CSCE 120: Learning To Code

Module 13.0: Organizing Code II
Organizing a Project & Using Git

Using JavaScript Libraries

As developers, we stand on the shoulders of giants. Various libraries and code frameworks
have been developed that include the collective talent, experience, wisdom, and hard
work of thousands of the best developers. Good libraries contain some of the best, most
optimized and rigorously tested code to be found. most beautiful code to be found. Using
libraries is integral to software development. Rarely do we ever start from scratch, using
libraries speeds development, makes software more reliable, and utilizes the thousands of
man-hours of development, testing, and refinement that have gone into the libraries.

jQuery, Bootstrap

Throughout this course we’ve been using jQuery, jQuery UI, and Bootstrap. These
JavaScript (and CSS) libraries that provide functionality, style, and even the ability to
customize and define your own themes.

Though the core libraries are very powerful, there are also hundreds of additional plugins
that extend the functionality of these libraries. For example, jQuery and jQuery UI
plugins can be found at http://plugins.jquery.com/. Many more plugins can be
found on the web. Some are so useful and sophisticated that they have their own website
and support; http://datatables.net for example.

Bootstrap also has its own community of developers and contributors. There are many
plugins, themes and templates to be found:

e http://tutorialzine.com/2013/07/50-must-have-plugins-for-extending-twitter-boots
e https://wrapbootstrap.com/

e http://bootswatch.com/


http://plugins.jquery.com/
http://datatables.net
http://tutorialzine.com/2013/07/50-must-have-plugins-for-extending-twitter-bootstrap/
https://wrapbootstrap.com/
http://bootswatch.com/

e http://startbootstrap.com/

e http://bootstrapzero.com/

Upgrading & Semantic Versioning

One concern when using a library is designing your code to grow with future versions. As
libraries are developed, they may fix bugs, add new features, be made to be more efficient,
and other improvements. Upgrading to the latest version of a library can improve your
application too. Typically, new versions of a library are backward compatible, meaning
that upgrading to a new version shouldn’t negatively affect your code.

There are exceptions, however. Modern software typically uses semantic versioning
(http://semver.org/ which uses three numbers to indicate a version. These three num-
bers correspond to a Major. Minor. Patch convention:

e Major — a major version can indicate a major change in the way the library functions
and has potential issues with backwards compatibility. A major version can remove
support for deprecated features, features which were previously announced to be
obsolete and will no longer be supported (and which users can expect to be removed
in future versions). Alternatively, a library may remove features entirely (such as
legacy browser support in the case of jQuery).

e Minor — a minor version indicates improved or added features that are backwards
compatible

e Patch — indicates an updated library that includes bug fixes and should be back-
wards compatible. Note that it may not effectively be backwards compatible if your
application was written to work around the bug or if it contained bugs itself that re-
lied on the library’s bug. Even with patch upgrades, regression testing is necessary
(testing to find new bugs or regressions caused by changes or enhancements)

When deciding on whether to upgrade a library, it is important to be aware of all the
issues and potential drawbacks and to plan accordingly. A well-designed application
should be able to grow and accommodate such updates.

HTML5S5 Boilerplate

HTMLS5 Boilerplate (http://html5boilerplate.com/) is a template is designed to help
developers get started building a web site or application. It offers several features that
get you up and running with HTMLS5 including a “normalization” (or reset) of CSS rules
as well as basic styles and styles to accommodate multiple platforms (small screen phones
to large screen desktops).

In addition, HTML) Boilerplate can package popular libraries like jQuery and Bootstrap.
It also incorporates Modernizr (http://modernizr.com/, a tool that can detect whether


http://startbootstrap.com/
http://bootstrapzero.com/
http://semver.org/
http://html5boilerplate.com/
http://modernizr.com/

or not legacy browsers support certain features (such as local storage). In the even
that browsers do not support an essential feature of your app, HTML5 Boilerplate can
provide polyfills. This allows you to build robust applications without having to worry
about cross-platform compatibility.

Data Driven Documents (d3js)

D3.js (see http://d3js.org/) is a JavaScript library that allows you to manipulate
documents with a data-first emphasis. It allows you to bind data to the DOM, then
apply data-driven transformations on the DOM. This library has many similarities to
jQuery in that it supports selectors, but the selectors can act on bound data as well.

The real power if D3.js is the extensive library of examples and extensions for visualizing
data. It has been used extensively by many websites in infographics, journalistic articles,
etc.

