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Optimizing Network Lifetime in Sensor Networks with Limited Recharging Capabilities

Abstract

by Jennifer Nichole Johnson
University of the Pacific

2014

Monitoring the structural health of civil infrastructures with wireless sensor networks aids

in detecting failures early, but faces power challenges in ensuring reasonable network life-

times. Recharging select nodes with Unmanned Aerial Vehicles (UAVs) provides a solution

that currently can recharge a single node; however, questions arise on the effectiveness of

a limited recharging system, the appropriate node to recharge, and the best sink selection

algorithm for improving network lifetime given a limited recharging system. This paper

simulates such a network in order to answer those questions. This thesis first determines

whether or not recharging with a UAV is an effective method of delivering limited power to

the network. It then determines the best way to deliver that power. Finally, this thesis ex-

plores five different sink positioning algorithms to find which optimize the network lifetime

by load-balancing the energy in the network, all in combination with the added capability

of a UAV.
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Chapter 1: Introduction

A sensor network is made up of automated electronic nodes that sense and gather

information about the environment around it, then transmit the data to a place where it can

be processed and analyzed. Wireless sensor networks, or WSN, is a type of sensor network

where all communication along the network is transmitted wirelessly. These types of sensor

networks are used in a variety of applications from scientific surveying of the ecosystem,

wildlife observation, military tracking of enemies, and structural monitoring [7,12,19,30].

Wireless Sensor Networks provide a unique solution to the growing problem of big

data collection. It has been found that the collection and analysis of large data sets can add

more depth and insight into a topic that smaller data sets cannot provide. Using people

to collect large amounts of data is time-consuming and expensive. With the advances in

smaller and faster processors, using sensor networks provided a cheaper, faster and more

accurate alternative to gathering information that manpower can do alone.

On August 1st 2007, the I-35W Mississippi River Bridge collapsed during rush hour,

killing 13 people and injuring 175 others [1]. The collapse was caused by a lack of inspec-

tion and quality maintenance of the bridge. There are over 600,000 bridges currently in the

United States of America, [13]. Currently, most bridges are inspected manually, requiring

educated engineers to go and visually determine whether or not bridges are sound and safe

to drive over. This requires an incredible amount of manpower, time and money that the

Federal Highway Administration cannot cover. One approach to reducing manpower needs
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is to install wireless sensor networks underneath bridges to monitor the bridge’s structural

health [22] . Wireless sensor networks can be used to detect the structural health of civil

infrastructures, such as monitoring bridges, so that engineers can quickly and easily detect

bridge fatigue before a bridge becomes in danger of falling [19].

One of the biggest challenges related to sensor networks under bridges is being able to

continually power the system. Using connected power lines increases the difficulty and cost

of setting up the system as well as introducing possible safety hazards to the general public.

Solar powered sensors would require additional cost to set up the system and, because the

sensors are underneath the bridge, it introduces problems of efficiency in collecting enough

solar energy to power the system and of continual cleanup of the solar panels.

In this thesis, we explore using WSNs to collect environmental data in areas where

power lines and other common power sources are unable to be used, such as underneath

bridges. The following research is embedded in a larger body of work looking into the

feasibility of recharging a sensor network with a unmanned aerial vehicle, or UAV. Re-

search at the University of Nebraska-Lincoln and the University of the Pacific is exploring

charging the nodes in the sensor grid with UAVs [9]. Recharging select nodes with UAVs

provides a solution that currently can recharge nodes at specified time intervals; however,

questions arise on the effectiveness of a limited recharging system, how the UAV should

use its limited recharging capability, and the best types of energy load-balancing algorithms

to be used in conjunction with the UAV.

This research focuses on the energy consumption of the network, and studies whether

or not the influence of a UAV improves upon how long a sensor network can continually

gather data from the environment. If there is no improvement, or very little, using a UAV
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Figure 1.: Scenario showing UAV going to recharge sensors on a bridge.

becomes useless. This research also focuses on how to best utilize this limited recharging

capability by studying various ways the UAV can deliver energy, and once limited power

has been delivered by the UAV, various energy load-balancing algorithms that work best in

conjunction with recharging.

