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Abstract— In-flight docking between unmanned aerial sys-
tems (UASs) is an essential capability for extending collabora-
tive long-range missions. This work presents a planning strategy
for a smaller multirotor UAS to autonomously dock with a non-
stationary carrier/leader UAS in forward flight. Our method
assumes the leader aircraft to be another multirotor, and first
projects the hypotheses for its pose forward in time. Using a
multi-objective cost function, we then solve an optimal control
problem to obtain an interception trajectory to all these possible
locations. We employ a cost formulation that allows us to
generate piecewise smooth curves that favor different objectives
during the course of the mission. Through a greedy strategy,
the paths are iteratively refined online as the prediction is
improved with new observations. We demonstrate and evaluate
our method through a series of physics-based simulations with
different operating conditions for both vehicles.

I. INTRODUCTION

Aerial docking of unmanned aerial systems (UAS) can
enable longer missions through mid-air vehicle refueling [1],
faster missions through aerial payload transfer [2], and larger
coverage of simultaneous events by having a large carrier ve-
hicle that drops and then retrieves smaller ones. We envision
a system where a large UAS or manned aircraft can carry
multiple smaller multi-rotors and deploy them in remote
locations and then recover them again for the return trip.
Using this type of transportation overcomes the multi-rotor’s
inherent energy limitations while leveraging their agility once
deployed. Deploying multi-rotors from larger aircraft has
been previously demonstrated [3]. Docking, however, poses
additional challenges and most existing techniques for multi-
rotor docking make the assumption that the leading vehicle
is stationary [4]. While this can work in some situations, it
limits the mobility of the carrier (e.g. it cannot be a fixed
wing aircraft).

In this paper, we address the challenge of docking a
multi-rotor UAS with a moving carrier aircraft. We take into
account uncertainty in the state estimation of the relative
positions of the UASs. Figure 1 shows a depiction of our
approach. At each time step, the multi-rotor UAS trying to
dock, called “Follower,” estimates the relative position and
trajectory of the “Leader.” For each position and trajectory
hypothesis, the follower calculates an optimal trajectory to
intersect the leader. Throughout this process, to successfully
dock, the follower must: 1) estimate the current position and
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Fig. 1: A snapshot depicting multiple hypotheses for the leader
UAS’s trajectory (moving at 4m/s), and the follower’s two-part
optimal paths for docking developed in this work.

trajectory of the leader, 2) maintain a safe distance for as
long as possible (e.g. to avoid the propeller wash from the
leader until the final docking stage), 3) align its relative final
velocity with the leader, 4) only execute trajectories that
remain feasible at all times (e.g. ones that do not saturate the
control), and 5) reserve alternative trajectories that account
for the uncertainties in the leader’s pose.

In this work, we generate optimal interception paths using
a weighted multi-objective cost function that incorporates the
above requirements for aerial docking of moving multi-rotor
vehicles under uncertainty. Using a known motion model
for the leader, we employ a particle filter-based approach to
represent the multiple hypotheses for the leader’s relative
position and trajectories. Using analytical methods from
optimal control, for each hypothesis, we compute the closed-
form expression to find the extremal path in R3. We exploit
the fact that the multirotor dynamics are differentially flat,
and obtain solutions to this minimization problem in the
flat output space. Finally, the planned trajectory is used as
the feedforward component for a linear quadratic regulator
(LQR) control, coupled with a non-linear mapping to the
UAS’s input space to execute the generated plan.

The key contributions of this work are:
• An optimal-path generation strategy for multirotor

docking that consolidates the operating constraints of
the mission into one single unified cost function;

• A greedy path selection algorithm that considers path
constraints, multiple hypotheses, and uncertainty in the
states of the carrier UAS; and,

• Exemplary evaluations through various high-fidelity
simulations that demonstrate our algorithmic approach.



