Computer Science & Engineering 120
Learning to Code

Making Decisions

Christopher M. Bourke

cbourke@cse.unl.edu

Part |: Comparison & Logical
Operators

Topic Overview

» Numeric comparison operators
» String comparison & lexicographic ordering

> Logical Operators

Numeric Comparisons |

We need a way to compare the value stored in variables
Compare the relative value of two variables
Compare the value stored in one variable with a fixed value (literal)

Comparisons:

» Are two values equal or not equal?
> s one value greater than or equal to/lesser than or equal to another?
> s one value strictly greater/lesser than another?

Numeric Comparisons Il

» Standard mathematical expressions:
= £ > < > <

» Mathematical symbols are not part of the standard keyboard
> Instead, we use a combination of regular characters:
=== l== >= <= > <

Numeric Comparisons
Equality & Inequality

Use three equals signs, === to compare for equality

Use !== to compare for inequality

y); //false
z); //true
y); //true
z); //false

H R HH
(T

5 //true
10); //false
== 30); //true

H
nonon

30); //true
y); //true

H
[

Numeric Comparisons String Comparisons
Inequality Operators Lexicographic Ordering
Inequality operators: strict or non-strict; order of operands matters
1 var x = 10, y = 20, z = 10, r;
2 . . .
s r- <y Strue > The same comparison operators can be used with strings
4 r=(x<2); //false » The relative ordering of strings is lexicographic ordering
5 1 = (x<=y); //true
6 r=(x<=2); //true > Follows the ASCII text table
e . s . i
 re(x>p; /ffeise https://en.wikipedia.org/wiki/ASCII
9 r=(x>2z); //false » Numbers and letters in alphanumeric order
10 = (x> y); //false
11 r = (x>=2); //true > Upper case letters before lower case
o (x < 10); //false > Numbers before letters
14 r = (x <= 10); //true
15 r = (y < 10); //false
16 T = (x+z < 20); //false
17 r = (x+z <= 20); //true
String Comparisons Logical Operators
Examples
1 var a = "Apple", b = "apple", c = "zebra", r;) .)
2 » Need a way to combine comparisons into more complex statements
3 r = (a === b); //false
4 1= (a==="Apple"); //true » A way to check a range of values
5 m=@cw)y e > A way to check if either condition A or condition B holds
6 r = (a <= "Apple"); //true
7 1 = (c<b); //false » A way to check if condition A and condition B hold
8 r = (b < "apples"); //true
9 r = ("52 Apples" < a); //true
Logical Operators Logical Operators
Negation Operator And Operator

» Syntax: use two ampersands, && , applies to two operands

> We can negate any statement by applying the negation operator » Evaluates to true if and only if both operands evaluate to true

» Operator is an exclamation point (similar to !==)
1 var a = 10, b = true, r;
1 var a = 10, b = true, r; s T =(a> 0 &% a <= 10); //true
2 r = !I(a < 20); //equivalent to (a >= 20) 3 T = (a === 10 & b); //true
3 ¥ = !b; //false 4 r=(al!==10 & b); //false
5 r = (a===10 && 'b); //false

Logical Operators
Or Operator

» Syntax: use two vertical bars, ||, applies to two operands

» Evaluates to true if either operand is true (or if both are)

1 var a = 10, b = true, r;

3 r = (a===10 || b); //true

4 v =1(a!==10 || b); //true

5 r=1(a<0 |l a>10); //false
6 r=(a===10 || 'b); //true

7 r=(a!==10 || 'b); //false

Logical Operators

Precedence

> In arithmetic, multiplication/division is done before
addition/subtraction
> In logic, similar order:
1. Negation !
2. And &&
3. 0r ||
> The following are not equivalent:
a&k (o Il ¢
a& b |l c

Part IlI: Conditional Statements

Topic Overview

v

Conditional if -statement
» Conditional if-else -statement
» Conditional if-else-if -statement

> Nesting

If Statement

» Code can execute (or not) based on some condition

» |If the condition holds, the code executes

» If the condition does not hold, the code does not execute

» Syntax: keyword if , condition is placed inside parentheses
» Conditioned code block is encapsulated in brackets

If Statement

1 if(a > 0) {
2 console.log("a is positive!");

s}

If-Else Statement

» Based on some condition, we could execute one piece of code or
another piece of code

» If the condition holds, Code Block A executes
» |f the condition does not hold, Code Block B executes
» Exactly one and only one of these executes

» Syntax: keywords if and else

If-Else Statement

1 if (huskersScore < miamiScore) {

2 console.log("Huskers lose :(");
3 } else {

4 console.log("Huskers win!");
5t

If-Else-If Statement

If-Else-If Statement

1 if (huskerScore < miamiScore) {

» Can generalize to more than one condition) console.log("hurricanes win!");
» Syntax: keyword else if 3 } else if(miamiScore < huskerScore) {
» The first condition that evaluates to true is the only one that executes 4 console.log("huskers win!");
> The final else block is optional (just as it was with an if 5 I else)
statement) 6 console.log("lets go to overtime");
7}
Nesting Statements Exercise |

» Can nest statements within other statements

1 if(a > 0) {

2 if(a % 2 === 0) {

3 console.log("a is a positive even number");
1 } else {

5 console.log("a is a positive odd number");
R

7 } else {

8 console.log("a is not positive");

o }

Sound loudness is measured in decibels. Write code to output a
characterization of a sound based on the levels in the following table.

Decibel ‘ Characterization
d <50 quiet

50 <d <70 intrusive

70 <d <90 annoying

90 < d <110 | very annoying
110 < d < 130 | medical threat
d > 130 uncomfortable

Exercise 1l

1 if(decibel <= 50) {

2 console.log("quiet");

3 } else if(decibel > 50 && decibel <= 70) {
4 console.log("intrusive");

5 } else if(decibel <=90) {

6 console.log("annoying");

7 } else if(decibel <= 110) {

8 console.log("very annoying");
9 } else if(decibel <= 130) {

10 console.log("medical threat");
1 } else {

12 console.log("uncomfortable");