1.1 Key Objectives

Finding out if using a UAV can be a viable option for improving upon already existing

sensor networks can be broken up into three sections: studying whether limited recharging

a sensor network can improve upon the lifetime of the network, which node itself should

be recharged by the UAV, and what are the load-balancing algorithms that best support the

UAV’s recharging capabilities. A few definitions must be presented before exploring the

key parts to these questions.

First, we must define the sink in a sensor network. A sink is a special node in the

network that is designated to collect, store and transmit all of the data the network gathers.

This node simplifies the extraction of the large amount of data that the network gathers.

Another important detail in a sensor network is the cost of transmitting and receiving

wireless data. Gathering data from the environment is a low-power operation, however



15

wireless communication is a large-power operation. The energy cost of communication in

a wireless sensor network is exponentially related to the distance it has to communicate. It

is important to note that when the UAV recharges specific nodes in the network, it will pick

up the collected information from the sink, which greatly reduces the energy drain on the

sink because the sink only needs to transmit all collected data a short distance to the UAV.

1.1.1 Setup: Limited Recharging Using an unmanned aerial vehicle centers around

the idea that limited recharging to a network will improve enough to make the effort and

cost of a UAV viable. This thesis assumes that the sensor network is setup to easily support

a UAV, and recharging each node is 100 percent effective without any errors. The question

then becomes, assuming that a UAV can reliably recharge a network, does its influence of

the recharging improve the life, or uptime, of the network?

To find an answer to this question, the simulation was run with two different scenarios;

one scenario where the UAV recharges an individual node at each time unit for 25 percent

of a node’s initial energy, and another scenario where there is no UAV recharging. Then

these two scenarios will be compared to see if recharging improves the network lifetime.

This comparison will answer the question of does the UAV have any viable impact upon

the network. In addition to these experiments, we will also re-run the simulation multiple

times, each time with a different UAV recharging amounts. Using these results we will find

when the UAV has the greatest impact on the network for the lowest amount of recharge.

1.1.2 Setup: Node Recharging Selection Another important question is, taking

into account that a UAV can only recharge one node at a time, recharging which node will

impact the network lifetime the greatest?
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Forming this experiment assumes two things. One, the sink is the most important

node in the network, if it dies then all of the data collected by the other nodes becomes

un-collectible, therefore unusable. Two, the network lifetime is defined as the time where

the first node fails, meaning when just a single node dies, the network becomes inoperable.

This makes the sink and the first node to fail the biggest points of failure in the network.

Because of these two assumptions, the two most important nodes to keep alive become

the sink and the node with the least amount of energy. We created two experiments, one

where the UAV recharges the sink and one where the UAV recharges the lowest powered

node. Once the data is collected, these scenarios were compared against one another to

determine which scenario would gain the most impact in the network.

1.1.3 Setup: Energy Load-Balancing with Sink Positioning Most network com-

munication schemes drains the power unevenly throughout the network, leaving nodes with

a large amount of power while other nodes in the network are completely drained. If a node

in the critical communication path dies before the rest, the entirety of the network cannot

serve its purpose; therefore it is extremely important to keep every node in the network

alive as long as possible.

Strategically placing the sink has been found to greatly improve upon the energy drain

in the network. Past research has proven the sink mobility, or lack thereof, in a network

can greatly impact how long a network can run for [1, 4, 5, 20, 24, 26] . There are four

major sink movements that have been studied in the focus of energy conservation in sensor

networks: a static, non-mobile sink, a random sink movement, a pre-processed controlled

sink movement, and a dynamically moving sink.
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1.2 Contributions of this Thesis

To the best of our knowledge, no past research has been done on the effect of using

a UAV to recharge a wireless sensor network, nor has there been a comparison of sink

mobility algorithms with an added finite infusion of energy given at every time interval.

