
CSCE 120: Learning To Code
Consuming Data I
Hacktivity 11.1

Introduction

Prior to engaging in this hacktivity, you should have completed all of the pre-class ac-
tivities as outlined in this module. At the start of class, you will be randomly assigned
a partner to work with on the entirety of this hacktivity as a peer programming activity.
Your instructor will inform you of your partner for this class.

One of you will be the driver and the other will take on the navigator role. Recall that a
driver is in charge of the keyboard and computer while the navigator is in charge of the
handout and directing the activity. However, you are both responsible for contributing
and discussing solutions. If you were a driver/navigator in the prior activity, switch roles
for this activity.

1 Knowledge Check

With your partner, discuss and answer each of the following questions. Write your answers
down on a separate sheet of paper or type them up in a plain text file.

1. Briefly explain what HTTP is and the client-server model

2. Briefly explain what Ajax is and how it can be used in a web app

3. Briefly explain what CORS is

4. What jQuery function facilitates an Ajax operation and what are its essential pa-
rameters?

1



2 Warm-up Exercises

Download the code we’ve provided from GitHub using the URL, https://github.

com/cbourke/BulletinApp. Open the project in Light Table. Open the HTML and
JavaScript files in the exercises folder. Evaluate the HTML page so that jQuery is
loaded (do not connect to the Light Table UI).

2.1 Using Ajax

First, let’s get some practice using ajax. The HTML file is provided simply to load
the necessary jQuery files. In the JavaScript file, formulate and execute an $.ajax()

function to connect to the following webservices. For these exercises, simply log the data
to the console. Determine if the webservice supports CORS and/or json-p or neither.
You can refer to the jQuery documentation on $.ajax() (http://api.jquery.com/

jquery.ajax/) for how to use json-p.

1. http://cse.unl.edu/~cbourke/CSCE120/proxies/calc.php

This simple webservice takes two parameters: x and y and returns basic calcula-
tions between the two. Does it support CORS? Does it support json-p?

2. https://www.reddit.com/r/woodworking/new.json

This is a woodworking “subreddit” on the popular website, Reddit.

3. https://api.imgur.com/3/gallery.json

This is an API for the image sharing site Imgur. Does it support CORS? Json-p?
In either case, does it return data? Read the documentation (https://api.imgur.
com/) and determine why or why not.

As an alternative, try https://api.imgur.com/3/gallery/hot/viral/0.json in-
stead.

4. Point your browser to http://apis.io/ which is an API search engine. Search
for an API that may be of interest to you and attempt to connect to it. Does it
support CORS? Json-P? Does it require an API key?

2.2 Importance of Asynchronicity

We have setup a webservice at the following URL: http://cse.unl.edu/~cbourke/

CSCE120/proxies/delay.php, it doesn’t do anything but simulate a long-running process
by delaying its response by a certain number of seconds that you can specify by providing a
delay parameter (numeric value indicating the number of seconds to delay the response,

the default is 5 seconds).

1. Modify the sayHello() function (which is invoked when a user clicks the “Say

Hello!” button) so that it makes a connection to this service.

2

https://github.com/cbourke/BulletinApp
https://github.com/cbourke/BulletinApp
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://cse.unl.edu/~cbourke/CSCE120/proxies/calc.php
https://www.reddit.com/r/woodworking/new.json
https://api.imgur.com/3/gallery.json
https://api.imgur.com/
https://api.imgur.com/
https://api.imgur.com/3/gallery/hot/viral/0.json
http://apis.io/
http://cse.unl.edu/~cbourke/CSCE120/proxies/delay.php
http://cse.unl.edu/~cbourke/CSCE120/proxies/delay.php


2. Modify your code to give some visual feedback to the user by displaying a “loading”
message or graphic (we have provided an animated loading GIF in the project under
../common/images/loading.gif ). Upon success, change this so that the loading
graphic goes away and a success message is displayed to the user.

3. Once working, try different values for the delay parameter. While waiting for a
response, interact with the “Action” elements (but do not interact with the “Delay”
button). Are you able to interact with these things in the page? Why?

4. Now observe the consequences of a long-running synchronous action. Click the
delay button, which calls a function to simply add 1 to a number over and over
many times. Depending on your speed, you may need to increase/decrease the
value of the variable n in the code to get a more manageable but observable delay.
Can you interact with the other elements in the page while this executes? Discuss
possible reasons for this difference with your partner.

3 Loading Data Asynchronously

We have provided a web page that loads now familiar enrollment data (see the enrollment

folder) into a table. That is, it will once you’ve completed it.

1. Complete the loadData() function by making an ajax query to load the data in
the student.json file.

2. Since you are loading a JSON data file, be sure to set the dataType property of

your ajax call to "json" 1

3. Load the data by processing each enrollment record and adding it as a row to the
(initially empty) table

4. Add some flair:

a) Display a loading graphic while the data is being loaded, making sure to remove
the graphic once the data is successfully loaded

b) Fade in the table data to give a visual cue to the user that the data was
successfully loaded

5. A user has to click the “(Re)Load” button for the data to be loaded. Add some
code to make the data load when the page is initially loaded.

1This is only necessary because you are loading a local file. In a true client/server situation as in the
previous examples, the server response includes headers that indicate the type and formatting of the
data it responds with. The $.ajax() function is able to use this to automatically determine the

dataType .

3


	Knowledge Check
	Warm-up Exercises
	Using Ajax
	Importance of Asynchronicity

	Loading Data Asynchronously

