
CSCE 120: Learning To Code
Introduction To Data

Introduction

This module introduces you to data and various data formats. We discuss what can
be done with data including transformation, organization, aggregation, visualization and
data mining. We will examine various data types used in JavaScript Object Notation
(JSON) in preparation for using data in the JavaScript programming language. We will
also look at various errors and anomalies that can arise when working with data.

Working With Data

Data is intended to model real-world problems. Consider the data in Table 1 which
models enrollment data including some student information and the course(s) in which
they are enrolled.

First Name Last Name NUID Email Year GPA Course Number Course Name
Starlin Castro 12301013 Sophomore 3.75 CSCE 120 Learning To Code
Starlin Castro 12301013 Sophomore 3.75 MATH 103 College Algebra & Trigonometry
Starlin Castro 12301013 Sophomore 3.75 MUNM 287 History of Rock Music
Anthony Rizzo 44001244 arizzo@mlb.com Freshman 3.24 CSCE 120 Learning To Code
Anthony Rizzo 44001244 arizzo@mlb.com Freshman 3.24 MUNM 287 History of Rock Music
Anthony Rizzo 44001244 arizzo@mlb.com Freshman 3.24 PSYC 181 Introduction to Psychology
Edwin Jackson 00321023 ejackson@unl.edu Senior 2.95 MRKT 257 Sales Communication
Edwin Jackson 00321023 ejackson@unl.edu Senior 2.95 FINA 260 Personal Finance
Brett Jackson 93213394 brett.jackson@gmail.com Freshman 3.8 CSCE 120 Learning To Code
Brett Jackson 93213394 brett.jackson@gmail.com Freshman 3.8 BLAW 372 Business Law I
Javier Baez 33928192 jbaez@cubs.com Freshman 3.21 ECON 211 Principles of Macroeconomics
Javier Baez 33928192 jbaez@iacubs.com Freshman 3.21 BLAW 372 Business Law I
Javier Baez 33928192 jbaez@iacubs.com Freshman 3.21 ENGL 150 Writing: Rhetoric as Inquiry
Junior Lake 11223344 j lake@yahoo.com Sophomore 2.81 MUNM 287 History of Rock Music
Junior Lake 11223344 jlake@gmail.com Sophomore 2.81 CSCE 120 Learning To Code
Richard Renteria 89320191 drenteria@gmail.com Senior 3.91 ENGR 100 Interpersonal Skills for Engineering Leaders
Richard Renteria 89320191 drenteria@gmail.com Senior 3.91 CSCE 120 Learning To Code
Richard Renteria 89320191 rrenteria@cubs.com Senior 3.91 PHYS 211 General Physics I
Ryne Sandberg 33221232 sandberg@mlb.com Junior 3.45 BLAW 300 Business, Government & Society
Ryne Sandberg 33221232 sandberg@mlb.com Junior 3.45 CSCE 477 Cryptography & Security

Table 1: Student Enrollment Data

1

firstName,lastName,nuid,email,year,gpa,courseNumber,courseName

Starlin,Castro,12301013,scastro@cubs.com,Sophomore,3.75,CSCE 120,Learning To Code

Starlin,Castro,12301013,scastro@cubs.com,Sophomore,3.75,MATH 103,College Algebra & Trigonometry

Starlin,Castro,12301013,scastro@cubs.com,Sophomore,3.75,MUNM 287,History of Rock Music

Anthony,Rizzo,44001244,arizzo@mlb.com,Freshman,3.24,CSCE 120,Learning To Code

Anthony,Rizzo,44001244,arizzo@mlb.com,Freshman,3.24,MUNM 287,History of Rock Music

Anthony,Rizzo,44001244,arizzo@mlb.com,Freshman,3.24,PSYC 181,Introduction to Psychology

Edwin,Jackson,00321023,ejackson@unl.edu,Senior,2.95,MRKT 257,Sales Communication

Edwin,Jackson,00321023,ejackson@unl.edu,Senior,2.95,FINA 260,Personal Finance

Brett,Jackson,93213394,brett.jackson@gmail.com,Freshman,3.8,CSCE 120,Learning To Code