This thesis gives clear, beneficial contributions into the field of wireless sensor networks

for the following reasons.

We have simulated and analyzed the impact of using a unmanned aerial vehicle to

added finite amount of recharging to one node at every time interval. We have also gener-

alized this infusion of energy to represent any type of recharging, with the constraints that

the recharging is a finite amount delivered to one node at every time unit.

From the experiments that we conducted, we have created a policy to determine how

much the UAV should recharge for given a certain grid topology. In addition, we have ex-

plored different implementations of UAV recharging to determine which of our executions

provide the longest network lifetime.

We have compared and analyzed sink mobility algorithms to determine which pro-

vides the longest network lifetime given our network constraints and an added infusion of

finite recharging.

Lastly, we have improved and modified the wireless simulation to better reflect a WSN

with recharging capabilities.

1.3 Overview of the Thesis

The following section, Chapter 2, discusses papers with similar themes conducted in

previous research and how they relate to what this thesis is attempting to accomplish. Chap-
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ter 3 lays out the sensor network model that was used in this thesis. It describes how the

basic functionality was laid out, why we choose this behavior, and how this functionality

impacts our results.

Chapter 4 discusses the simulation that was created to emulate a wireless sensor net-

work; how the simulation was setup, how the control parameters were chosen and why,

and what parameters were used in analysis of the findings. Chapter 5 section describes, in

depth, the five load-balancing algorithms used to determine which sink positioning algo-

rithm prolongs the network lifetime the greatest.

Chapter 6 displays the findings we collected after running the simulation. It relates the

findings to the key objectives outlined in this introduction and discusses why these findings

were important. The last section, Chapter 7, discusses the conclusions drawn from these

experiments and any future work that will be conducted, and any future improvements to

the simulation.
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Chapter 2: Related Works

Wireless sensor networks, WSNs, has become a practical solution to many problems

in a wide variety of areas such as civil and infrastructure monitoring, environmental sur-

veying, military tracking and strategy planning, and other commercial activities. Fields

which require large amounts of detailed and accurate information are a perfect fit for the

application of wireless sensor networks.

Large civil infrastructures must be constantly maintained and monitored, which be-

comes a huge drain on manpower if gathered manually [13, 22]. With a wireless sensor

network, this data can be collected and passed on saving large amounts time and money.

Military movements in war zones must be carefully planned for the safety of person-

nel, and without information about the ground movements of the opposition many lives

can be lost [7]. In military applications, sensor networks that are placed in war zones can

endanger the life of military personnel, so the nodes must be placed quickly, and require

minimal amount of time near the nodes. For this reason, the military setup their network so

the nodes are durable, long lasting, easily deployable and cheaply made so that they can be

discarded and left where they are placed when the network has served it’s purpose. WSN’s

can provide the military with a way to gather this data to prevent this loss of life.

For environmental functions, any decisions based on protecting the habitat of animals

or plant life must be based on data that is gathered with minimal interference of people, and

wireless sensor networks can monitor wildlife without disturbing the natural ecosystem.
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For example, in a paper done by Wen et al., the network was constructed to monitor the

population and numbers of cane-toads [12]. Because any human intrusion in the habitat of

these frogs can disturb their natural patterns, the nodes must be carefully placed, and made

to be camouflaged so as to not interfere with the frogs habitat.

Wireless sensor networks is a widely studied topic that is continually looking to im-

prove large data collection. Lots of research ranging from creating more energy efficient

and cost effective hardware communication modules [30], to improvement in software

communication protocols [17]. An example of this type of work has looked into adjust-

ing medium access control protocols as a way to boost network energy efficiency [27].

