Introduction

Prior to engaging in this hacktivity, you should have completed all of the pre-class activities as outlined in this module. At the start of class, you will be randomly assigned a partner to work with on the entirety of this hacktivity as a peer programming activity. Your instructor will inform you of your partner for this class.

One of you will be the driver and the other will take on the navigator role. Recall that a driver is in charge of the keyboard and computer while the navigator is in charge of the handout and directing the activity. However, you are both responsible for contributing and discussing solutions. If you were a driver/navigator in the prior activity, switch roles for this activity.

1 Visualizing Data – Examples

Download the code we’ve provided from GitHub using the URL, https://github.com/cbourke/DataVisualization. Open the project in Light Table.

D3js (Data Driven Documents in JavaScript, http://d3js.org/) is a JavaScript library that allows you to construct high-quality, interactive Scalable Vector Graphics (SVG). It is widely used in many “infographics” and other data-driven applications and websites.

We’ve provided working several examples in the Demos folder. Open and examine them with your partner:

- mlbData.html – This represents head-to-head wins among baseball teams in the National League Central division in 2014.
- dfwRates.html – This data represents DFW-rates of various CS1 courses with particular instructors.
As a group, discuss the good and maybe bad things about each of these data visualizations. What are some clear patterns that you can discern in each of these visualizations?

2 Visualizing Data

In this exercise, you will adapt a D3js example to visualize a set of data. The D3js library itself is very complex and we have not covered it in any detail. Instead, you will be using the example provided and reverse engineer it to adapt it to new data. That is, you will identify each part of the example responsible for rendering the data and make appropriate changes.

![Figure 1: Graph of Enrollment Data](image-url)
• Take a look at the example provided in CSCEEnrollment/Original, especially the JavaScript code. This is a standard line graph plot but with two plots, each on a different scale (thus, there are two y-axes and the plots are color-coded).

• We have provided a page, CSCEEnrollment/index.html as well as some data, enrollments.csv in CSV format. Using the original as a starting point, plot the data in the CSV file. The data itself represents the number of Computer Science and Computer Engineering majors per term broken down by gender.

• You will make 4 plots: a total number of students in each of the two majors (the left y-axis scale) and a percentage (on the scale [0, 100]) of women in each major (the right y-axis scale) with respect to each term (x-axis).

• Hint: start out by simply graphing some of the raw data to get it working, then make incremental changes until you have something that looks like Figure 1.