Brett,Jackson,93213394,brett.jackson@gmail.com,Freshman,3.8,BLAW 372,Business Law I

Javier,Baez,33928192,jbaez@cubs.com,Freshman,3.21,ECON 211,Principles of Macroeconomics

Javier,Baez,33928192,jbaez@iacubs.com,Freshman,3.21,BLAW 372,Business Law I

Javier,Baez,33928192,jbaez@iacubs.com,Freshman,3.21,ENGL 150,Writing: Rhetoric as Inquiry

Junior,Lake,11223344,j_lake@yahoo.com,Sophomore,2.81,MUNM 287,History of Rock Music

Junior,Lake,11223344,jlake@gmail.com,Sophomore,2.81,CSCE 120,Learning To Code

Richard,Renteria,89320191,drenteria@gmail.com,Senior,3.91,ENGR 100,Interpersonal Skills for Engineering Leaders

Richard,Renteria,89320191,drenteria@gmail.com,Senior,3.91,CSCE 120,Learning To Code

Richard,Renteria,89320191,rrenteria@cubs.com,Senior,3.91,PHYS 211,General Physics I

Ryne,Sandberg,33221232,sandberg@mlb.com,Junior,3.45,BLAW 300,"Business, Government & Society"

Ryne,Sandberg,33221232,sandberg@mlb.com,Junior,3.45,CSCE 477,Cryptography & Security

Figure 1: A CSV data format

What can we do with this data? That is, what kind of operations can we perform on the
data? The data itself is just raw information. Raw information is like unrefined ore: we
need to process it in order to get separate the useless (or at least less-useful) material
from the valuable material. What kind of new insights or new information can we gain
by processing this data?

Data Transformation & Formatting

A simple operation that can be performed is data transformation which involves simply
translating the data from one format into another format so that various programs and
programming languages can more easily process and “recognize” the data. For example,
we could view the data in Table 1 as a “flat” data view: each column represents one piece
of data or a field while each row represents a single record.

A table is good for a human-readable representation of some data. However, how is data
actually stored in a computer? One format is to use a Comma Separated Value (CSV)
data format which is simply a plain text file with one record (row) per line. Each piece of
data is separated by a single comma. An example can be viewed in Figure 1. This format
is less human-readable, but it is easy for a computer program to parse and “read.”

Alternatively, this data could be stored in a spreadsheet program such as Microsoft’s
Excel. Such programs have their own, proprietary format and their own way to internally
represent the data.

Other, more “open” data format standards include XML (Extensible Markup Language)
which represents data by marking each piece of data with a tag that semantically de-
fines what that piece of data represents. In XML, a tag is denoted with angle brack-
ets, <tagName> . Each opening tag must be closed by a corresponding closing tag,

</tagName> . An abridged example can be found in Figure 2. Note the structure of the
data: each tag has a nested collection of other tags. This defines a data “tree” in which
nested elements are the “children” of the “parent” element. This structure allows us to

2

identify and infer relationships between data.

1 <?xml version="1.0"?>

2 <roster>

3 <enrollment>

4 <firstName>Starlin</firstName>

5 <lastName>Castro</lastName>

6 <nuid>12301013</nuid>

7 <email>scastro@cubs.com</email>

8 <year>Sophomore</year>

9 <gpa>3.75</gpa>

10 <courseNumber>CSCE 120</courseNumber>

11 <courseName>Learning To Code</courseName>

12 </enrollment>

13 <enrollment>

14 <firstName>Starlin</firstName>

15 <lastName>Castro</lastName>

16 <nuid>12301013</nuid>

17 <email>scastro@cubs.com</email>

18 <year>Sophomore</year>

19 <gpa>3.75</gpa>

20 <courseNumber>MATH 103</courseNumber>

21 <courseName>College Algebra & Trigonometry</courseName>

22 </enrollment>

23 ...