In addition, a large portion of network communication research has been spent in

data routing strategies such as multiple different dissemination protocols, tree structured

protocols and power and sink aware sensor protocols [1,2,8,15]. Network topology is also

an important discussion in the field of sensor networks. Constructing the way the nodes

in the network are physically placed can influence the network energy consumption and

performance [14, 29].

2.1 Sink Selection and Movement Algorithms

An important subset of research in the field of wireless sensor networks, or WSNs,

looks at utilizing the sink to make the network as energy efficient as possible. Such research

includes determining the best number of sinks to have in a network, the placement of these

sinks, sink communication protocols, sink mobility algorithms and how best to mobilize

the sink [1, 3, 6, 11, 16, 18, 21].

Research on sink mobility algorithms has been continually growing as an important
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avenue for creating power efficiency in Sensor Networks [4, 5, 10, 15, 20, 21, 23, 24, 26].

This type of movement can refer to either a sink obtaining control of an otherwise normal

sensor node, or the sink physically moving itself from one position to the next [5, 15, 23].

This thesis looks at the impact of using a UAV to recharge a wireless sensor network.

In addition to exploring the effect of a UAV, we also explored using different sink mobility

patterns to find the best way to load-balance this added influx of energy. We study five

different sink algorithms and determine which of these best prolong the network lifetime

in conjunction with limited energy infusion with a UAV.

Moving the sink via sink selection algorithms provides four categories of algorithms:

static placement, random sink movement, controlled sink algorithms [4,10,20,21,25,26],

and dynamic sink algorithms [4].

We have chosen five sink algorithms, at least one from each category, to see how

these algorithms behave in our network setup. For the static sink placement we choose a

sink directly in the center of the network. Multiple studies have shown that placing the

sink directly in the center of the network prolongs the network lifetime for a static sink

placement [20, 24, 30].

As research into wireless sensor networks grew, research into sink mobility began to

grow and studies proved that having a moving sink, even if it moved at random, prolonged

the network lifetime than a static sink placement [5]. Because of these results we have

chosen to study a random sink movement, to see if this still holds true for a network with

limited recharging capabilities.

For the controlled sink algorithms we studied two; a periodic perimeter walk and a

mobility pattern based off the results of a linear programming optimization. The first we
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call circles. In a paper done by Luo et al. they mathematically proved the optimal sink

mobility algorithm was a periodic perimeter walk along the outside of a circular network

[20]. They found that, for a mobile sink, the farthest away from the center of the network,

the longer the network lifetime. They compared their algorithms to a static sink and found

that it outperformed a static sink placed in the center of the network.

The second controlled sink algorithm we used was based off a linear programming

optimization. There has been extensive research into using a linear programming optimiza-

tion to prolong the network lifetime [10, 23, 26]. These papers proved that using a linear

programming optimization increased the network lifetime over a static sink.

The last algorithm that we used was called The Greedy Maximum Residual Energy

Heuristic, and represents the dynamic sink movement category. In the paper written by

Basagni et al. they showed that moving the sink to an area with the largest concentration

of energy prolong the network lifetime over a static sink [4].

We selected these algorithms as representative set covering the major areas to examine

in regards to our set of recharging questions; Section 5 describes our implementation of

these algorithms in greater detail.
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Chapter 3: The Network Model

Every wireless sensor network purpose is unique; requiring different constraints and

considerations when setting up the network. This thesis concentrates on networks that are

used for monitoring structural healths of large objects that are unable to provide an adequate

power supply to the network. These types of constraints mold the way the network is set

up, and how it behaves. An example application of our thesis is a sensor network placed

underneath a bridge to monitor its structural health and safety.

The following will discuss three important parts of setting up our network; the basic

functionality of how our network will behave, our specific network assumptions and how

we implement the recharging ability of the Unmanned Aerial Vehicle.

