Topic Overview

Computer Science & Engineering 120
Learning to Code

Organizing Data | — Searching & Sorting

» Searching
» Sorting
Christopher M. Bourke
cbourke@cse.unl.edu
Searching

. > Given a collection (array) of elements, we wish to search it for a
Pa I’t I Sea rCh | ng particular element

» Variations: finding the minimum, maximum, etc.

> Test for equality can be complex (achieved with a callback)

» Two basic algorithms: Linear Search, Binary Search

Linear Search Binary Search

» Given an array, iterate through it, testing for equality on each element

v

» If found, stop, if not found, return some sort of flag to indicate failure Assume the array is sorted, we wish to search for k

v

Examine the middle element, m:
> If m = k: we've found it
> If m < k: k must lie in the upper half of the array

» Demonstration: http://cs.armstrong.edu/liang/animation/
web/LinearSearch.html

> Best case: could get lucky and find it at the first index > If k < m: k must lie in the lower half of the array
» Worst case: may find it at the last index or not find it at all » Demonstration: http://cs.armstrong.edu/liang/animation/
> On average, we perform about % comparisons/operations on an array web/BinarySearch.html

of size n > In general, only requires = log (n) comparisons/operations

» Amount of “work” is linear with respect to the size of the array

Comparison

» Suppose we have a size n = 10° (1 billion) array

» Linear search requires

9
% = 500, 000, 000

operations
» Binary search requires
log (10%) ~ 30
operations
» Another perspective: doubling the array size, n — 2n
> Linear search requires twice as many operations

» Binary search requires only one more comparison!

log (2n) = log (n) + 1

Searching in JavaScript

>

| 4

>

ES5: index0f() - limited, works only for numbers and strings
ES6: find() - takes a callback

Binary Search: no version supports, but can be added with a shim

Part Il: Sorting

Sorting

v

v

v

Given an array, we want to reorganize it so that elements are in order
Ascending or descending

Ordering numbers & strings

Ordering objects

Example: students: by name? GPA? Class?

Many algorithms exist

Selection Sort

v

Iterate through the array and find the smallest element
» Swap it with the first element
> Repeat this process on the remaining n — 1 elements until sorted

» Demonstration: http://cs.armstrong.edu/liang/animation/
web/SelectionSort.html

» Requires about n? operations

Other

Sorting Algorithms

Insertion Sort, Quick Sort, Merge Sort, Tim Sort, etc.
“Slow” algorithms take about n? operations
Doubling the size of the array quadruples the execution time!

(2n)? = 4n?

“Fast” algorithms require about nlog (n) operations

Doubling the size of the array requires (roughly) only twice as many
operations

Fast algorithms scale

Sorting the Right Way

> In Software Development its rarely good to “reinvent the wheel”
» Use built-in sorting and searching functions

» JavaScript: arr.sort()

Sorting in JavaScript

>

>

>

>

Problem: the default behavior is to sort lexicographically.
For strings: this is fine
For numbers: it comes out wrong

Demonstration

Demonstration

1 var names = ["Jolene", "Irene", "Roxanne", "Cecilia", "Lola"

2 names.sort();
3 names;

5 var nums = [8, 2, 9, 4, 100, 3];
¢ nums.sort();
7 nums;

Use a Comparator

v

v

Solution: use a callback to define the ordering!
sort() knows how to sort, but not how to order
We use a callback that takes two elements a, b and returns a
number indicating their order:
» <0ifa<b
» 0ifa=0b
» >0ifa>0b

Such a function is called a comparator

Demonstration

Demonstration

1 var nums = [8, 2, 9, 4, 100, 3];
2 nums.sort(function(a, b) {

3 return (b - a);

4 });

5 nums;

