
Computer Science & Engineering 120
Learning to Code

Organizing Code I – Functions

Christopher M. Bourke
cbourke@cse.unl.edu

Part I: Introduction to Functions

Topic Overview

I Why Functions?

I Defining Functions

I Using Functions

Functions

I Functions are units of code with inputs that produce an output

I Provide code organization

I Functions provide a way to reuse code

I Easier to test, maintain, etc.
I Also provides for procedural abstraction

I Logic/process is encapsulated inside a function
I We don’t need to worry about the details of how a computation is

executed
I We just use it
I Example: Math.sqrt()

Defining Functions

I Define functions by using the function keyword
I Function needs:

I A name (identifier)
I A list of parameters (inputs)
I A body

1 function milesToKm(miles) {

2 var km = miles * 1.60934;

3 return km;

4 }

5

6 function format(firstName, lastName) {

7 return lastName + ", " + firstName;

8 }

Function Parameters

I Function parameters are essentially variables available to the function

I Can (but shouldn’t) redefine them

I Can be used in an expression

I Must follow same identifier rules

I Multiple parameters separated by a comma



Return Values

I Functions compute some result and need to communicate it back to
the code that called it

I Use the keyword return

I A function may return any type

I A function doesn’t have to return anything (if it doesn’t, its called a
“void” function)

I Forgetting (or omitting) a return value will end up returning an
undefined value

Using Functions

I You call a function as we’ve been doing: providing values (or
variables) as arguments, storing the return value

1 var x = 2;

2 var y;

3 y = Math.sqrt(x);

4

5 var m = 252.4;

6 var k;

7 k = milesToKm(m);

8 k = milesToKm(100.2);

9

10 var name = format("Chris", "Bourke");

Passing By Value I

I Values stored in variables are copied and passed to the function for
processing

I The function knows nothing about the original variable

I Changes to the function parameters have no effect on the original
variable

I Demonstration

Passing By Value II

1 function test(a, b) {

2 a = 10;

3 console.log("a = " + a);

4 var c = a + b;

5 return c;

6 }

7

8 var x = 5;

9 var y = 15;

10 var z = test(x, y);

11 console.log("x = " + x + ", y = " + y + ", z = " + z);

12 //prints 5, 15, 25

Optional Parameters I

I When calling a function, passing argument(s) is optional

I If an argument is not passed to a function, the parameter’s value
becomes undefined

I Example

I This can be used as a feature: we can define functions with optional
parameters either:

I Provide sensible default values or
I Change the behavior/meaning of the function based on the parameters

I Example: jQuery’s css() function: one parameter gets the value,
two parameters sets the parameter

I Check if a parameter is provided by using x === undefined

Optional Parameters II

1 function min(a, b) {

2 if(a < b) {

3 return a;

4 } else {

5 return b;

6 }

7 }

8

9 var x = 10;

10 var y = 20;

11 var m;

12 m = min(x, y); //10

13 m = min(x); //undefined

14 m = min(); //undefined



Functions as Object Members I

I Declaring a function makes it globally scoped

I Every piece of code can “see” it and use it

I This has potential to “pollute the namespace”

I If two libraries both defined a function showPopup() , they would be
in conflict

I Solution: organize functions into objects as members

I Just like Math library

Functions as Object Members II

1 var MyFunctions = {

2 min: function(a, b) {

3 if(a < b) {

4 return a;

5 } else {

6 return b;

7 }

8 },

9 milesToKm: function(miles) {

10 var km = miles * 1.60934;

11 return km;

12 }

13 };

Part II: Callbacks

Topic Overview

I Functions calling functions

I Functions as variables & parameters

I Anonymous Functions

I Asynchronous Computing

Functions Calling Functions I

I Functions can call other functions

I When a function is called, control flow is handed over to the function
until it completes

I After it completes, control is handed back to the calling function

I Such function calls are synchronous

Functions Calling Functions II

1 function bar(a) {

2 console.log("bar = " + a);

3 }

4

5 function foo() {

6 bar(10);

7 console.log("foo");

8 bar(20);

9 }

10

11 foo();



Functions as Parameters I

I Variables can hold numbers, strings, objects, arrays, etc.

I Variables can also hold functions!

I A function’s “value” is its name

I This allows you to pass a function to another function!

Functions as Parameters II

1 function foo() {

2 ...

3 }

4

5 function bar(x, someFunction) {

6 ...

7 }

8

9 var myFunc = foo;

10 bar(10, myFunc);

11 //or

12 bar(10, foo);

Functions as Parameters III

I The passed function is called a callback

I This allows us to write more generic, general code

I Example: forEach() or jQuery’s $.each() function

I Example: Sorting

I Callbacks are used extensively in jQuery: you can call a function and
provide another callback that you want called after the completion of
the function

Functions as Parameters IV

1 function foo(x) {

2 console.log("x = " + x);

3 }

4

5 function bar(x, someFunction) {

6 console.log("bar: " + x);

7 //call the passed function "back"

8 someFunction(x);

9 }

10

11 bar(10, foo);

Anonymous Functions I

I If the only purpose to a function is to pass it off to another function
as a callback, there is no need to “pollute the namespace” by
declaring the function with a name

I Alternative: define the function “inline” without a name and
immediately pass it to another function

I Called an anonymous function

Anonymous Functions II

1 function bar(x, someFunction) {

2 console.log("bar: " + x);

3 //call the passed function "back"

4 someFunction(x);

5 }

6

7 //there is no function foo, just an anonymous

8 //one that does the same thing

9 bar(10, function(x) {

10 console.log("x = " + x);

11 }

12 );



Asynchronous Computing

I Some function may execute “long”-running procedures such as
making a network connection to get data

I Don’t want these processes to freeze (to “block”) the rest of the
application

I Freezing while waiting would give a bad User Experience (UX)

I Solution: make some functions asynchronous

I Execution doesn’t block the rest of the application

I We won’t go into detail and in fact even with ES6 our ability to do
asynchronous computing is limited

I Pitfall: care needs to be taken to chain callbacks appropriately

I Example demonstration

Part III: Exercises

Exercise

I Develop a function to round a number to the nearest cent (nearest
100th)

I Generalize this function so that it supports rounding to any decimal
place

I Rewrite the first function to utilize this function

I Organize your functions into a utility class