3.1 Network Functionality

A sensor network must be engineered to meet all the requirements of data collection,

while being as time and cost efficient as possible. The first consideration that goes into

creating a network is the topology, or layout of the network. In this paper, we constrain our

network to be of square or rectangular size, such as to fit underneath a bridge or other man-

made structure. In addition, because the size and shape of man-made objects are limited

and known before setting up the network, we have created an equal node distribution,

geographically localized with no network holes present. These types of constraints are

realistic and feasible for the objective network we are designing for.
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Another consideration into the setup of a network is what type of environmental data

is the network gathering. For monitoring the solidity of the infrastructure, the key data that

needs to be collected is the vibration of the structure. Testing vibration alone can determine

if there are any cracks or breaks in the foundation [19], which is the main concern in

structural safety. This type of environmental data gathering requires very little hardware,

and in terms of energy cost, is minimal compared to the wireless communication that is

needed for transmitting the data to other nodes.

In addition to this, we know that every node will collect the same amount of infor-

mation, thus any drain in the network’s energy because of environmental monitoring is the

same for every node. This thesis is only interested in the comparison in the uneven battery

drain that happens with other power hungry network functions such as communication. Be-

cause of these reasons, our testing can ignore any energy cost associated with gathering of

the environmental data, and can focus on just the communication costs. This is a realistic

assumption that can be made because of the way we are analyzing our data, however if the

power cost of monitoring data needs to be added in for future work, a quick change to our

simulation can be added in.

Communication between the nodes, however, is the largest drain of energy in our

network model. Therefore, how the nodes communicate was an important consideration

when constructing our model. To get one packet of information from one node to another is

called routing. It is possible to have each node transmit the packet of information directly

from itself to the sink, however, previous papers found that a multi-hop routing schema

was the most energy efficient in transmitting data across large distances [28]. Because

our sensor network could be widely spread out depending on the length and size of our
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structure, we adopted this form of communication routing.

A multi-hop routing schema involves sending a communication packet directly to its

neighboring node, which will then forward that packet to its closest node until it reaches the

sink. Our simulation used an Euclidean shortest distance to determine the direct neighbor

that was closest to the sink. This communication means more wireless communication,

however because of the short distance that each communication travels, it is actually more

energy efficient [28]. To enable this communication schema in a network with a mobile

sink, all the nodes must be able to communicate bi-directionally with any of its neighbors

which is a realistic assumption given our network setup. In fact, if our network did not have

bi-directional communication, the sink mobility algorithms would not work.

3.2 Network Assumptions

In our model, we assume that all sensor nodes are homogeneous, with each having

the capability of being the sink. This is a very real and possible assumption for a network,

however if some of the nodes must be built differently from one another, three significant

changes in our model must be made. First, we must constrain the available nodes that can

be the sink in the sink algorithms we employ in the network. Second, we must change the

recharging amount we have given to the UAV. Lastly, we must re-consider the way that we

post-process the results from the sensor network to take into account this difference in node

setup.

Because this paper’s focus is on energy efficiency of sink mobility and limited recharg-

ing, we assume a simulation model where there is no packet loss in the transmission of

packets between the nodes. This is generally not true with wireless transmissions, how-
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Figure 2.: UAV recharging a single node.

ever, our experiment is not interested in the behavior of packet loss and delay, thus we are

ignoring it. The results from this thesis can be easily tried on a sensor network with packet

loss and delay for future work if it is deemed useful.

In our simulation the battery and time measurements are not defined by real-world

units, such as watt-hours or seconds respectively, but instead as an abstract definition of

units. This abstraction can be done because of the nature of the way we are collecting and

analyzing our results. We are not looking at direct energy consumption in terms of watts,

but instead the ratio of energy loss of every node compared to another. For this abstract

approach we must make a very important network assumption when analyzing the results:

every node’s hardware is exactly alike. Each node starts out with the same amount of

energy, and each node is the same between simulations regardless of how big or small the

network will be.