II. RELATED WORK

Airborne docking for fixed-wing UASs has been studied
in the past under various scenarios, typically using a drogue
mechanism. It has been used and demonstrated for refueling
smaller aircraft through a larger “mothership” vehicle. Math-
ematical models for a passive towed-cable system, coupled
with guidance laws that drive the chasing UAS to make
contact with the drogue have shown some successful attempts
[5], [6]. A simpler leader-follower scheme has also been
shown to achieve repeated successful docking by Wilson
et al. [1]. However, multirotor docking and undocking has
only recently seen practical developments. While this enables
several novel long-range exploration missions, it can poten-
tially be more hazardous due to the propeller motion on all
sides, and the constraints on flight time. Miyazaki et al. use
a carrier aircraft in stationary hover that suspends a bar on a
winch mechanism which is grasped by the docking UAS [4].
The authors report a low success rate due to environmental
disturbances, but since the approach uses a reactive control
strategy, it can be difficult to assess guarantees on time-to-
dock or the energy cost of the mission. More recent work on
self-assembling flying structures of UASs [7] has focused on
the dynamics and control of different hybrid configurations,
but circumvents the challenge of docking in non-stationary
hover, which is our focus.

Previous work has considered the task of intercepting
airborne objects and recovering a free-drifting parachute in
the air [8], [2]. The closely related problem of quadrotor
landing (on a stationary or moving platform) has also re-
ceived some attention [9], [10], [11]. However, the terminal
criteria for these missions, and therefore the sensing and the
terminal control required as part of a successful mission are
considerably different. This is, in part, due to the nature and
severity of aerodynamic effects between two aerial vehicles,
which can be harder to capture adequately using mathemati-
cal representations. Most approaches for landing/intercepting
problems implement a state-machine with a sense-and-react
control applied to the UAS. Guidance principles such as
pure-pursuit, proportional navigation, and rendezvous guid-
ance have been applied for aerial chasing and interception
problems [10], [12]. We are interested in the ability to
predict a future location of the target and plan a suitable
trajectory towards it. In this context, some approaches have
utilized a fixed-horizon prediction combined with a trajectory
planner to follow and land on a platform [13], [14]. However,
we re-emphasize that the landing problem has different
terminal criteria and mission constraints, and as such, these
approaches cannot be used directly for our docking problem.

Planning trajectories that satisfy certain criteria and min-
imize some objective have also been studied extensively.
The approach presented in this paper is closely related to
trajectory optimization methods that consider problems with
custom cost functions [15], [16], [17], [18]. Chaumette et al.
[15], [16] have presented an approach that utilizes a multi-
objective cost function that guides a UAS towards a visual
target while ensuring its visibility. Similarly, a probabilistic
framework to plan trajectories that maximize the visibility of

multiple targets simultaneously has also been explored [18].
Several of these approaches build on recursive numerical
optimization methods, which can be slow and often suffer
from ill-conditioned approximations. In our approach, we
use analytical methods from optimal control that allow us to
rapidly obtain closed-form expressions for continuous paths.
In this regard, our approach bears most in common with
the optimal control methods explored by Geisert & Mansard
[17]. Two significant distinctions in this work are in the way
we define a multi-objective cost function suitable for rapid
in-air interactions, and our handling of the uncertainty in
relative states. Since we generate a full plan for the docking
mission, it is possible to assess the cost of the mission and
the potential for failure.

III. TECHNICAL APPROACH

Our objective is to develop a trajectory planning strategy
that enables aerial docking between two moving multi-rotor
UASs in flight. We split our technical approach into three
main subsystems: a trajectory generation framework, an
iterative trajectory selection method, and finally, a control
strategy that guides the UAS along the path. Figure 2
shows a graphical representation of our system architecture.
The motion model of the leader aircraft is a fundamental
assumption we make in the remainder of the paper, and
is a part of our problem definition. In Section III-B we
will describe our method to generate an optimal trajectory
for each hypothesis of the leader’s position. We will then
describe our selection strategy amongst these hypotheses
in Section III-C. And finally, in Section III-D we outline
how the selected trajectory is used as a feedforward for
the controller that guides the UAS along the path. We now
elaborate each of these components.

A. Problem Formulation

In the following subsections, the leader vehicle’s trajectory
in the world fixed frame, ~LW ∈ R3, is a straight line in
space, such that ~LW = t ∗ L̇ + LW(0), where t denotes
time, L(0)W is the initial position, and L̇ is its constant
velocity. It is assumed that the follower multirotor, with
position denoted by F (t)W , can make measurements of the
leader’s position and velocity (using perspective geometry
with a camera, or direct communication from the leader),
and register them in the same world frame, W . The values
of L(0) and L̇ may only be known with some uncertainty
(possibly non-Gaussian). For a tractable solution, we require
that L̇ < Ḟmax, the maximum velocity of the follower UAS.

