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Motivation: Underwater Sensing

o BP oil spill — riser pipe

Image from reuters.com
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Motivation: Underwater Sensing
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@ BP oil spill — extent is unknown
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Motivation: Underwater Sensing
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@ Boston Harbor sewer pipe output

Image courtesy Mingshun Jiang, UMass Boston
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System Approach

Depth adjustment enables:

@ Many inexpensive sensors o Easy deployment
@ Networked for real-time feedback
_ o Easy recovery
° CoI.Iaborate with robo.t _ @ GPS or radio on surface
@ Adjust depth for sensing using e Optimizing position for:
decentralized depth control algorithm o Sensing
(*this talk*) o Communication
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@ Drifting floats
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© Motivation and Overview
© Related Work

e Approach

@ Decentralized Sensing Optimization Algorithm
@ Simulation Results
@ AquaNode Underwater Sensor Network
@ Experimental Results

© Future Work

@ Conclusions
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Communication
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Improving Sensing
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Improving Sensing
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Contributions

@ Decentralized depth control
algorithm

@ Optmizes depths for sensing

@ Based on covariance
measurements

@ Provable convergence

@ Low processing and
communication

@ Tested in simulation

@ Implemented and tested on
AquaNodes
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Decentralized Depth Adjustment for Improved Sensing

@ Measurement of water column properties

e Temperature, salinity, pH, dissolved O,, etc.
o Images

o Capture time-varying properties
o Constraints
o Power

@ Minimize motion
@ Minimize communication

e Acoustic communication bandwidth
o 11 bytes per packet

e Transmit just position, depth, and sensor
reading
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Covariance

@ Measure g; from constrained path

@ Changes at g1 correlated to changes at p;

@ Highest correlation when p; close to gi: a,
Min(Dist(q1, p1))
@ More generally use covariance:

Max(Cov(q1, p1))

@ Allows different sensing functions
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Covariance

@ Measure g; from constrained path

@ Changes at g; correlated to changes at p; l
@ Highest correlation when p; close to gi: H| q,
Min(Dist(q1, p1)) b,

@ More generally use covariance:

Max(Cov(q1, p1))

@ Allows different sensing functions
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Covariance Model

@ Assume Gaussian
o Different variance along surface

@ Better models with more knowledge
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Multiple Points Problem

0.0

1 L | 1

1105 g °5|H AR
P, 1 Py

@ Idea: maximize sum over whole region:

N
> Cov(a, pi)

Q i=1

@ Problem: left and right are same:
Sb+545=15 25+.254+5+.5=15
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Multiple Points Solution

0.0

1 1 1

105 g °5|H | AR
P, i P, i

@ Solution: |nvert sum of covariance and minimize

N —1
5 (z Cor(a. ,,,.))
=1

Q

@ Yields:

1 _ 1 1 _ 92
5+5 + 5 3 5+.25 + 5+.25 — 2

3
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Algorithm Approach

@ Objective function:
—1

H(p1, -, PN) /(Z Cov(q,p,> dg

@ Decentralized gradient controller:

. OH
pi= _kaz,-
oH zi — Z
8z = g(q7p17"~apN)2f(pl‘7q)¥d
z; 0

—1
g(q,p1, ..., pn) (Zf(pl,q>

7(( —xq)2+§y,-—yq)2+<z, 29)? )
f(pi,q) = Cov(pi, q) = Ae 7 7
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Algorithm Convergence

@ Each node moves according to:

. OH
pi = _kaiz,-

@ Theorem: decentralized controller converges to local minimum
@ Proof: convergence proof using Lyapunov criteria

H must be differentiable;

g—? must be locally Lipschitz;

H must have a lower bound;

H must be radially unbounded or the trajectories of the system must

be bounded.

@ Verified in simulation, pool, and river experiments
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Simulation Results: Versus Matlab’s fminsearch
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@ fminsearch: Matlab’s nonlinear unconstrained solver

@ Much faster runtime

@ Typically lower objective value
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Posterior Variance
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@ Posterior variance
e Variance given sensor positions, assuming Gaussian process
o 0%p = Cov(4,q) — Tap - Tah  Tpa
o Requires matrix inversion (O(n?) memory for n sensors)
@ Decentralized depth control algorithm
e Tends to reduce posterior error
o Constant memory requirements
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Simulation Results: Data Reconstruction

