
Computer Science & Engineering 120
Learning to Code

Processing Data I – Loops

Christopher M. Bourke
cbourke@cse.unl.edu

Topic Overview

I Introduction to loops

I Using a for loop

I Iterating over arrays

I While Loops

I For each loops

Introduction

I Need a way to repeatedly execute a block of code

I Apply an operation to each element in an array (sum numbers, print
them, insert them into a table, etc.)

I Repeat an operation until some condition is satisfied

I Animation: fade in an element by changing its opacity until it is fully
opaque

Loops

I A loop allows us to repeatedly execute a block of code until some
condition is no longer satisfied

I Once the condition is no longer satisfied, the loop terminates its
execution

A loop has three main components:

1. An initialization statement – a statement that indicates how the loop
begins

2. A continuation condition – a logical statement (true or false) that
specifies whether or not the loop should continue executing

3. An iteration statement – a statement that makes progress toward the
termination of the loop (otherwise, it would continue to execute
forever!)

Example

Printout numbers 1 through 10:

1. Initialize a variable i to 1

2. While the variable i’s value is less than or equal to 10. . .

3. Print i

4. Increment i by adding 1 to it

5. Go to step 2

Example

1 for(var i=1; i<=10; i++) {

2 console.log(i);

3 }

I An initialization statement: i=1 – a statement that indicates how
the loop begins

I A continuation condition: i<=10 – a logical statement (true or false)
that specifies whether or not the loop should continue executing

I An iteration statement: i++ – a statement that makes progress
toward the termination of the loop (otherwise, it would continue to
execute forever!)

Key notes on syntax:

I Usage of the keyword for

I The initialization statement and continuation statement end with
semicolons, ;

I Usage of punctuation: parentheses and curly brackets



Iteration Operators

Note the iteration operators:

I i++ adds 1 to the variable

I i-- subtracts 1 from the variable

I i += 5 adds 5 to the variable

I i -= 5 subtracts 5 from the variable

Iterating Over Arrays

I Recall that array elements are indexed starting at 0

I Length of an array can be found using arr.length

I Last element is at index arr.length - 1

I A for loop can be used to iterate over array elements

1 var myNumbers = [2, 3, 10, 5, 2, 19, 12];

2 var sum = 0;

3 for(var i=0; i<myNumbers.length; i++) {

4 sum = sum + myNumbers[i];

5 //or sum += myNumbers[i];

6 }

7 console.log("Total: " + sum);

Advanced Usage

I Various array functions can be used to iterate over elements

I More details: https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Reference/Global_Objects/Array/Reduce

1 var myNumbers = [2, 3, 10, 5, 2, 19, 12];

2

3 var sum = myNumbers.reduce(

4 function(pVal, cVal, index, arr) {

5 return pVal + cVal;

6 }, 0);

7

8 console.log("Total: " + sum);

While Loop I

I An alternative is a while loop

I Same three parts, but located differently

I Initialization statement appears before the loop

I Keyword while is used to specify the continuation condition

I Iteration statement is within the loop (usually at the end)

While Loop II

1 var i=1; //initialization

2 while(i<=10) { //continuation condition

3 console.log(i);

4 i++; //iteration

5 }

While vs For

I Any while loop can be rewritten as a for loop and vice versa

I Only difference is semantics/syntax

I Usually use a while loop when you don’t know how many iterations
are needed

I Example: while we have not reached the end of an input (we may not
know how big the input is prior to processing)

I Example: for each element in the array (we know how many there are)



jQuery’s each() Function I

I jQuery provides a function, each() function that can be applied to
a selector result set or an array

I Replaces boilerplate loop code with a callback

I You provide each() with another function

I each() then loops for you: passing each element in the array to
your function for processing

jQuery’s each() Function II

1 var myNumbers = [2, 3, 10, 5, 2, 19, 12];

2 var sum = 0;

3

4 $.each(myNumbers, function(index, value) {

5 sum += v;

6 });

7

8 console.log("Total: " + sum);

jQuery’s each() Function III

I Alternatively, you can apply the each() function to a selector result
set

I First argument (array) is omitted

1 $("p").each(function(index, element) {

2 console.log(element.innerHTML);

3 });

jQuery’s each() Function IV

I Note: the element is a normal DOM element, not a jQuery object

I element has no text() function

I Trick: you can change it to a jQuery object by wrapping it in a
selector call:
$(element)

1 $("p").each(function(index, element) {

2 console.log($(element).text());

3 });

Vanilla forEach() Function

I As of ES5, JavaScript has a forEach() array function

I Some prefer to use “Vanilla” (plain) JavaScript rather than jQuery

1 var myNumbers = [2, 3, 10, 5, 2, 19, 12];

2 var sum = 0;

3

4 myNumbers.forEach(function(value, index, array) {

5 console.log(value + " is at index " + index);

6 });

Part II: Demonstrations &
Exercises



Visualization Demonstration

I Understanding a loop better by tracking its execution

I JavaScript execution visualization tool:
http://int3.github.io/metajs/

Exercise 1

Exercise: Given an array of numbers, find the minimal element

Exercise 2

Exercise: Given an array, compute the average of its elements. Then,
iterate over the elements and insert them into a table, indicating if the
value is above, below or equal to the average.

Exercise 3

Exercise: Process the enrollment data from a previous module. First, find
all (unique) course records. Then, go over the enrollment records and
count the number of students in each course. Produce a table that
summarizes the data.