The problem statement is to find and dynamically update
a trajectory starting at F (0) and ending at L(tf ) at some
final time, tf , such that Ḟ (tf ) = L̇(tf ). A trajectory must
be continuous and kinematically feasible for the multirotor
to follow, and preferably smooth (to minimize aggressive
changes in accelerations). We let tf (and consequently L(tf ))
as a free variable, and therefore, the trajectory generation
will be formulated as an optimization problem. Furthermore,
because of the uncertainty in L(tf ), the approach must lend



Fig. 2: A flowchart representation of the system architecture
presented in this work.

itself to the selection of alternative trajectories as the estimate
of L(tf ) converges to its true value. Maintaining a set of
alternative paths is also useful in cases where obstacles may
be discovered dynamically.

Although not discussed explicitly, we assume that the
leader and the follower have a mechanical system in place
that enables physical docking. In practice, this system will
be separated from the centers of mass of the two vehicles
(for instance, by using a tether/drogue on the leader). The
terminal location of interest for the follower, then, is this
offset point on the “docking station”. However, we will use
L(t) in our approach for the sake of notational convenience;
this can readily be altered to mean the physical location of
the docking station if needed. We will drop the superscript
W throughout the rest of the paper, and assume that all states
are measured in the world-fixed frame.

B. Trajectory Generation

We will first develop a method to generate an optimal
trajectory towards L(tf ) for some final time tf , and then
extend this approach for multiple hypotheses of L(tf ). Here
we consider the case where the leader’s trajectory, ~L, and its
location, L(t0), at the current time t0 are known precisely.
We show the case for a single-dimension for ease of notation,
however, the same results hold for R3. For problems involv-
ing aerial interactions, we develop a multi-part approach that
operates in at least two operation “phases”. In the first phase,
the follower must align its velocity with the leader’s velocity,
and bridge their relative distance while maintaining a safe
separation between them. In general, it is desirable to permit
longer mission times for this phase since the vehicles are not
in close proximity to each other. The actual physical contact
is made in the second phase, and consequently, this phase
should aim to minimize its duration. Aligning velocities is
still favorable in this phase, although for physical docking,
the follower needs a higher velocity relative to the leader.

We formulate trajectory generation as an optimization
problem, and obtain a family of piecewise smooth curves that
lead to docking. An optimal trajectory is defined as a path,
x∗, that minimizes the weighted multi-objective functional

min J(x) =

∫ ti

0

gdt +

∫ tf

ti

hdt (1)

where,

g = w1 + (ẋ− L̇)2 + (x− (L−Rs))
2 (2)

h = w2 + (ẋ− L̇)2 (3)
subject to,

x(0) = F (0)

x(ti) = L(ti)−Rs

x(tf ) = L(tf ) (4)

where, w1 and w2 are weighting factors that correspond
to the time spent in each phase. Both ti and tf are free,
subject to the split boundary constraints in Equation (4).
The functional J is split into two parts corresponding to
each of our desired phases. In the first phase, for 0 ≤
t < ti, the objective function g contains minimization terms
corresponding to the time spent, the relative velocity, and the
relative position errors (bounded to a safety distance, Rs).
In the second phase, for ti ≤ t ≤ tf , the objective function
takes the form of h and only contains time and relative
velocity terms. Note that the constraint x(tf ) = L(tf ) forces
the solution to intersect ~L. A solution that minimizes J will
be continous, but only piecewise smooth (i.e., it will have
a corner at the intermediate time ti). We will later show
that, since the full solution is known in advance, a trajectory
feedforward controller can generate the acceleration required
to accomplish the phase transition. Finally, since the factors
w1 and w2 represent the time-cost of each phase, they
influence the aggressiveness of the path.

