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Abstract. Deployment of sensors in hard-to-access locations can im-
prove data gathering for scientific studies. We have developed a sensor
emplacement system that can be mounted to unmanned aircraft systems
with vertical takeoff and landing capabilities to autonomously auger a
sensor into the ground. Various techniques can be chosen to enhance the
augering process when certain characteristics of the soil are known. Mois-
ture content and compressive strength are the soil characteristics that
most impact the augering process, yet directly measuring them would
require additional sensors to an already-burdened airframe. We address
this through a novel means of predicting these soil characteristics within
the first 30 seconds of an average 85 second augering evolution using on-
board sensors and a Gaussian process regression scheme that predicts the
soil moisture content and compressive strength with accuracy of 86.53%
and 90.53% of the respective measured values.
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1 Motivation and Problem Statement
Remote deployment of sensors in
hard-to-access locations can enable
improved data gathering for scientific
study. Some sensors, such as seismic
or soil moisture sensors, function best
when placed into the soil. We have
developed an in-ground sensor em-
placement system for an unmanned
aircraft system (UAS) capable of re-
motely augering these types of sensors
into the soil (Figure 1). Fig. 1: Sensor emplacement system.
a) Augering b) Emplaced sensor
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The general concept of operations for our system is as follows. The UAS
arrives in the area where the sensor is to be placed and lands. It then uses a
custom augering mechanism to drill a sensor into the ground [8, 13]. If the system
cannot successfully emplace the sensor into the ground, then it relocates to a
new location and tries again. If sensor emplacement is successful, then the UAS
departs the area.
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ered on bit as well as the revolutionary  Auger/sensor
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and the downforce on bit is controlled

by an advanced elevator platform that

allows for rapid up and down move-

ment enabling us to employ a tech-

nique known as “pecking” [4,6]. The

upward movement of the pecking mo- Fig. 2: Auger with internal sensor
tion allows soil that has been broken up and potentially clogging the lower
portions of the auger flutes to be transported up and out of the hole. This cre-
ates space for the soil in the bottom of the hole to move into the newly vacant
flute areas when the auger is pushed back down into the hole. Soil parameters
determine the choice of an effective pecking profile, i.e. the speed and distance
of the peck.
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Augering and, if necessary, relocating to a new location place considerable
demand on the available energy stored in the system’s batteries. Therefore, effi-
ciently emplacing the sensor or rapidly determining that a new a location must
be tried are two key factors in the overall success of our system. Emplacing the
sensor as fast as possible and with the greatest chance of success requires contin-
uous adjustment of the auger’s rotational speed, downward force, and pecking
motions but is highly dependent upon key soil parameters (e.g., water content).
As a result, knowledge of soil parameters, especially during augering activities,
greatly increases the chance of a fast and successful sensor emplacement or de-
termination of imminent failure.

In this paper, we describe a novel, online soil classification strategy that takes
information from the on-board sensor suite and determines key soil parameters,
enabling us to adjust our augering strategy in real time or quickly determine
that a new location must be tried. Previous work has estimated the relative
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hardness of a surface with a UAS [2,3,11], although these methods did not
leverage an in-ground emplacement augering system that makes direct contact
with lower layers of the soil. This capability, including direct interaction with
the soil, provides a rich dataset from which an online classifier can be trained.

Soil classification covers a wide range of parameters [1], however, for the
purposes of in-ground sensor emplacement to 150 mm, we have found water
content and soil compressive strength are the characteristics that most greatly
impact the chance of successful emplacement. These key characteristics help us
determine how much downforce, torque, and speed to apply, whether or not to
engage higher level augering strategies (e.g., pecking), and predict whether or
not the current digging effort will be successful. However, direct measurement
of these parameters is difficult and would require additional equipment to be
mounted to the UAS, which cannot be done with current size, weight, and power
restrictions. As a result, we leverage auger RPM, motor current use, downward
force on the auger, and system vibration levels on the UAS, alongside a custom
classifier to determine the water content and compressive strength of the soil.

