to false, false
to true.

!(x === 0)

!isAdult

&& Logical and operator. Applied to two other expres-
sions, the result is true only if both expressions are
true.

x >= 0 && x <= 10

a === 0 && b !== 0

|| Logical or operator. Applied to two other expres-
sions, the result is true if at least one of the expres-
sions is true.

a > 0 || b != 0

x < 0 || x > 10

Table 2: Logical Operators

The not logical operator is similar to the inequality operator: it negates the statement
it is applied to. If the expression evaluates to true, negating it makes it false and vice
versa. In contrast to the logical and/or operators, the negation is only applied to one
expression. Table 3 gives the truth values for the logical and and or operators for each
of the 4 possible combinations.

If a is. . . and b is. . . then a && b is. . . and a || b is. . .

false false false false

false true false true

true false false true

true true true true

Table 3: Truth values of logical and and or operators.

Order Of Precedence

Recall that some arithmetic operators are evaluated before others (multiplication and
division is done before addition and subtraction). Something similar happens when using
logical operators: any negation is evaluated first. Then, any logical and operators are
evaluated, finally logical or operators are evaluated last. As with arithmetic expressions,
it is best to avoid these issues altogether and write your expressions using parentheses.

7