24 <enrollment>

25 <firstName>Ryne</firstName>

26 <lastName>Sandberg</lastName>

27 <nuid>33221232</nuid>

28 <email>sandberg@mlb.com</email>

29 <year>Junior</year>

30 <gpa>3.45</gpa>

31 <courseNumber>CSCE 477</courseNumber>

32 <courseName>Cryptography & Security</courseName>

33 </enrollment>

34 </roster>

Figure 2: XML Formatted Data

Another open format and the one we’ll work with is JavaScript Object Notation (JSON).
Similar to XML, JSON has a nested structure. However, it is less verbose as it does not
require opening/closing tags to identify data. As such, JSON is generally considered a
more “light-weight” data format as the same data can be represented with fewer charac-
ters and thus a smaller file size resulting in less storage and less transmission time when
sent over a network. An example can be found in Figure 3; we examine JSON formatting
in detail in later sections.

Translating from one format to another is a common Electronic Data Interchange (EDI)
problem. Often, different systems written in different languages and different technologies
need to communicate with each other. By exchanging data in a common, standardized
format, communication can easily take place.

Data Organization

Transforming and translating data facilitates communication, but it does not necessarily
give us greater insight as to what the data represents. Instead, we need to think of

3

1 {

2 "roster": [

3 {

4 "firstName":"Starlin",

5 "lastName":"Castro",

6 "nuid":12301013,

7 "email":"scastro@cubs.com",

8 "year":"Sophomore",

9 "gpa":3.75,

10 "courseNumber":"CSCE 120",

11 "courseName":"Learning To Code"

12 },

13 {

14 "firstName":"Starlin",

15 "lastName":"Castro",

16 "nuid":12301013,

17 "email":"scastro@cubs.com",

18 "year":"Sophomore",

19 "gpa":3.75,

20 "courseNumber":"MATH 103",

21 "courseName":"College Algebra & Trigonometry"

22 },

23 ...

24 {

25 "firstName":"Ryne",

26 "lastName":"Sandberg",

27 "nuid":33221232,

28 "email":"sandberg@mlb.com",

29 "year":"Junior",

30 "gpa":3.45,

31 "courseNumber":"CSCE 477",

32 "courseName":"Cryptography & Security"

33 }

34]

35 }

Figure 3: JSON Formatted Data

more sophisticated operations. For example, we may want to sort the data and/or search
the data for particular records. For example, we may want to sort and filter records to
produce a course schedule for a particular student or to produce a roster for a particular
class. This necessarily means that we have to process the data in a particular manner.

Even a simple operation of (re)sorting the data involves a lot of details. For example:
how do you want to sort? By last name-first name? By GPA? For entries with the same
person, how should the courses be sorted? Alphabetically? According to when the course
was taken? By grade received? Depending on your use case (how the user will actually
use the processed data and for what) you could have very different answers to each of
these questions.

There are also issues involving efficiency. There are many sorting and searching algorithms
to choose from. Do they scale? Our data is rather small with a few dozen records but in
a real system you may have thousands, millions, billions of records. How can such data
be organized so that a simple operation of a student searching for their classes can be
done in milliseconds rather than even seconds.

Data organization also involves data normalization. The data in Table 1 is “flat” in that
there are lots of repeated entries. A student may be enrolled in 5 courses, but is it really

4

necessary to repeat their name, NUID, etc. for each of those entries? Moreover, this
could lead to errors and data anomalies: what if a user updates their email? How many
records must be effected? What if one of them is accidentally omitted?

Normalization is the process of separating data into different tables and relating records
between them so that repetition is minimized and data anomalies are prevented or at least
mitigated. This is what is done when working with a Relational Database Management
system (RDBM) such as MySQL or PostgreSQL.

Data Aggregation

Data aggregation is a process by which we can group and combine data to produce
statistics and other information. A simple example could include counting the number of
(unique) students or courses in our enrollment records. Or we could compute the average
number of credit hours per student. We could even consider individual students: we may
be interested in the total number of credit hours for each student in order to identify
those who are under or over-enrolled. Such operations may require us to group pieces of
data together (by-student or by-course) and project or “flatten” the data out to take a
sum, average, count, etc.