Rocks, tree roots, or other impediments can prevent emplacement of the sen-
sor. However, the highly stochastic nature of their locations in soil make predic-
tion especially difficult. Here, we focus on regularly predictable soil parameters
that impact emplacement in the absence of significant halting impediments. This
paper makes the following contributions:

— A novel classifier for soil water content and compressive strength through
indirect means

— A comparison of various machine learning technique in their application to
classifying soil water content and compressive strength

— A large, expansive data set of 2.8 million points of data over 150 augering
evolutions

The on-board sensors used to classify a soil in terms of its water content and com-
pressive strength are not the respective purpose-built moisture sensors and pen-
etrometers, but rather the sensors used for monitoring the system performance
of the auger mechanism: auger motor RPM, auger motor current use, weight on
auger bit, system vibration (via accelerometers), and time. The data from these
sensors is analyzed using machine learning techniques such as decision trees,
linear discriminant analysis, naive Bayesian analysis, k-nearest neighbor (knn)
analysis, and Gaussian process regression. We also examine the effectiveness of
each technique in assessing the soil composition within the first 30 seconds of
an emplacement operation. Barring any stoppages of the emplacement process,
it takes a minimum of 60 seconds to emplace a sensor. This minimum time is
increases with an increase in sensor (and subsequent auger) size. We show that
Gaussian process regression outperforms the other methods at the 30 second
mark with an overall average predictive accuracy of 86.53% when determining
moisture content and 90.53% when determining soil compressive strength.
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2 Related Work

Machine learning can be used to classify or predict new data based on previously
observed values. Our work examines the effectiveness of decision trees, linear
discriminant analysis, naive Bayes prediction, k-nearest neighbor, and Gaussian
process regression to predict the current values of moisture and soil compressive
strength based on the sensor data available to our sensor emplacement system
while engaged in an augering evolution. These particular algorithms have been
previously employed in the analysis of soil composition.

Pekel examined the use of decision trees to predict soil moisture using at-
mospheric measurements obtained from stationary HOBO U30 weather data
loggers as predictors [7]. The loggers are left in the field and gather data over
several days. Suthar used eight soil-specific predictors, to include moisture con-
tent and the amoung of lime sludge present, to predict the compressive strength
of stabilized pond ash [14]. Gathering these parameters from a given soil sample
required transport of the sample to a lab and upwards of seven days of curing.
Valaee et al. have used linear discriminant analysis and the magnetic proper-
ties of soil measured by external instruments such as Kappameters to predict
its moisture content [15]. Yamag et al. predicted moisture content of soil using
k-nearest neighbor analysis with lime content, organic matter, soil particle size,
and bulk density as predictors [16]. Rajeswari and Arunesh used naive Bayesian
analysis to classify soil in terms of iron content versus organic content [9]. For
these last two, organic content was analyzed using a LECO CN-2000 combustion
oven that was not located at the sample site.

In all of the aforementioned works, measuring the parameters to be used in
the prediction schemes required either equipment or facilities not available for
a UAS-sized platform. Additionally, these methods often require the sampling
and removal of material from the environment. The material must be analyzed
external to the device using the predictive policy in order to provide inputs for
that policy [14, 16, 9]. This is where our approach differs from the above. While,
like the other approaches, we generate our policy offline, our system is able to
gather the required data in situ and use it in our predictive policy as it is being
gathered. Our approach to analyzing soil moisture and compressive strength is
unique in that we use the sensors internal to our emplacement system during
the physical act of drilling into the soil to determine our predictions.

3 Technical Approach

3.1 Description of the Emplacement System

The sensor emplacement system is a modular design that can be mounted to the
underside of unmanned aircraft systems that have vertical takeoff and landing
capability. The system is housed in an aluminum chassis that can be adapted to
fit on any applicable air frame capable of operating with a 2.7 kg payload and
supplying the system with 24 volts DC.

The emplacement system (Figure 3) consists of an auger with a 150 mm long
shaft and diameter of 75 mm. It is attached to a T-Motor A80-6 24 volt brushless
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Fig. 3: Emplacement mechanism: model (left) and system (right)

motor with an integral planetary gear transmission and rotary encoder used
for measuring auger RPM. During augering operations, a proportional control
law is used to maintain auger rotational speed at 200 RPM. In difficult soil
conditions where maintaining 200 RPM causes excessive current draw, auger
RPM is allowed to decrease in order to maintain safe operating conditions for
the auger motor. The auger motor is capable of outputting continuous 6 Nm
of torque under a 12 A load. The motor/auger combination is mounted to an
aluminum plate that advances downward at a rate of 0.1375 cm/s during augering
operations. Strain gauges mounted to the elevator plate measure vertical force
applied during augering. An inertial measurement unit (IMU) mounted to the
aluminum plate provides data for vibration analysis. The elevator consists of a
smaller T-Motor MIN3520 brushless motor, driving a belt connected to pulleys
on each corner of the aluminum plate to raise or lower the aluminum platform on
four lead screws. A rotary encoder is calibrated to measure the vertical distance
the platform travels. An Odrive Robotics motor controller is used to control the
auger and elevator motors, while an ATMega-based microcontroller is used as
the primary computing device that manages communications with the Odrive
controller and outputs the various measured parameters via serial connection.