A solution, x∗, to the optimization problem presented in
Equations (1)-(4) can be obtained analytically using varia-
tional calculus. To do so, we first note that the optimal path
must satisfy the Euler-Lagrange equation, so that,[ ∂g

∂x
− d

dt

( ∂g
∂ẋ

)]
+
[∂h
∂x
− d

dt

(∂h
∂ẋ

)]
= 0. (5)

Substituting the expressions for g and h, and reducing, we
obtain,

2ẍ− x−Rs = L(t), (6)

which is a second-order non-homogeneous ordinary differ-
ential equation. The solution to Equation (6) is composed of
a general solution and a particular solution, and will be of
the form x = xg+xp. Since we assume that the trajectory of
the leader UAS is linear, the right-hand side of Equation (6)
is known to be of the form L(t) = t · L̇ + L(0). Therefore,
we have that Equation (6) is solved by a family of curves
represented by

x∗(t) = C1e
−t√

2 + C2e
−t√

2 + L(t)−Rs.
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Fig. 3: Three cases illustrating the affect of changing w1 and w2 on the path: a) both remain equal and are changed by the same amount,
b) w1 is constant and w2 is changed, and, c) w1 is changed while w2 is held constant. Observe that in (a) we additionally have that
w1 = w2 and so, the resultant paths are smooth.

We split the solution curves for the two phases, such that,

x∗1(t) = C1e
−t√

2 + C2e
t√
2 + L(t)−Rs, t ∈ [0, ti) (7)

x∗2(t) = C3e
−t√

2 + C4e
t√
2 + L(t)−Rs, t ∈ [ti, tf ]. (8)

The problem has 4 undetermined constants, and two free
variables ti and tf . The split boundary conditions for t =
0, ti, tf produce four equations,

x(0) = F (0) = C1 + C2 + L(0) +Rs (9)

x(ti) = L(ti)−Rs = C1e
−ti√

2 + C2e
ti√
2 + L(ti)−Rs,

(10)

x(ti) = L(ti)−Rs = C3e
−ti√

2 + C4e
ti√
2 + L(ti)−Rs,

(11)

x(tf ) = L(tf ) = C3e
−tf√

2 + C4e
−tf√

2 + L(tf )−Rs, (12)

where the first two and the last two equations are generated
from Equation (7) and Equation (8), respectively.

The two additional equations required to fully define the
system are produced by noticing that, (1) while tf is free,
x(tf ) is constrained to lie on L(tf ), and, (2) the two phases
must be continous at the corner at time ti. The first condition,
known as the transversality condition, asserts that

h
∣∣
tf

+
∂h

∂x

∣∣∣∣
tf

∗
[ d

dt
L− ẋ

]
tf

= 0,

which, after substitutions from Equations (3), (8) and (12),
can be reduced to

Rs +
√

2w2 = 2C4e
tf√
2 . (13)

The second condition is ascertained by extending the
Weierstrass-Erdmann corner condition, such that,

g
∣∣
t−i

+
∂g

∂x

∣∣∣∣
t−i

∗
[ d

dt
L−ẋ

]
t−i

= h
∣∣
t+i

+
∂h

∂x

∣∣∣∣
t+i

∗
[ d

dt
L−ẋ

]
t+i
,

where t−i and t+i denote the infinitesimally small time
instances before and after ti. After substituting Equations (7)

and (8), and using Equations (10) and (11) to reduce, we
obtain that

w1 − w2 = 2(C2
2 − C2

4 )e
√
2ti . (14)

Equations (9)-(14) represent a set of six non-linear alge-
braic equations with six unknowns. These can be solved
analytically to fully define the family of optimal docking
curves defined by Equations (7) and (8). A complete path
Ptf for an optimal final time tf is the concatenation of x∗1
and x∗2,

Ptf =

{
x∗1(t), 0 ≤ t < ti

x∗2(t), ti ≤ t ≤ tf .
(15)

Figure 1 depicts some sample paths generated for different
L(tf ) using Equation (15). Figure 3 further illustrates the
effect of changing the scalars w1 and w2. A suitable combi-
nation of these is often guided by practical design principles.
The values of these scalars can be adjusted to affect different
profiles of trajectories, and can also be used as slack if an
analytical solution yields complex numbers.

In general, this solution strategy only finds an extremum
for J . To show that it indeed minimizes J , we observe
that both integrands g and h contain constant scalars for
penalizing time. If P in Equation 15 were a maximizing
solution, it would be possible to select a larger ti (and tf )
to further increase J . Clearly, since the equations include
quadratic relationships, certain combinations of variables can
lead to undefined results (negative time, complex trajectories
etc.). This can be avoided by reselecting w1 or w2.