Data Visualization

Data is useless as long as it is simply sitting in a computer. In order to be useful, it
needs to inform a decision or give us (humans) better insight into a problem. The data
formats above are great for a computer but terrible for human consumption. It is difficult
to make any sense or overall impression of such raw data.

Instead, for human consumption, data is usually visualized in some manner so that it
can easily be interpreted by a human user. This can be as simple as a bar graph or
more complex such as a heat map or connection graph as in Figures 4 and 5. These data
visualizations immediately allow us to discern patterns and discover insights that the raw
data would not have otherwise revealed. In fact, humans are much better, in general, at
recognizing these patterns than computers are.

Data Mining

More advanced data processing techniques includes cutting edge data mining and machine
learning which include very sophisticated algorithms and statistical techniques that can
process data and “learn” new patterns. Basic data processing may involve knowing what
questions you want answered (how many students, how many credit hours, etc.). These
advanced techniques, however, can be used to answer questions that you had no idea that
you were even interested in. Advanced analysis can be used to find patterns and trends
and extract new information and insights.

5

(a) Geographic Heatmap (b) Data Heatmap

Figure 4: Heat Map Data Visualizations

(a) Connection Graph (b) Social Connection Graph

Figure 5: Connection Graph Data Visualizations

JavaScript Object Notation (JSON)

The data format that we’ll focus on is JavaScript Object Notation or simply just JSON.
The format itself is a subset of the JavaScript programming language and as such it
has the advantaged that it is recognized and “built-in” to the JavaScript language. In
JSON, basic data are represented as objects (or “entities” or “things”) which contain
key-value pairs of data. The key is a unique string that is used to access the data while
the value is the content that is stored in the data. A string is simply a collection of
alphanumeric characters. Key value pairs are denoted using a string-colon-value syntax:
"key": value where value can be one of several data types which we explore in detail
below.

Objects are denoted with opening and closing curly brackets, {...} . Within the object,
key-value pairs are enumerated as a comma-delimited list. A full example can be seen in
Figure 6.

Within each object, the key is considered unique. Duplicate keys are not an error, however

6

1 {

2 "student": {

3 "firstName": "John",

4 "lastName": "Student",

5 "nuid": 12345678,

6 "gpa": 3.85,

7 "emails": ["jstudent@unl.edu", "johnny@gmail.com"]

8 },

9 "course": {

10 "id": 4231,

11 "name": "Learning to Code",

12 "code": "CSCE 120"

13 }

14 }

Figure 6: A Full JSON Example

whichever key-value pair appears last is the one that is used. All prior duplicates are
effectively ignored. For example in the following object,

1 {

2 "foo": "bar",

3 "foo": "baz",

4 }

the key foo is defined twice. The second value, "baz" is the value that is ultimately
used while the value "bar" is effectively ignored.

Note:

• Only strings may be used for keys, you cannot use numbers or other types as keys.

• Keys (like all strings) are case-sensitive so "foo": 1 is not the same thing as
"Foo": 1

• Though you can use spaces and other special characters in your key string, it
is generally bad practice to do so. Instead, use a modern convention such as
"lowerCamelCasing" in which keys with multiple words are written together with
the first word of each subsequent word capitalized and all other letters lowercased.

JSON Data Types

There are four basic types of data that are supported by JSON.

7

Numbers

Numeric types can either be integers (whole numbers) like 123, 0,−132 or floating point
numbers 3.14, 8.90,−0.0321. In JSON, the numeric types are denoted as numeric literals.
Scientific notation is supported using either e or E . Some examples:

1 {

2 "pi": 3.14,

3 "two": 2,

4 "billion": 1e9,

5 "nano": 1e-9,

6 "numbers": [1, 2, 3, 4.5, -10, 0]

7 }

Strings

A string is a collection of ordered characters. Characters can include alphabetic characters
(upper and lower case), numeric characters (which are not treated as numbers), as well as
whitespace, punctuation, etc. Strings can consist of printable characters as well as non-
printable control characters. Strings can also contain international characters (UTF-8)
to represent characters in other languages that do not use the Latin alphabet.