3.3 Recharging Implementation

Researchers in prior work, created an unmanned aerial vehicle to wirelessly recharge

sensor nodes in a network [9]. This UAV was created to be fully automated, and not require

any manpower to control. Through inductive charging, the UAV can fly out to a remote area
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and recharge nodes, giving a small infusion of power into the network. Figure 2. shows

this UAV inductively recharging a sensor node that was created to light an LED.

The UAV is able to transfer over 5W in flight and other prototypes can transfer up

to 15W. It is theorized that a UAV can prolong the life of an energy constrained wireless

sensor network. This work provides a solution to the problem of a lack of manpower that

would be required to recharge a wireless sensor network, however, the UAV can only hold

a limited amount of energy and is constrained to only being able to recharge one to two

nodes per flight. For the purposes of our simulation, we constrain the energy infusion from

the UAV to only be able to recharge a single node with a limited amount of energy per time

unit.
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Chapter 4: The Simulation

To test the hypothesis and theories proposed in this body of work, we created a wire-

less sensor network simulation. This paper had looked into utilizing other types of sensor

network simulations already out there, however they were either too specific to individual

network setups, or they were overly complex and required functionality that we wanted to

leave out.

Requirements in our simulation are a way for the nodes to communicate, a way to

measure and adjust power levels in the node’s batteries, a way to choose the sink, and an

algorithm to route information between the nodes. In addition, the simulation covers all

basic functioning aspects of a sensor network and collects and saves important data to be

analyzed once the sensor network simulation has completed. This simulation also allows

measurements of many different sensor networks with varying row and column dimensions

to accurately assess how each experimental algorithm will behave across varying sized

networks.

4.1 The Simulation

Dr. Carrick Detweiler from the University of Nebraska-Lincoln and Dr. Elizabeth

Basha from the University of the Pacific created the original simulation. For this thesis,

the simulation was adjusted and manipulated to include various different sink movement

algorithms, corrections in the code to patch a few routing issues, and variables added for
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post-processing analysis for better understanding of how the wireless sensor network per-

formed.

Coding a simulation of a wireless sensor network differs in coding for an actual wire-

less sensor network. When a physical sensor network is set up, certain aspects of the

network is realized in the hardware, but in a simulation they must be accounted for in code.

For example, in our simulation we have a function that will calculate the energy drain of

communication between the nodes. In a physical network, the energy drain is a side ef-

fect of the communication, and happens automatically. Because of this, there is additional

functionality that we have to add into the simulation that would not otherwise be needed.

The simulation high level block diagram can be seen in Figure 3.. The first two blocks,

bridgeiter and bridgesimfun, are the top level structures that set up the simulated physical

sensor network, such as the grid topology sizes, battery unit levels and recharge amounts

by the UAV.

The block bridgesim also sets up the simulated physical aspects of our simulation,

such as outlining the physical topology of the grid and the communication connectivity

between the nodes. In Figure 3., all pre-processing modules are highlighted in the first

level red block diagrams. Bridgesim then becomes responsible for the control flow of the

simulation, which can be seen in the second level red block diagrams. Once the network is

setup, the bridgesim function loops through the life of the sensor network, represented as a

time unit, and controls the network’s functions. Some of the important functions that were

simulated are how the packets are routed through the network, how the sink moves in the

network at each time unit and the drain of the batteries as a function of the communication

between the nodes. The bridgesim function also keeps track of post-processing variables,
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Figure 3.: Simulation Flow Chart

such as collecting the battery levels each time unit and the network lifetime of the grid.

As shown in Figure 3., the simulation was coded to be as modular as possible. Every

aspect of the network is created in its own function, with the main body of the simula-

tion calling each module as necessary. The blue diagrams represent the modules that are

responsible for setting up network variables and saving data collection results. The first

level red block modules are pre-processing information setup such as grid topologies and

node connectivity. The second level red block modules are the simulation control modules.

At every time unit these modules are called to simulate the functions of a wireless sensor

network.

