
CSCE 120: Learning To Code
Organizing Data I
Hacktivity 12.1

Introduction

Prior to engaging in this hacktivity, you should have completed all of the pre-class ac-
tivities as outlined in this module. At the start of class, you will be randomly assigned
a partner to work with on the entirety of this hacktivity as a peer programming activity.
Your instructor will inform you of your partner for this class.

One of you will be the driver and the other will take on the navigator role. Recall that a
driver is in charge of the keyboard and computer while the navigator is in charge of the
handout and directing the activity. However, you are both responsible for contributing
and discussing solutions. If you were a driver/navigator in the prior activity, switch roles
for this activity.

1 Knowledge Check

1. Explain the advantages and disadvantages of linear search vs binary search.

2. Suppose you have an array of size n = 1012 (1 trillion elements). About how many
operations would linear search take? About how many operations would binary
search take?

3. Suppose we want to sort the array with n = 1012 elements. Using selection sort,
about how many operations would be required?

4. Consider the following code.

1 var arr = [10, 5, 200, 23, 8];

2 arr.sort();

1



What will the configuration of arr be after this code executes? Discuss why with
your partner.

5. Write a piece of code that correctly sorts the array in the previous problem so
that the elements are sorted in descending order (that is, the result should be
[ 200, 23, 10, 8, 5 ] ).

2 Benchmarking Sorting Algorithms

Download the code we’ve provided from GitHub using the URL, https://github.com/
cbourke/SortingProject. Open the project in Light Table.

2.1 Understanding Sorting Algorithms

To begin, let’s get a better understanding of some sorting algorithms. Open your browser
to https://www.toptal.com/developers/sorting-algorithms. We will examine sev-
eral sorting algorithms and how they behave on random data.

1. With your partner, read the page on Random Initial Order:
https://www.toptal.com/developers/sorting-algorithms/random-initial-order

2. Run the simulation (click the green “Restart All” button) and observe the results.
In particular, pay attention to Bubble Sort, Insertion Sort, Selection Sort, Quick
Sort. Order these four algorithms from fastest to slowest based on your observations.

2.2 Benchmarking

We will now benchmark these four algorithms as well as JavaScript’s built-in sort()

method. A benchmark is a comparison of software or algorithms in order to gauge their
empirical performance against each other. Often a benchmark tests many different types
of scenarios and data, but we’ll only focus on randomly generated data as in the demon-
stration earlier.

Open and evaluate the HTML and JavaScript files in the Benchmark folder. This page
provides several implementations of sorting algorithms as well as the framework to ran-
domly generate arrays of size n filled with random data. It then runs the specified sorting
algorithm on the data and reports the runtime.

1. Run the experiment on each algorithm for each of the array sizes in Table 1 and fill
in the results (you may use a separate sheet of paper if you do not have a printout).

2. Without running each algorithm again, predict how much time it would take for
each one to run on n =200,000 elements.

2

https://github.com/cbourke/SortingProject
https://github.com/cbourke/SortingProject
https://www.toptal.com/developers/sorting-algorithms
https://www.toptal.com/developers/sorting-algorithms/random-initial-order


Algorithm
Size, n

1,000 5,000 10,000 50,000 100,000

Bubble Sort

Insertion Sort

Selection Sort

Quick Sort

sort()

Table 1: Empirical Results measured in seconds.

3. Once again, order these algorithms in order of performance. Does this match your
earlier ordering? How does JavaScript’s sort() method compare to these?

3 Proper Sorting

Hopefully you concluded that using JavaScript’s built-in sort() is the best choice as
far as performance goes. In fact, it is generally best practice to use the searching and
sorting algorithms provided by the programming language or standard library rather than
writing your own. We’ll now get some practice using JavaScript’s sort() method.

We have provided several files involving student enrollment data.

1. Open the files in the Roster folder and evaluate the HTML page. It will load
student data from the JSON file and display them in the order in which they are
stored in the JSON file. The user is allowed to select a different ordering which will
invoke the sort() function, passing one of 4 different callbacks.

2. Only the first sorting option has been implemented. Implement the three compara-
tor callbacks, byCourse() , byGPADesc() , byGPAAsc() , and byYear() . Take

particular care with the last one: what order would a user expect? (Hint: use
the array we’ve defined, years along with the indexOf() method to convert the

string representations into ordered numbers).

3. Try sorting by the same criteria multiple times. What behavior do you observe?

3



Discuss possible reasons for this behavior and think of some possible solutions.

4


	Knowledge Check
	Benchmarking Sorting Algorithms
	Understanding Sorting Algorithms
	Benchmarking

	Proper Sorting