In JSON strings are denoted by double quotes, "Hello World!" . Everything inside the
beginning/ending double quotes is considered part of the string including space(s) and
punctuation Strings can hold any printable (and some unprintable) characters as well as
international (UTF-8) characters.

Some special characters need to be escaped by placing a backslash, \ , in front of them.

The most common special characters are \", \\, \n, \t (double quotes, backslash,

end line, and tab). In addition, UTF-8 characters are denoted with a \u followed by 4
hexadecimal characters corresponding to the special character. Some examples:

1 {

2 "hello": "world",

3 "nickname": "John \"The Man\" Student",

4 "version": "2.1.2",

5 "description": "Introduction to stembolt repair \nsecond edition",

6 "Japan": "\u65E5\u672C",

7 }

The unicode characters in the example could be rendered as , which represents the
Japanese writing for the country of Japan.

8

Booleans

A boolean value is a value that is either true or false. In JSON, the keywords true

and false are special keywords that are used to denote these values. They are not
surrounded by double quotes as they are not strings.

Booleans are used to model flags or properties that can either be true or false rather than
hold a value such as a string or number. Some examples:

1 {

2 "isGrad": false,

3 "isHonors": true,

4 }

Arrays

Arrays are a way to collect pieces of data into one ordered collection. In JSON, arrays are
denoted with opening and closing square brackets. Elements in an array are delimited
using commas. Moreover, the elements are ordered : the first element in the list is the
first element in the array, the second in the list is the second element, etc. Ultimately
the order may or may not matter, but the order in which you list elements in an array
is the order that they will be stored in the array. Informally, an array can be viewed as
the collection of rows in a table: a collection of records.

Some examples:

1 {

2 "names": ["John C. Reilly", "Jacob O’Brien", "Steve McQueen"],

3 "firstNames": ["joe", "jane", "Joe", "Jane"],

4 "ids": [321, 2321, 9392, 89122],

5 "scores": [90.1, 83.2, 78.24]

6 }

In general, different types can be stored in the same array. For example, one array may
hold a number as its first element, a string as its second element, and an object as its
third element. It may even hold another array! However, this kind of type mixing is
discouraged in practice. If different types need to be collected together, then it may be
more appropriate to collect them in an object.

Objects

Unlike an array, an object is an unordered collection (a set) of key-value data. In contrast
to arrays, objects can be viewed as the collection of columns for one particular row
(record). An object essentially encapsulates (groups) several pieces of data together into
one logical entity.

9

An object is denoted using opening and closing curly bracket. Anything placed within
these brackets is part of the object. Objects can be nested so that objects can be com-
prised of key-value data pairs whose values are also objects. This is known as composition:
one object is composed of a collection of other objects.

One special object is the root object. As in all previous examples, when we begin a
JSON object, the opening and closing curly brackets represent a value (an object), but
they do not have a key. It is understood that this represents the root object. The
name root derives from the idea that like XML, a JSON object represents a tree with all
child/descendant elements emanating from the root element.

The JSON example in Figure 6 is visualized as a tree in Figure 7 and as a nested table
in 8.

Figure 7: A tree visualization of the JSON object

The Null Value

Another special keyword, null is used to denote missing, unknown, undefined or non-
applicable data. The null keyword can be used for any key-value pair an the type is
necessarily undefined–its not a string, array, number, etc.; it is null . An example:

1 {

2 "gpa": null,

3 "gradCourses": null

4 }

10

Figure 8: A visualization of the JSON object, image generated by http://chris.

photobooks.com/json/.

There is a distinct difference between not having a key-value pair and having a key-value
pair with a value of null . In the first case the key-value pair itself does not exist. In
the second case, the pair exists, but the value is null . That is, the key exists, but the
value does not.