For this work, the emplacement system is mounted to an aluminum frame
for ease of testing, although normally the system is attached to an unmanned
aircraft as shown in Figure 1.

3.2 Measured Parameters

The following parameters are continuously monitored by the emplacement sys-
tem and output to a serial communications line at a rate of 10 Hz. Their values
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provide quantitative insight into the augering process and are aggregated to
classify the type of soil.

Revolutions per minute of the auger motor - measured in RPM

— Current draw of the auger motor - measured in Amps

— Weight on auger bit (WOB) - measured by the strain gauges in kg
— Elevator position relative to top - measured in cm

— Acceleration in the X, Y, and Z axes - measured in m/s?

— Time - each line of logged output is timestamped in seconds

3.3 Soil Parameters of Interest

Soil can be described by various parameters ranging from its particle sizes to
its organic material content [1]. In our case, we are concerned with the physical
properties that have the most impact on successfully augering into the soil.
In our previous work, we have have determined that higher moisture content
and/or higher compressive strength coincide with a reduced chance of success
for an augering evolution [8,13]. An increase in moisture leads to an increase
in friction between the soil and the auger surfaces. Higher compressive strength
means the soil is more compact and requires that more force be applied in order
to loosen the soil for transport up the auger’s flutes.

4 Experimental Setup

We conducted 150 trials of
our emplacement system in
order to gather the required
data for our analysis. 110 tri-
als were conducted in the silty
clay soil commonly found in
eastern Nebraska with an ad-

o 50225 A gflass S LA iy
ditional 40 trials conducted Fig. 4: Representative soil types - a) shows the
between north central Penn- higher clay content of the Nebraska testing area
sylvania, ~western Virginia, (with Pennsylvania being similar), and b) shows
and north central Kentucky. ¢he relatively more sandy soil of the Virginia

The soils in Nebraska and tegting area (with Kentucky being similar)
Pennsylvania exhibited simi-

lar characteristics to each other, with each having a higher clay content than
the soils in Virginia and Kentucky. Figure 4 shows the relative differences in the
soils.

To obtain truth data, we manually measured the soil moisture content and
soil compressive strength with tools and techniques accepted in the pedology
community: a capacitive moisture sensor, volumetric analysis, and pocket pen-
etrometer [1,10,12]. Specifically, the percentage of soil moisture was measured
with a capacitive device for each trial, with every tenth trial verifying the mois-
ture content by volumetric means (i.e., weighing the soil before and after baking
the moisture out in an oven). The moisture values over the 150 trials ranged from
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5% to 80%. Measurements were taken in the upper, middle, and lower thirds of
the soil column at the completion each augering operation (see Figure 5).

The unconfined compressive strength
of soil is defined as the amount of force
required to crush or displace the soil
within a given area [10,12] and is mea- Hole
sured in kg/cm?. The soil in our trials \.
was measured with a pocket penetrome-
ter by probing the side wall of the resul- \
tant hole left by the auger. Measurements
were taken near the surface, in the middle
third of hole, and at the bottom (Figure
5). The compressive strength values over
the 150 trials ranged from 0.5 kg/cm? to
4.6 kg/cm?. Figure 6 shows the distribu-
tion of these measurements.

The initial 4 trials were conducted in-
doors using an 18 liter bucket filled with soil that was compressed to the desired
soil strength using a hydraulic press. The remaining 146 trials were conducted
outdoors in areas where soil moisture content and compressive strength varied
in order to gather data over a range of soil conditions. Figure 7 shows the indoor
testing area and a representative outdoor testing area.