Others

There are many other popular and emerging libraries and frameworks. Web technologies
evolve daily; some examples:

e jQuery Charts (http://canvasjs.com/jquery-charts/) — a jQuery plugin for
generating charts and graphs

e three.js (http://threejs.org/) — a library that allows you to build 3D graphics
for games and animation

e node.js (http://nodejs.org/) — a server-side platform for JavaScript that allows
you to develop in JavaScript on the “backend” of a multi-tiered application instead
of inside a browser with a DOM.

Frameworks

There are many JavaScript-based frameworks (such as Bakcone.js, AngularJS, Knock-
outJS, Ember, React, et. al.). Some provide an MVC (model-view-controller) architecture
or facilitate developing an SPA (Single-Page Application). Each has their own advantages
and disadvantages (as well as critics and evangelists) and development is continually in
flux.

The difference between a library and a framework is often referred to as the inversion of
control. A library provides several useful features that you can use and functions that you
can call. However, a framework provides all of the control. With a framework, there is far
less programming and far more configuration. You configure the framework and end up
filling in the pieces that it doesn’t provide (in a sense, the framework “calls you” rather


http://d3js.org/
http://canvasjs.com/jquery-charts/
http://threejs.org/
http://nodejs.org/

than you calling the framework). Frameworks can greatly reduce the time and effort
required to develop a project. However, the inversion of control comes at a cost. Though
many standard features and operations become easy, any customization or corner-cases
become much more difficult.

Organizing a Project

In many of the activities, we hotlinked to various external resources and libraries. Hotlink-
ing is when you load a JavaScript, CSS, or other resource by referencing it with an external
URL. For example, if our page is hosted on http://example.com and we reference a script
hosted on Google’s Content Delivery Network (CDN) at https://ajax.googleapis.
com/ajax/1libs/jquery/2.1.4/jquery.min. js, then we were using Google’s bandwidth
and resources to host our script.

Hotlinking has an advantage in that we’re not using our own server’s resources (band-
width, etc.). However, there are several drawbacks to hotlinking. We have no control
over the quality, security or reliability of the external resource. If the external resource’s
server goes down, then our application is also unusable. If the external host decides to
change the resource or no longer support it, then our application breaks. If the external
resource is compromised (say malicious code is injected into it), then the security of our
application is also compromised.

Instead, it is best practice to store all resources (scripts, CSS, images, etc.) within your
project and host them from the same server. These resources are usually called assets
and should be well-organized in different folders within your project. Libraries such as
jQuery and Bootstrap should be downloaded and stored in the assets folder.

hAactad An I Aanola’a | antant 1 ial

8 O O

financialTools/
assets/
css/
images/
Js/
lib/

bootstrap.3.3.0/

DataTables-1.10.3/

jquery-ui-1.11.2/

jquery.2.1.1/
index.html

Figure 1: Organizing Assets and Resources


https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js

Minifiers

Many programming languages are compiled into native machine code that runs directly on
the underlying hardware of the computer. JavaScript, however, is an interpreted language
that executes in a browser (note: many browsers do compile JavaScript to make it execute
more efficiently). When a language is compiled all of the high-level language structures
that make the code readable and organized are removed and only the necessary machine
code (a bunch of binary 0s and 1s) is left.

We can do something similar with JavaScript. For example, comments and whitespace
have no effect on the execution of our code and so they do not need to be included in the
actual script. If they were to be removed, it could greatly decrease the size of our script
and thus save on bandwidth and could be downloaded by the browser faster.

JavaScript minifiers do exactly this for us and more. For example, long variable names
can be replaced with shorter ones, unnecessary characters can be removed, etc. One of the
most powerful minimizers is Google’s Closure Compiler (see http://closure-compiler.
appspot.com/home). Minifying JavaScript can result in scripts that are 30-50% smaller.
Minified code is not only more compact, but has the potential to be faster to interpret
and compile. Minifiers also exist for CSS (for example, http://www.cssdrive.com/
index.php/main/csscompressor/). There are also entire frameworks for CSS (http:
//lesscss.org/, http://cssnext.io/) that allow you to use future features and make
CSS more programmatic.

Transpilers

A related concept are transpilers. A compiler compiles code written in a high-level lan-
guage into low-level machine code (binary). However, a transpiler tranlsates code in one
language to another. For example, there are several emerging web programming lan-
guages such as TypeScript, CoffeeScript, Dart, etc. Each language is intended to offer
features that are not found in JavaScript (such as classes, interfaces, and strong typing
of variables). However, widespread browser support for these languages is nonexistent.
Instead, a programmer can write their application in these languages, using their fea-
tures, and then transpile it into version-compliant JavaScript code. Transpilers also exist
to allow you to write code in ES6 or later versions and then transpile it to a previous
version to ensure wider browser support.

