
Computer Science & Engineering 120
Learning to Code

Organizing Data I – Searching & Sorting

Christopher M. Bourke
cbourke@cse.unl.edu

Topic Overview

I Searching

I Sorting

Part I: Searching

Searching

I Given a collection (array) of elements, we wish to search it for a
particular element

I Variations: finding the minimum, maximum, etc.

I Test for equality can be complex (achieved with a callback)

I Two basic algorithms: Linear Search, Binary Search

Linear Search

I Given an array, iterate through it, testing for equality on each element

I If found, stop, if not found, return some sort of flag to indicate failure

I Demonstration: http://cs.armstrong.edu/liang/animation/

web/LinearSearch.html

I Best case: could get lucky and find it at the first index

I Worst case: may find it at the last index or not find it at all

I On average, we perform about n
2 comparisons/operations on an array

of size n

I Amount of “work” is linear with respect to the size of the array

Binary Search

I Assume the array is sorted, we wish to search for k
I Examine the middle element, m:

I If m = k: we’ve found it
I If m < k: k must lie in the upper half of the array
I If k < m: k must lie in the lower half of the array

I Demonstration: http://cs.armstrong.edu/liang/animation/

web/BinarySearch.html

I In general, only requires ≈ log (n) comparisons/operations



Comparison

I Suppose we have a size n = 109 (1 billion) array

I Linear search requires

109

2
= 500, 000, 000

operations

I Binary search requires
log (109) ≈ 30

operations

I Another perspective: doubling the array size, n→ 2n

I Linear search requires twice as many operations

I Binary search requires only one more comparison!

log (2n) = log (n) + 1

Searching in JavaScript

I ES5: indexOf() – limited, works only for numbers and strings

I ES6: find() – takes a callback

I Binary Search: no version supports, but can be added with a shim

Part II: Sorting

Sorting

I Given an array, we want to reorganize it so that elements are in order

I Ascending or descending

I Ordering numbers & strings

I Ordering objects

I Example: students: by name? GPA? Class?

I Many algorithms exist

Selection Sort

I Iterate through the array and find the smallest element

I Swap it with the first element

I Repeat this process on the remaining n− 1 elements until sorted

I Demonstration: http://cs.armstrong.edu/liang/animation/

web/SelectionSort.html

I Requires about n2 operations

Other Sorting Algorithms

I Insertion Sort, Quick Sort, Merge Sort, Tim Sort, etc.

I “Slow” algorithms take about n2 operations

I Doubling the size of the array quadruples the execution time!

(2n)2 = 4n2

I “Fast” algorithms require about n log (n) operations

I Doubling the size of the array requires (roughly) only twice as many
operations

I Fast algorithms scale



Sorting the Right Way

I In Software Development its rarely good to “reinvent the wheel”

I Use built-in sorting and searching functions

I JavaScript: arr.sort()

Sorting in JavaScript

I Problem: the default behavior is to sort lexicographically.

I For strings: this is fine

I For numbers: it comes out wrong

I Demonstration

Demonstration

1 var names = ["Jolene", "Irene", "Roxanne", "Cecilia", "Lola"];

2 names.sort();

3 names;

4

5 var nums = [8, 2, 9, 4, 100, 3];

6 nums.sort();

7 nums;

Use a Comparator

I Solution: use a callback to define the ordering!

I sort() knows how to sort, but not how to order

I We use a callback that takes two elements a, b and returns a
number indicating their order:

I < 0 if a < b
I 0 if a = b
I > 0 if a > b

I Such a function is called a comparator

I Demonstration

Demonstration

1 var nums = [8, 2, 9, 4, 100, 3];

2 nums.sort(function(a, b) {

3 return (b - a);

4 });

5 nums;