C. Iterative trajectory update

If the pose of the carrier vehicle were known apriori
with no uncertainty, then the path generated in the previ-
ous step suffices. Ptf is known to be optimal, continuous
and piecewise-smooth, and meets the terminal criteria we
outlined for interception. However, in practice, the measure-
ments of the carrier UAS will be noisy, and thus the projected
location of the carrier, L(tf ), will be be prone to accumulated
errors. Additionally, a generated path may violate spatial



Fig. 4: Illustration describing our path selection process. The
shaded region depicts the distribution of the hypotheses for the
carrier’s final location (the set L), along with a few sample
points. A star marks the maximum likelihood location. By greedily
picking a destination closer to the inner edge of L in the first
phase, the transition towards the final path is made less abrupt.

constraints not part of the optimization framework (such as
obstacles). To accommodate this challenge, we represent the
projected final location of the carrier using a set, L(t, nL),
of the top nL (highest likelihood) locations at a future
time t > 0, and refine this set with each new observation.
In practice, as more observations become available (as t
increases), we expect the set to shrink, i.e., the number,
nL, required to adequately capture the variance in the set
of hypotheses decreases.

Our algorithmic approach, listed in Algorithm 1, uses the
set L(tf , nL) to plan nL trajectories towards each hypothesis
of L(tf ). The trajectory selection is then split into two
phases. First, the UAS must conservatively follow some tra-
jectory towards L until it reaches a certain distance threshold,
or nL falls below a threshold. At that point, it must “commit”
to one trajectory towards L∗(tf ), the best estimate of the
leader’s location. At each trajectory generation step in the
first phase, we plan nL paths using the approach outlined in
the previous subsection (Equations (7),(8)). We then greedily
select a path that minimizes the cost

COST(P) = || d
4

dt4
Ptf ||+ ctf ,

at the current planning time, where c is a scaling constant.
This encourages the selection of smoother paths that termi-
nate at those locations that lie closer to the inner edge of L.
Figure 4(left) shows a graphical illustration of this strategy,
with a solid black line representing the selected path. We
could alternatively use a greedy strategy that picks a path
towards the L(tf ) that has the highest likelihood (marked
with a star in Figure 4). However, doing so could result in
more dramatic changes in the shape of the selected path as
L is refined and a final L∗ is selected in the second phase.
On the other hand, as shown in Figure 4(right), using our
greedy approach, if final L∗ is not one of the edge points,
then the effect of the switching is generally a “relaxation” of
the current path, and thus will lead to a smoother transition.

D. Trajectory control

The selected path and its first derivative are used as
reference inputs for the UAS’s controller. We use a feedback-
linearized system model in conjunction with a linear

Algorithm 1 Pseudo-code listing for a greedy path selection.

1 procedure Greedy-Path-Sel
2 while nL > nmin

L or || ~FL < dthresh|| do
3 Psel ← 0
4 min cost←∞
5 for each L(tf ) ∈ L do
6 P ← MincostPath(F,L(tf )) . Sec. III-B
7 C(L(tf ))← Cost(P) . Sec. III-C
8 if C(L(tf )) < min cost then
9 min cost← C(L(tf ))

10 Psel ← P
11 end if
12 end for
13 ExecutePath(Psel) . Sec. III-D
14 end while
15 L∗ ← SelectFinal(L)
16 P ← MincostPath(F,L(tf )) . Sec. III-B
17 ExecutePath(P) . Sec. III-D
18 end procedure

19 function SelectFinal(L)
20 L∗ ← maxlikelihood(L)
21 return L∗

22 end function

quadratic regulator (LQR) to control the position and velocity
of the UAS along the selected trajectory. The state equations
for the system are then,

x̂k+1 = Ax̂k +Buk, and yk = Cxk, (16)

with

A =

(
I3x3 ∆t · I3x3

03x3 I3x3

)
, B =



1
2∆t2 0 0 0

0 1
2∆t2 0 0

0 0 1
2∆t2 0

∆t 0 0 0
0 ∆t 0 0
0 0 ∆t 0


(17)

and C = I , where x = [F, Ḟ ]> represents the position
and velocity of the UAS, x̂ represents its best estimate
(produced by a state estimator), and, u = [u1, u2, u3, u4]>

is the acceleration control input in each degree of freedom.
Since multirotors are invariant to rotation about the yaw-
axis, the fourth control input, u4, corresponding to the yaw
acceleration is arbitrarily set to zero. The control is computed
using both feedback and feedforward elements, such that,

u = −Kx̂e + P̈t̃f
, (18)

where, x̂e ≡ x̂ − xr is the state error, and K is the
feedback gain matrix obtained by solving the algebraic
Riccati equations for a standard LQR problem. The reference
input, xr = [Pt̃f

, Ṗt̃f
]>, and the feedforward element, P̈t̃f

,
are obtained from the selected trajectory in the previous
subsection. Incorporating the feedforward component from
the generated plan allows us to efficiently handle the potential
corner at the phase transition.