JSON Formatting

In addition to the syntax rules already presented, there are some other rules that JSON
data has to follow. All brackets must be well-balanced. That is, for every opening curly
bracket there is a corresponding closing curly bracket. Likewise for square brackets and
double quotes. Failure to close a section with the proper closing bracket will render your
JSON invalid. Moreover, delimiter types cannot be mixed and must be nested correctly.
You cannot interleave different types such as { ... [... } ...] . In this example,
each opening bracket has a match, but they are not nested properly.

All whitespace outside of a double quote in JSON is essentially meaningless data. In
the examples above, we separated each element on its own line and indented properly
according to the nesting of elements. This is sometimes referred to as “pretty printing”:
formatting the JSON data so that it is easily human readable.

This is nice for development, but when it comes to processing the data, machines ul-
timately ignore the extra whitespace. You can imagine that if we always transmitted
this extra whitespace, we would be wasting a lot of bandwidth, storage, and processing
power. For that reason, data is usually stored/transmitted without the extra whitespace.
Sometimes this is referred to as a compact representation. The example from Figure 6
could be more compactly written as follows (note that the data intentionally runs off the
page as line breaks are unnecessary).

11

http://chris.photobooks.com/json/
http://chris.photobooks.com/json/

{"student":{"firstName":"John","lastName":"Student","nuid":12345678,"gpa":3.85,"emails":["jstudent@unl.edu","johnny@gmail.com"]},"course":{"id":4231,"name":"Learning to Code","code":"CSCE 120"}}

Data Errors

JSON is a data interchange format intended to be processed by computers and programs.
Though as developers we may read and work with JSON data, the end user will never
interact with JSON directly. Humans are relatively tolerant of many formatting errors:
though a text may contain spelling and punctuation errors, we can still, within reason,
read it and grasp the general intention of the writer.

In contrast, machines are dumb: they don’t possess the same reasoning that we do and
are not, in general, able to process data containing various errors. Some errors are
completely fatal and result in programs being unable to execute. Programs may be able
to tolerate other errors to a point, meaning that they may execute but with unexpected
or unintended results. Yet other errors may not result in any unexpected results but
are still considered (say by the end user) to be nonsense resulting from “bad” (though
not erroneous) data. Such a situation is often referred to as garbage-in garbage-out: the
program may run as intended, but since we gave it garbage data, it gave us garbage
results.

Formatting Errors

As previously mentioned, valid JSON must be in a certain format. Special characters
must be escaped, brackets must be well-balanced, delimiters (commas, colons, etc.) must
be used properly. Invalid JSON cannot even be processed by a program as it does not
conform to the specified rules.

Syntax Errors

Other errors may occur in JSON that are not formatting errors. The JSON data could be
well-formatted and valid, but other syntax errors may cause the program that processes
the data to fail. A prime example could be a misspelling or unexpected formatting of
keys. Recall that keys may contain spaces and still be valid, but it is usual to use naming
conventions such as lower camel casing where multi-word keys are written with no spaces
and each new word (except for the first) is capitalized.

When code is written to process JSON data it is written with certain expectations that,
when violated, cause errors. A misspelling or incorrect use of spaces, or case sensitivity
issue may be the culprit.

12

Consistency Errors

JSON data could be well-formatted and free of syntax errors, but it may still contain
“bad” data. That is, the data is readable and can be processed without error, but the
result that the end user sees is invalid.

Examples of such errors can include:

• Numeric values that are outside the range of valid values

• Misspellings of data values

• Inconsistent spelling or formatting of data values

• Misidentified data items (such as a switched first or last name)

• Inconsistent data for the “same” logical entity (a person’s name appears as Joe in
one record, but Joseph in another though they are the same person)

Normalization

The last type of data error identified above can be solved with data normalization by
separating out pieces of data into their own logical entities and defining relations between
these records. For example, a roster may consist of course data being repeated for each
person enrolled in that course. This opens the potential for the kind of consistency errors
identified above. However, a normalized version of this data would have a single course
record for each actual course with a unique identifier. Enrollment would then be modeled
by, say, having each student record own a list of course IDs for courses in which they are
enrolled.

13

