Computer Science & Engineering 120
Learning to Code

Organizing Code | — Functions

Christopher M. Bourke
cbourke@cse.unl.edu

Part |: Introduction to Functions

Topic Overview

» Why Functions?
» Defining Functions

» Using Functions

Functions

» Functions are units of code with inputs that produce an output

v

Provide code organization

» Functions provide a way to reuse code

» Easier to test, maintain, etc.

v

>

>

Also provides for procedural abstraction

Logic/process is encapsulated inside a function

We don't need to worry about the details of how a computation is
executed

We just use it

Example: Math.sqrt()

Defining Functions

v

Define functions by using the function keyword

v

Function needs:

> A name (identifier)
> A list of parameters (inputs)
» A body

1 function milesToKm(miles) {
2 var km = miles * 1.60934;
3 return km;

¢ function format(firstName, lastName) {
7 return lastName + ", " + firstName;

Function Parameters

v

v

v

v

v

Function parameters are essentially variables available to the function
Can (but shouldn’t) redefine them

Can be used in an expression

Must follow same identifier rules

Multiple parameters separated by a comma

Return Values Using Functions

> You call a function as we've been doing: providing values (or

. . . variables) as arguments, storing the return value
» Functions compute some result and need to communicate it back to

the code that called it
1 var x = 2;

> Use the keyword return 2> var y;
» A function may return any type 3 y = Math.sqrt(x);
» A function doesn’t have to return anything (if it doesn't, its called a 4

“void” function) 5 var m = 252.4;
6 var k;
7 k = milesToKm(m);

s k = milesToKm(100.2);

» Forgetting (or omitting) a return value will end up returning an
undefined value

10 var name = format("Chris", "Bourke");

Passing By Value | Passing By Value Il
1 function test(a, b) {
2 a = 10;
3 console.log("a = " + a);
> Values stored in variables are copied and passed to the function for B var ¢ = a + b;
processing 5 return c;
» The function knows nothing about the original variable 6

» Changes to the function parameters have no effect on the original

variable B TEE X = B

9 var y = 15;

10 var z = test(x, y);

11 comsole.log("x =" +x + ", y="+y+ " z ="+ 2);
12 //prints 5, 15, 25

» Demonstration

Optional Parameters | Optional Parameters Il

1 function min(a, b) {
2 if(a < b) {

3 return a;

4 } else {

» When calling a function, passing argument(s) is optional
» If an argument is not passed to a function, the parameter’s value

becomes undefined 5 iR B
» Example 6 }
» This can be used as a feature: we can define functions with optional 7}
parameters either: s
» Provide sensible default values or 9 var x = 10;
» Change the behavior/meaning of the function based on the parameters 10 var y = 20;
» Example: jQuery’'s css() function: one parameter gets the value, 11 var m;
two parameters sets the parameter 12 m = min(x, y); //10

13 m = min(x); //undefined

» Check if a parameter is provided by using x === undefined
1w m=minQ); //undefined

Functions as Object Members | Functions as Object Members Il
1 var MyFunctions = {
2 min: function(a, b) {
. . . ; i <
» Declaring a function makes it globally scoped 3 Lita < B) A
4 return a;
» Every piece of code can “see” it and use it s P eilse 4
» This has potential to “pollute the namespace” 6 return b;
» If two libraries both defined a function showPopup() , they would be T b
in conflict 8 b
» Solution: ize functi into obiect b 9 milesToKm: function(miles) {
olution: organize functions into objects as members o var km = miles * 1.60934;
» Just like Math library n return km;
12 }
13 };

Topic Overview

. » Functions calling functions
Part |l: Callbacks | .

» Functions as variables & parameters
» Anonymous Functions

> Asynchronous Computing

Functions Calling Functions | Functions Calling Functions I

1 function bar(a) {

2 console.log("bar = " + a);
E
» Functions can call other functions .
» When a function is called, control flow is handed over to the function 5 function foo() {
until it completes 6 bar (10) ;
» After it completes, control is handed back to the calling function ¥ console.log("foo");
. 8 bar (20) ;
» Such function calls are synchronous . 3

11 foo();

Functions as Parameters | Functions as Parameters ||

1 function foo() {

3}

» Variables can hold numbers, strings, objects, arrays, etc. * . X
5 function bar(x, someFunction) {
» Variables can also hold functions! 6
» A function’s “value” is its name 7}
» This allows you to pass a function to another function! 8

9 var myFunc = foo;
10 bar(10, myFunc);
un //or

12 bar(10, foo);

Functions as Parameters Ill Functions as Parameters IV
1 function foo(x) {
> The passed function is called a callback 2 console.log("x = " + x);
» This allows us to write more generic, general code s}
. B . 4
» Example: forEach() or jQuery’'s $.each() function s function bar(x, someFunction) {
» Example: Sorting 6 console.log("bar: " + x);
> Callbacks are used extensively in jQuery: you can call a function and 7 //call the passed function "back"
provide another callback that you want called after the completion of 8 someFunction(x);
the function o}
10
11 bar(10, foo);
Anonymous Functions | Anonymous Functions Il
1 function bar(x, someFunction) {
2 console.log("bar: " + x);
3 //call the passed function "back"
» If the only purpose to a function is to pass it off to another function 4 someFunction (x) ;
as a callback, there is no need to “pollute the namespace” by 5 B
declaring the function with a name .
» Alternative: define the function “inline” without a name and 7 //there is no function foo, just an anonymous

immediately pass it to another function s //one that does the same thing
» Called an anonymous function s bar(10, function(x) {
10 console.log("x = " + x);
11 ¥

12);

Asynchronous Computing

Some function may execute “long”-running procedures such as
making a network connection to get data

Don't want these processes to freeze (to “block”) the rest of the
application

Freezing while waiting would give a bad User Experience (UX)
Solution: make some functions asynchronous
Execution doesn’t block the rest of the application

We won't go into detail and in fact even with ES6 our ability to do
asynchronous computing is limited

Pitfall: care needs to be taken to chain callbacks appropriately
Example demonstration

Part |ll: Exercises

Exercise

v

v

Develop a function to round a number to the nearest cent (nearest
100th)

Generalize this function so that it supports rounding to any decimal
place

Rewrite the first function to utilize this function

Organize your functions into a utility class