There are other, similar technologies currently in development. For example, ASM (http:
//asmjs.org/) and WebAssembly are low-level assembly languages for the web which
have the potential to take a program written in any language and compile/transpile it
into a standard assembly language that is recognized by web browsers. This may be the
beginning of the end for languages like JavaScript.


http://closure-compiler.appspot.com/home
http://closure-compiler.appspot.com/home
http://www.cssdrive.com/index.php/main/csscompressor/
http://www.cssdrive.com/index.php/main/csscompressor/
http://lesscss.org/
http://lesscss.org/
http://cssnext.io/
http://asmjs.org/
http://asmjs.org/

Licenses and Legal Concerns

Another major concern when using third-party libraries are legal considerations. Libraries
may come with different legal licenses that may limit how you use the library. Some
licenses allow you to use the library for non-profit purposes only. Others may allow you
to use it as long as you attribute the original source. Yet others allow you unrestricted
usage. Some allow you to make modifications, others done. Yet others are completely
commercial and require that you pay for the right to integrate or use their code.

When deciding which libraries to use, you want to make sure that you are not violating
any copyright or intellectual property laws or you may be subject to civil legal actions.
Despite this, most widely used libraries can be used without much concern. It is important
to at least be familiar with some of these common licenses.

e MIT License (http://choosealicense.com/licenses/mit/) — essentially an un-
restricted license that allows you to do whatever you want. However, it does in-

demnify the license issuer from any liability. jQuery, jQuery Ul, and Bootstrap use
the MIT License.

e GNU General Public License (GPL, http://www.gnu.org/copyleft/gpl.html) —
a more complex and complete legal license that requires the continuation of the
license to any derived products. This its he most common license in the free and
open source software (FOSS) community.

e Apache 2.0 License (http://www.apache.org/licenses/LICENSE-2.0.html) — A
less restrictive license that allows permission to restrict rights of derived works.

Version Control

Another important concern when developing software is version control. As you develop
software and make changes, add features, fix bugs, etc. it is often useful to have a means
to keep track of changes and to ensure that your code base and artifacts are well-protected
by being stored on a reliable server (or multiple servers). This allows you access to historic
versions of your application’s code in case something breaks.

The solution is to use a revision control system that allows you to “check-in” changes to
a code base. It keeps track of all changes and allows you to “branch” a code base into a
separate copy so that you can develop features or enhancements in isolation of the main
code base (often called the “trunk” in keeping with the tree metaphor). Once a branch
is completed (and well-tested and reviewed), it can then be merged back into the main
trunk and it becomes part of the project.

These systems are not only used for organizational and backup purposes, but are abso-
lutely essential when developing software as part of a team. Each team member can have
their own working copy of the project code without interfering with other developer’s
copies or the main trunk. Only when separate branches have to be merged into the trunk


http://choosealicense.com/licenses/mit/
http://www.gnu.org/copyleft/gpl.html
http://www.apache.org/licenses/LICENSE-2.0.html

do conflicting changes have to be addressed. Otherwise, such a system allows multiple
developers to work on a very complex project in an organized manner.

commit
branch

T

trunk/master branch

Figure 2: Trunk, branches, and merging visualization of the Drupal project

There are several widely used revision control systems including CVS (Concurrent Ver-
sions System), SVN (Apache Subversion), and Git. SVN is a centralized system: there
is a single server that acts as the main code repository. Individual developers can check
out copies and branch copies (which are also stored in the main repository). They also
check all changes into the main repository.

Git is a decentralized system; multiple servers can act as repositories, but each copy
on each developer’s own machine is also a complete revision copy. Code commits are
committed to the local repository. Merging a branch into another requires a push/pull
request. Decentralizing the system means that anyone’s machine can act as a code repos-
itory and can lead to wider collaboration and independence since different parties are no
longer dependent on one master repository.

Git has become increasingly popular, but can be difficult to use for a beginner. Fortu-
nately, there are many tutorials and examples available:

e https://guides.github.com/activities/hello-world/

e http://lifehacker.com/5983680/how-the-heck-do-i-use-github
e https://help.github.com/articles/set-up-git/

e http://rogerdudler.github.io/git-guide/

Git itself is free and open source software (FOSS). In general, you would need to setup
your own Git server to be able to check code in and share it with others. However, there
are many services that offer Git hosting, the biggest and most popular being GitHub.com
which offers Git hosting as well as a variety of features. Basic services are offered for free


https://guides.github.com/activities/hello-world/
http://lifehacker.com/5983680/how-the-heck-do-i-use-github
https://help.github.com/articles/set-up-git/
http://rogerdudler.github.io/git-guide/
http://github.com

with full access features coming at a monthly premium (many are free for students).