Fig. 5: Two snapshots from an ideal simulation (where the
exact locations of the leader are known), where no refinement is
necessary. The pictures are taken at the beginning (left) and at the
end of the trajectory (right). The projected path of the leader, and
the planned trajectory for the follower are indicated with markers.

The non-linear rigid-body dynamics of multirotors are well
known in literature [19]. The acceleration control input in
Equation (18) is converted to attitude and thrust commands
for the vehicle by inverting a non-linear map of the vehicle’s
kinematics:

[θd, φd, ψ̇d, Td] = gkin(u,m),

where θd, φd, ψ̇d, and Td are the desired pitch, roll, yawrate
and thrust targets, and m is the total mass. The autopilot
inner-loop uses a PID controller to generate motor commands
to follow the desired targets. Since the control is split into a
outer/inner-loop framework, the same methods are applicable
for multirotors with different number of rotors. We observe
that this property also allows us to exploit the differential
flatness of the system and plan trajectories entirely in the
flat output space, y.

IV. EVALUATION

In the previous section, we have already shown the dock-
ing trajectories generated for different profiles of the leader
UAS. We will evaluate the complete framework of trajectory
generation, selection and execution by simulating the two
UASs. In our evaluations, we do not model the effect of
external disturbances (such as wind, or mechanical failures
in docking), and will assume that executing the generated
path leads to a successful docking.

Simulation Framework

Our simulations are designed using Freyja Simulator 1,
which is a high-fidelity physics-based simulation framework
developed within MATLAB and Simulink TM. Freyja mod-
els the multirotor UASs as 6-degree of freedom (DOF)
rigid bodies with custom inertia matrices, and allows their
aerodynamic body-drag profile to be specified. An inner-
loop PID controller regulates the vehicle’s attitude to the
target attitude. The time-constant for the attitude controller

1github.com/unl-nimbus-lab/Freyja-Simulator

Fig. 6: Generated two-part trajectories to dock with a leader
vehicle moving at five different speeds. The starting locations for
the follower vehicle are also different for each case. The markers
also indicate the point where the phase switch occurs.

is empirically chosen to mimic real commercially available
autopilots (such as a Pixhawk). The LQR controller described
in Section III-D is implemented as a library block in Freyja.
This allows us to easily instantiate multiple simulated UASs
with their associated inner- and outer-loop controllers. We
implement the rest of the algorithm using custom function
calls written in the MATLAB environment. All the simula-
tions are run on a laptop computer with a 2.9 GHz Intel
processor and 16 GB of memory.

Planning
Figures 1 & 3 already illustrate some of the paths obtained

by our trajectory generation method. Figure 5 also shows a
snapshot from a simulation with the two vehicles and their
projected and planned trajectories overlaid. The results are
obtained by choosing Rs = 1.5, w1 = 1.5 and w2 = 1.8.
Furthermore, as shown in Figure 6, we explore a range of
different speeds for the leader vehicle, while the planning
parameters are all held constant. The figure illustrates the
trajectories generated by the follower UAS initialized at
different starting locations (F (0)) to dock with the leader.

We see that the resultant trajectories are continous,
piecewise-smooth, and meet the location of the leader vehicle
at some optimal time tf . As expected, the planned tf is
higher for a faster moving leader, and for a larger initial
separation between the two vehicles. These examples explore
the scenario where the position of the leader is known
accurately. We will now drop this assumption and evaluate
the effectiveness of our replanning and trajectory selection
strategies from Section III-C.

