
Computer Science & Engineering 120
Learning to Code

Consuming Data I – Ajax

Christopher M. Bourke
cbourke@cse.unl.edu

Part I: Introduction to Ajax

Topic Overview

I Client/Server Model & HTTP

I Ajax

I jQuery’s $.ajax() function

I Security & Other Concerns

Client-Server Model

I Many applications follow a client-server model

I Client is responsible for end-user interaction

I Server provides various services (data, persistence, etc.)

I Basic interaction: client makes requests, server gives a response

title

Client
(browser)

(app)

Server
(or service)

request

response

Figure : Client-Server Model

HTTP

I HyperText Transfer Protocol (HTTP) is the most widely used
protocol for the web

I A protocol is a set of rules for communication

I Client: web browser (doesn’t have to be though)

I Server: web server

I Demonstration



HTTP

I Most common types of requests: GET and POST

I Both support submission of parameters (inputs) to the request

I Responses include status codes (200 = success, 403 = Forbidden,
404 = Not found, 500 = Internal Server Error)

I Responses also include response data

I Demonstration

Ajax I

I Goal: want to be able to use various web services in our application

I Example: Google Map (distance) data

I Example: Yahoo Finance (offers data on stocks, exchange rates, etc.)

I Example: UNL’s Bulletin

I Example: Our application can interact with our own server to get
additional data (student data, enrollment data)

Ajax II

I Solution: JavaScript supports Ajax (through XMLHttpRequest )

I Ajax = Asynchronous JavaScript and XML

I JavaScript code can be run in a browser to make additional requests
to a remote server for data and process the response

I Asynchronous: request/response requires network connection and
communication; done so “in the background” so that it doesn’t freeze
(“block”) the rest of the application

I Named with “XML” (eXtensible Markup Language) mostly due to
legacy; we’ll deal with JSON

jQuery’s ajax() Function

I We’ll focus on using jQuery’s $.ajax() function (easier to use)

I Takes one parameter: an object with the request’s full configuration

I Full documentation: http://api.jquery.com/jquery.ajax/

I Essential elements:
I url – the URL to connect to
I data – a JSON object representing any parameters to be sent
I success – a callback function to be executed if the request is

successful (receives the response data so that you can process it)
I error – a callback function to be executed if the request fails

I Default is to use GET , can be changed using method: "POST"

I Demonstration: UNL Bulletin Data

Other Considerations

I It is best to give some visual cue (loading graphic) to the user to
indicate that a request is being processed

I Asynchronicity needs to be considered: you cannot assume a request
with always succeed

I You cannot assume a request is “fast” (need to use proper callback
mechanisms)

I Feedback (success or failure) needs to be communicated to the user

I Requests to the same server can be made relative

I Example: script from http://example.com want to make a request

to service at http://example.com/services/dataService.php ,

the URL only needs to be /services/dataService.php

I Beware: many we services require the use of an API Key

Security Considerations

I Most browsers will enforce a Same Origin Policy

I Scripts from server A are not allowed to make requests to server B

I Scenario: criminal lures us to bad server A whose scripts make
requests to bank server B (bad because its coming from the same
client)

I Request is not to the Same Origin, so denied



Security Workarounds

I Very limiting: we want to be able to use 3rd party servers (Google
Maps, UNL Bulletin)

I Workaround: Server B can set a Cross Origin Resource Sharing policy

I Only recommended for truly non-sensitive public data (UNL Bulletin)

I Workaround: use a proxy or proxy service (a non-browser application
that makes requests from server A on our behalf and relays the data)

Part II: Demonstration & Exercise

Formulate and execute an ajax request to a proxy to Google Map’s
distance API service. Integrate your call into an application.

Demonstration:

Google: https://maps.googleapis.com/maps/api/distancematrix/

json?origins=Lincoln+NE+68503&destinations=Omaha+NE+68116

Proxy: http://cse.unl.edu/~cbourke/CSCE120/proxies/distance.

php?originCity=Lincoln&originState=NE&originZip=

68503&destCity=Omaha&destState=NE&destZip=68116


