
Computer Science & Engineering 120
Learning to Code

Making Decisions

Christopher M. Bourke
cbourke@cse.unl.edu

Part I: Comparison & Logical
Operators

Topic Overview

I Numeric comparison operators

I String comparison & lexicographic ordering

I Logical Operators

Numeric Comparisons I

I We need a way to compare the value stored in variables

I Compare the relative value of two variables

I Compare the value stored in one variable with a fixed value (literal)

I Comparisons:
I Are two values equal or not equal?
I Is one value greater than or equal to/lesser than or equal to another?
I Is one value strictly greater/lesser than another?

Numeric Comparisons II

I Standard mathematical expressions:

= 6= ≥ ≤ > <

I Mathematical symbols are not part of the standard keyboard

I Instead, we use a combination of regular characters:

=== !== >= <= > <

Numeric Comparisons
Equality & Inequality

I Use three equals signs, === to compare for equality

I Use !== to compare for inequality

1 var x = 10, y = 20, z = 10, r;

2

3 r = (x === y); //false

4 r = (x === z); //true

5 r = (x !== y); //true

6 r = (x !== z); //false

7

8 r = (x === 10); //true

9 r = (y === 10); //false

10 r = (x !== 30); //true

11

12 r = (x+y === 30); //true

13 r = (x+z === y); //true

Numeric Comparisons
Inequality Operators

Inequality operators: strict or non-strict; order of operands matters

1 var x = 10, y = 20, z = 10, r;

2

3 r = (x < y); //true

4 r = (x < z); //false

5 r = (x <= y); //true

6 r = (x <= z); //true

7

8 r = (x > y); //false

9 r = (x > z); //false

10 r = (x >= y); //false

11 r = (x >= z); //true

12

13 r = (x < 10); //false

14 r = (x <= 10); //true

15 r = (y < 10); //false

16 r = (x+z < 20); //false

17 r = (x+z <= 20); //true

String Comparisons
Lexicographic Ordering

I The same comparison operators can be used with strings

I The relative ordering of strings is lexicographic ordering

I Follows the ASCII text table
https://en.wikipedia.org/wiki/ASCII

I Numbers and letters in alphanumeric order

I Upper case letters before lower case

I Numbers before letters

String Comparisons
Examples

1 var a = "Apple", b = "apple", c = "zebra", r;

2

3 r = (a === b); //false

4 r = (a === "Apple"); //true

5 r = (a < b); //true

6 r = (a <= "Apple"); //true

7 r = (c < b); //false

8 r = (b < "apples"); //true

9 r = ("52 Apples" < a); //true

Logical Operators

I Need a way to combine comparisons into more complex statements

I A way to check a range of values

I A way to check if either condition A or condition B holds

I A way to check if condition A and condition B hold

Logical Operators
Negation Operator

I We can negate any statement by applying the negation operator

I Operator is an exclamation point (similar to !==)

1 var a = 10, b = true, r;

2 r = !(a < 20); //equivalent to (a >= 20)

3 r = !b; //false

Logical Operators
And Operator

I Syntax: use two ampersands, && , applies to two operands

I Evaluates to true if and only if both operands evaluate to true

1 var a = 10, b = true, r;

2 r = (a >= 0 && a <= 10); //true

3 r = (a === 10 && b); //true

4 r = (a !== 10 && b); //false

5 r = (a === 10 && !b); //false

Logical Operators
Or Operator

I Syntax: use two vertical bars, || , applies to two operands

I Evaluates to true if either operand is true (or if both are)

1 var a = 10, b = true, r;

2

3 r = (a === 10 || b); //true

4 r = (a !== 10 || b); //true

5 r = (a < 0 || a > 10); //false

6 r = (a === 10 || !b); //true

7 r = (a !== 10 || !b); //false

Logical Operators
Precedence

I In arithmetic, multiplication/division is done before
addition/subtraction

I In logic, similar order:

1. Negation !

2. And &&

3. Or ||

I The following are not equivalent:
a && (b || c)

a && b || c

Part II: Conditional Statements

Topic Overview

I Conditional if -statement

I Conditional if-else -statement

I Conditional if-else-if -statement

I Nesting

If Statement

I Code can execute (or not) based on some condition

I If the condition holds, the code executes

I If the condition does not hold, the code does not execute

I Syntax: keyword if , condition is placed inside parentheses

I Conditioned code block is encapsulated in brackets

If Statement

1 if(a > 0) {

2 console.log("a is positive!");

3 }

If-Else Statement

I Based on some condition, we could execute one piece of code or
another piece of code

I If the condition holds, Code Block A executes

I If the condition does not hold, Code Block B executes

I Exactly one and only one of these executes

I Syntax: keywords if and else

If-Else Statement

1 if(huskersScore < miamiScore) {

2 console.log("Huskers lose :(");

3 } else {

4 console.log("Huskers win!");

5 }

If-Else-If Statement

I Can generalize to more than one condition

I Syntax: keyword else if

I The first condition that evaluates to true is the only one that executes

I The final else block is optional (just as it was with an if

statement)

If-Else-If Statement

1 if(huskerScore < miamiScore) {

2 console.log("hurricanes win!");

3 } else if(miamiScore < huskerScore) {

4 console.log("huskers win!");

5 } else {

6 console.log("lets go to overtime");

7 }

Nesting Statements

I Can nest statements within other statements

1 if(a > 0) {

2 if(a % 2 === 0) {

3 console.log("a is a positive even number");

4 } else {

5 console.log("a is a positive odd number");

6 }

7 } else {

8 console.log("a is not positive");

9 }

Exercise I

Sound loudness is measured in decibels. Write code to output a
characterization of a sound based on the levels in the following table.

Decibel Characterization

d ≤ 50 quiet
50 < d ≤ 70 intrusive
70 < d ≤ 90 annoying
90 < d ≤ 110 very annoying
110 < d ≤ 130 medical threat
d > 130 uncomfortable

Exercise II

1 if(decibel <= 50) {

2 console.log("quiet");

3 } else if(decibel > 50 && decibel <= 70) {

4 console.log("intrusive");

5 } else if(decibel <=90) {

6 console.log("annoying");

7 } else if(decibel <= 110) {

8 console.log("very annoying");

9 } else if(decibel <= 130) {

10 console.log("medical threat");

11 } else {

12 console.log("uncomfortable");

13 }