Sq. Error
0.0

Model
Data

Manual
Positioning

Alg.
Pos

Top row: Original data Bottom row: Depth adjustment algorithm
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© Motivation and Overview
© Related Work
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@ Decentralized Sensing Optimization Algorithm
@ Simulation Results
@ AquaNode Underwater Sensor Network
@ Experimental Results

© Future Work

@ Conclusions
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Underwater Sensor Network: AquaNodes

%

@ Multi-purpose underwater sensor network
@ Acoustic, optical, and radio communication
@ Easy to use and deploy

@ Dynamic depth adjustment
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Dynamic Depth Adjustm

assembled winch

— timing belt

spool with
B\ fishing line

me @l

~ glass thrust ——
| bearing .
transducer __ magentic
couplers
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Dynamic Depth Adjustment

anchor line

delrin pulley wheel
bronze bushing

spool

bronze bushin
aluminum sha

magnetic coupler

magnetic coupler
timing belt

spur gearhead

motor
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Dynamic Depth Adjustment

Video: Winch in Pool
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file:videos/winch_in_pool/winch_in_pool.texmpg

AquaNodes: Platform Overview

LPC2148 60MHz ARM7
SD Card for logging

Temperature, pressure, CDOM,
salinity, dissolved 02, camera

Digital and analog inputs

Depth adjustment: 2.4m/min

Communications

o Acoustic (FSK modulation):
300b/s up to 200m

e Radio (1W 900MHz
Aerocomm): 57kb/s up to
1km on surface

o Optical (DPIM modulation):
3Mb/s up to 5m
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Decentralized Depth Adjustment Results

Control Output Depths

Experiment 2

depth [m]

== Node 1
Node 2
= Node 3

Node 4}

0 500 1000 1500 2000 0 500 1000 1500
time [sec] time [sec]

@ Four AquaNodes running depth control algorithm in pool
@ Three iterations of depth control algorithm

@ Algorithm converges within 10 minutes

@ Nodes spread out
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Decentralized Depth Adjustment Communication

Number of Neighbor

eeeeeeeee

e Communication data from part of previous experiment (4 nodes)
@ Nodes do not hear all other nodes

@ Algorithm handles communication dropouts
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Decentralized Depth Adjustment Communication
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Changing Covariance
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@ Changing covariance over time
@ For example tidal changes
@ Objective value returns to minimum after algorithm adjusts
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Collect scientific data

Long-term deployments

°
°
@ Determine maximum water current
@ Examine impact of bio-fouling

°

Leverage depth adjustment for other applications

o Optimize Acoustic Communication
e Multi-modal communication (acoustic, radio, optical)
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Neponset River Experiment

Image|MassGIS:CommonweaithiofMassachusetts EOEA
©12010/Gocgle
42°16:38.48" N 71°03'11.50° W_elev. Om

@ Summer deployment in Neponset River w/ 4 nodes
@ Nodes performed column scans, sensing temp, pressure, CDOM

@ Collecting data for future depth optimization experiments
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Neponset River Experiment

Node 2
T
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@ Deployment for half tidal cycle
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Acoustic Communication Example
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@ Placement is critical for acoustic comms
@ Short-range river experiment between walls
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Contributions and Conclusions

@ Algorithms in an underwater sensor network

o Decentralized depth control for sensing

@ Provable convergence

o Verified in simulation and field experiments
@ System implementation and experiments

o Underwater sensor network

o Dynamic depth adjustment

o Tested in pools, lakes, and rivers
o Future work taking advantage of depth

adjustment

@ Leverage sensor networks to improve
environmental understanding

contact me at: carrick@cse.unl.edu http://cse.unl.edu/~carrick
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Radio Communication

Uses winch to go to surface
900MHz Aerocomm radio
Built-in broadcast protocol
1 Watt transmit power

20km max range

1km typical range
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Acoustic Communication

Developed in our lab }ﬁ
Broadcast protocol

600MHz DSP f
27-33 KHz Y
Frequency-Shift Keying (FSK)

300b/s

45mJ/bit (2W transmit power)

400m range

Ranging between modems
e 4cm resolution

@ Time Division Multiple Access (TDMA)

e Self-synchronizing
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Optical Communication

@ Developed in our lab L

@ Point-to-Point _ b

@ 5 meter 90° cone| k!

e 3Mbit/s ¥

e 7uJ/bit |J|'i
@ 532nm wavelength (green)

e Digital Pulse Interval Modulation (DPIM)

modulation
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