This simulation was created to be a general simulation of a sensor network, meaning

that there are no real-life numbers in the simulation. Instead we use abstract values to
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allow for comparisons within our network setup. For example, when the simulation speaks

about batteries, it is not referring to a true watt-Hour battery lifetime, instead it refers to an

abstract idea of a battery unit. All nodes have the same batteries attached to them, so the

battery can be 900 watt-Hours, or 1 watt-hour in our simulation. What is important is how

quickly the battery ratio between the nodes is drained, not the exact amount that is drained.

In this simulation, a battery unit is defined as a fraction of the total battery power that the

nodes are initialized with.

This idea of abstract generality also applies to other network specifics, such as the

network lifetime and the time as it passes through the network. We define the network

lifetime to be the time in which the first node in the network is completely drained of

battery as a ratio against how long the simulation ran for. We also define a time unit as the

time it takes for all packets to gather environmental data then send the gathered data to the

sink. After the simulation has run, the data is analyzed against other runs in the simulation

and compared as a ratio to one another.

This abstraction makes the simulation more portable to other types of sensor networks.

For example, this simulation can be applied to networks with small or large battery sizes.

It can also support networks that collect data each second or networks that collect data

every hour. In using this abstract definitions of units, we aren’t limiting our network to a

specific type network hardware, and we can generalize our findings to a much broader set

of wireless sensor networks. The following sections outline in more detail each important

aspect of the simulation, and how the control modules loop through the life of the entire

network.
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Figure 4.: Various Grid Sizes Created by the Simulation

4.1.1 bridgeiter Function The simulation starts out in the bridgeiter function.

This module is responsible for declaring necessary network variables, including which sink

algorithm to call, if there is recharging in the network, what node the UAV will charge, the

initial battery levels of the nodes in the network, how many time units the simulation will

run for and how many nodes are in the network for that particular run.

This simulation was created to run with a flexible number of rows and columns. The

simulation can run with ten nodes in each row and ten nodes in each column or it can run it

with eight nodes in each row and one hundred nodes in each column. This function is also

responsible for running the simulation multiple times, with each simulation having various

sizes of topologies, in the form of m rows by n columns. This flexibility of the simulation

can help test the sink algorithms over multiple different types of square and rectangular

sizes to see how the algorithms change with network size. Figure 4. shows various grid

sizes that are created by the bridgeiter function. The last responsibility of this module is

to compile the data from each individual network simulation and save off the variables for

post-processing of the data collected.
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4.1.2 bridgesimfunc Function This function was created for the sole purpose of

saving off the data of each individual run. The bridgeiter function will pass the necessary

setup variables to this function. This module then calls the main body of the network

simulation. When the simulation has finished running, this function collects all the data

created and saves it off as a unique individual run. When multiple topologies are run, this

function will save off each m row by n column as a unique data file.

4.1.3 bridgesim Function This is the main body of the entire simulation. This

function controls the behavior and flow of the network. It keeps track of vital variables

and collects data produced by the network for analysis. The beginning of this function

initializes network behavior variables and sets up the structure of the network. It then

checks to see if there is any pre-processing of network data required for the particular

sink algorithm chosen. If the sink algorithm is linear programming, or a derivation of, it

determines the sink’s path and location before the simulation begins. If it is any other type

of sink algorithm, the sink’s path and location is determined in real-time while the network

is running.

4.1.4 Topology and Connectivity In Figure 3. depicting the flow chart of the sim-

ulation, the first level red blocks getBatteryCapacity, createNodeTopology and generate-

Connectivty are all pre-processing network setup functions. getBatteryCapacity is a func-

tion to determine the initial battery levels of every node.
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Figure 5.: An Example 3 by 3 Grid Topology

The topology function takes every node and places them in a square or rectangular

form. Using the number of nodes in a row and a number of nodes in a column, it numeri-

cally labels where every node is in the grid. Figure 5. shows an example 3 row by 3 column

square grid, and how each node is labeled in the simulation.