Fig. 5: Soil measurement locations in
the upper, middle, and lower thirds
of an excavated soil column
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Fig. 6: Distribution of soil measurements taken over the 150 trials

Auger RPM, auger current, auger depth, weight on bit, and acceleration
values were logged at a rate of 10 Hz during each augering evolution. These
parameters were then used as predictors in the following machine learning algo-
rithms:

Decision tree

— Linear discriminant
— Naive Bayes
K-Nearest neighbor
— Gaussian process
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(a) Indoor testing (b) Outdoor testing

Fig. 7: Testing areas

5 Experimental Results

Figure 8 shows a representative plot of the parameters we monitored during
each trial of our system: auger RPM, auger motor current, weight on bit, depth,
acceleration, and time. These parameters are used as the predictor variables in
following survey of classification/regression schemes: decision tree, linear dis-
criminant, naive Bayes, k-nearest neighbor, and Gaussian process regression.
The responses in these schemes are our desired soil moisture content and soil
compressive strength. We use Matlab®’s “fitctree(),” “fitediscr(),” “fitenb(),”
“fitcknn(),” and “fitrgp()” methods to generate our predictive models [5]. We
randomly chose 50 of our trials to provide the training data for our classification
schemes. We then simulated our predictive models against the data from our
remaining 100 trials.

As one of our main goals is to determine the soil moisture content and com-
pressive strength as quickly as possible, we examine the predictive accuracy of
our models at 5, 10, 20, and 30 seconds into an augering evolution. We define
predictive accuracy as how closely a model calculates the soil moisture content
or compressive strength compared to the actual measured value for that trial at
the auger depth for the given point in time. Table 1 shows the results of our sim-
ulations. Gaussian process regression was the most accurate prediction method
during all phases of an augering evolution.

Additionally, we examine how the choice of predictors can influence the ac-
curacy of the chosen classification/regression schemes. In our previous work we
used auger RPM, auger motor current, auger depth, and time to predict whether
an augering evolution would succeed or not [8]. For that work, we were limited
to those four parameters as a function of the system design. Our current em-
placement system is a complete redesign of our initial system and allows for the
addition of recording weight on bit and acceleration values. Table 2 shows an
increase in predictive accuracy for our Gaussian process regression when incor-
porating weight on bit and x, y, and z axis acceleration values.
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Decision Linear Naive k-Nearest Gaussian

Accuracy Tree Discriminant Bayes Neighbor Process

Moisture Content 82.29% 83.54% 84.66% 84.85%  86.86%

5 Second Soil Strength 86.34% 89.59%  85.25% 87.44%  89.92%
10 Second Moisture Content 86.34% 84.44% 86.40% 85.81% 88.86%
Soil Strength 88.03% 86.57% 84.58%  87.40% 90.02%
90 Second Moisture Content 85.96% 82.07% 84.98% 85.83%  87.90%
Soil Strength 88.63% 85.11% 88.00% 87.36% 90.65%
30 Second Moisture Content 76.36% 70.99% 80.59% 76.85%  82.51%
Soil Strength 88.18% 90.02% 90.70% 87.38% 91.51%
Average Moisture Content 82.74% 80.26% 84.16% 83.34%  86.53%
Soil Strength 87.79% 87.82% 87.15% 87.39% 90.53%
Table 1: Prediction scheme accuracy
RPM, Current, RPM, Cur:rent,
Accuracy Depth, Time Depth, Time,
’ WOB, Acceleration
5 Second Moisture Content 84.29% 86.86%
Soil Strength 89.11% 89.92%
10 Second Moisture Content 86.07% 88.86%
Soil Strength 89.60% 90.02%
90 Second Moisture Content 87.34% 87.90%
Soil Strength 90.96% 90.65%
30 Second Moisture Content 82.20% 82.51%
Soil Strength 91.31% 91.51%
Average Moisture Content 84.98% 86.53%
Soil Strength 90.24% 90.53%

Table 2: Prediction accuracy with original system parameters (3¢ column), com-
pared with new system parameters (4* column).
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Fig.8: Example of parameters gathered during system trials. The top graph
shows auger RPM, motor current, weight on bit, and depth over time. The
bottom graph show accelerations in the x, y, and z axes and depth over time

6 Conclusion and Future Work

We show that it is possible to predict soil moisture content and compressive
strength using the available sensor that provide auger RPM, auger motor current,
auger depth, weight on bit, and acceleration data. Gaussian process regression
generates the most accurate policy of the schemes that were tested. It can predict
within the first 30 seconds of an average 85 second augering evolution the soil
moisture content within 86.53% of the actual value and soil compressive strength
within 90.53% of the actual value.

Encoding this policy on the hardware that controls the augering mechanism
is the next step in our research. Additionally, this will allow us to use the real-
time predicted soil composition to adjust our augering technique in order to
optimally drill our sensor into the soil.
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