Replanning Effectiveness
Using Freyja, we simulate two practical effects that arise

in multirotor flights: the effect of aerodynamic body-drag
(which is unmodeled in Equations (16)-(18)), and the uncer-
tainty in the leader’s position. The aerodynamic drag is mod-
eled simply as a lateral force as a function of velocity, fd ∝



(a) (b)

Fig. 7: Comparison of results from our simulations with and without replanning the trajectories. In both cases, the leader’s position is
distributed uniformly around its true value. Replanning is done once every second (highlighted by black circles). When replanning is
disabled, a trajectory is planned only at t = 0 using only one (noisy) estimate of L(0). The planned trajectory never meets ~L because
of this initial error which gets propagated with time.

kdv
2. The uncertainty in the leader’s state is captured using

nL particles, drawn from a uniform distribution centered
around the true state. The threshold values in Algorithm 1
are set to nmin

L = 5 and dthresh = 2 m. We mimic the
decrease in this uncertainty at each planning iteration by a
weighted sub-sampling of the set of particles. This simulates
the convergence of an estimated state to the true state as
more observations are made available from a sensor.

Figure 7a and 7b show the x and y axis plots of the
trajectories with and without replanning. The trajectory re-
planning is triggered every second, and Algorithm 1 is used
to iteratively select a path. In the case where no replanning
is done, an optimal trajectory is computed only at time t = 0
using a sampled value of L(0) from the hypotheses set.
Since the path is never refined again, the generated trajectory
will not necessarily intersect the leader’s path (~L). However,
when replanning is enabled, we observe that the trajectory
deviates from the original plan starting from the second
iteration (t = 1), and eventually meets ~L.

Selection Strategy

We also present an evaluation of our greedy path selection
algorithm of Section III-C. Recall that in every iteration, we
select a path that minimizes the weighted sum of the overall
snap and the time of the mission. To show the utility of
this method, we compare the algorithm against a “naı̈ve”
strategy that selects a path based simply on the maximum-
weight L(t). Figure 8 shows the vector magnitude of the
snap in the xy axis for the two approaches. The aggregated
magnitude over the entire mission is 0.125 m/s4 for our
approach compared to 0.185 m/s4 for the naı̈ve method.

The magnitude is generally higher for the naı̈ve approach,
since 1) it does not prioritize snap minimization, and 2)
the selected L(t) can have abrupt “jumps” in successive
iterations. Using our greedy approach, we conservatively

Fig. 8: The vector magnitude of snap in xy axis for the duration of
one mission. Using our greedy path selection strategy, the overall
snap cost is reduced compared to naive approach that chooses the
one with the highest weight.

select a shorter path, and “relax” it with every iteration.
Note that the naı̈ve approach can perform better depending
on the physical sensor’s noise profile: it is possible that
the jump in the selected L(t) is smaller if the sensor
is extremely accurate. However, the greedy approach we
implement achieves a lower cost in the general case.

Discussion

The greedy path-selection strategy is extensible beyond the
jerk-cost minimization presented in this work. The ability to
rapidly generate a set of paths towards multiple hypotheses of
the leader’s location can be useful for several other practical
scenarios. For instance, since tf and the constants C1..4 are
unconstrained, some paths could be preemptively dropped
if they result in paths are infeasible in time, or in the
acceleration control effort (P̈t̃f

). Similarly, if an obstacle



map of the world is available (or sensed), the follower can
eliminate certain paths that risk collisions.

The evaluations presented in the preceding sections indi-
cate the feasibility of the proposed approach in generating
optimal docking trajectories by simultaneously solving Equa-
tions (9)-(14). A solution to these may be obtained analyt-
ically, or by using a software package (such as MATLAB’s
solve() method). As mentioned earlier, the variables w1

and w2 are design parameters that can be altered to generate
trajectories with varying levels of aggressiveness. We also
observe that the resultant trajectory is smooth if w1 = w2,
and that the smoothness of the transition depends on the
difference w1−w2. Additionally, for a well-defined solution,
we require that Rs < ||F (0)− L(0)|| and R2

s < 2w2.
The generated paths using this approach have the general

form presented in Eq (7) (8) because of the assumption that
the leader’s trajectory is linear. A corresponding optimization
problem can be formulated for leader trajectories that follow
arbitrary time-parameterized curves. In general, however, an
analytical solution may not be guaranteed for such problems.
We will investigate this problem in future work.

V. CONCLUSION

In this paper, we have presented and evaluated a strat-
egy for generating optimal trajectories for docking between
multirotor UASs in forward flight. The proposed method is
used iteratively to greedily select a path that minimizes the
snap cost of the trajectory until interception is affected. Our
preliminary hardware tests have shown promising results in
implementing the method onboard a multirotor UAS. In the
future, we will extend this method to practical field tests
under varying scenarios.
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