The connectivity function defines how the nodes are connected to one another. We

stated earlier that every node can only talk to its direct neighbors. This function implements

this constraint by creating a connectivity matrix, laying out which nodes a given node can

communicate with. At the start of the simulation, a maximum communication range is

defined as a set distance. An example 3 by 3 grid’s communication connectivity can be

seen in Figure 6., where every node can only communicate with its direct neighbors.

4.1.5 Main body of the Simulation Once any pre-processing network setup is

finished, the actual simulation of the network begins. These functions are the red and

purple block diagrams, as seen in figure 3..

The simulation is set up such that the network’s activities are conducted one time
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Figure 6.: An Example 3 by 3 Grid Communication Connectivity

unit for each run through. The simulation will process all of the necessary actions during

each time unit, then it will move to the next time unit and process the networks activities

once again. The simulation will then loop through each time unit until it has reached its

maximum iterations.

When the simulation begins, the network chooses the sink, as determined by the sink

positioning algorithms defined by the user. This happens in the chooseSink function, which

can be seen in figure 3., in the second level red block diagrams. The different types of sink

algorithms are defined, in depth in chapter 5.

The next activity is the routing algorithm. This algorithm is handled in the function

routingFunct. It determines which path the nodes will send their data to get to the sink. An

example 7 by 8 rectangular grid can be seen in Figure 7.. This figure shows how each node

routes its packets to reach the sink.

This routing algorithm is based on the assumption that nodes cannot communicate

with anyone other than their direct neighbors so messages must move one node at a time to

the sink. Because of this, the simulation takes on a multi-hop routing function approach.

This means that the sensor network chooses its routing path by constraining the node’s pos-
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Figure 7.: An Example 7 by 8 Grid Routing Map

sible communication partners by the ones in least distance from it, ie its direct neighbors.

Then forwards the packets of information to the sink by sending data from one neighbor to

the next until it reaches the sink.

It is important to note that this simulation assumes that every node knows where the

sink is without any cost of communication or any cost of time. This is highly unrealistic

for sink algorithms that chooses the sink in real-time while the network is running, but very

realistic if the network pre-processes the sink selection. These costs were not calculated

into our experiments, but will be followed up in future work, as discussed in chapter 7.

When the simulation was first created, the routing algorithm was not coded properly, and

these problems as well as the solutions will be discussed in section 4.2.

The next function called is the updatePower function. Once the sink and routing paths

have been chosen, this function will determine the battery drainage cost for communicating

data collected by the nodes. Our network simulates wireless transmission between the

nodes in the network. This function takes into account this cost, and considers all other

activity in the network negligible compared to the communication. Once again, because

we are looking at the ratio of battery drain along the whole of the network, and we assume

that every node has their batteries drained equally by all other sensor network activities,
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this is a safe assumption.

Once all routing costs have been calculated and subtracted from the current battery

levels of all nodes, updatePower calculates in the cost of recharging due to the UAV. There

are three possible behaviors of the UAV, recharging the sink, recharging the lowest powered

node, and recharging nothing. The user chooses the behavior of the sink in the top level

function bridgeiter, and this function enacts the users choice here.

The last part of the simulation is to calculate the data for post-processing purposes.

The simulation calculates the node that runs out of battery first, how long it takes for this

node to die. It also keeps track of important variables at each time unit such as the battery

levels of each node and which node was the sink.

4.2 Routing Changes

When the simulation was first created and the first group of experiments run, it was

discovered that the routing function was not properly calculating the communication costs

for the entirety of the network. At first glance, the routing function seemed to work fine;

however the results showed that the energy drain on the network was independent of the

size of the network. The larger amount of nodes in the network the more communication

is required and the faster the energy drain. Therefore, a bigger grid size with the same

initialization of battery energy should lose its energy much faster than a smaller grid size.

When the routing discrepancies were found, the routing algorithm was more closely

scrutinized. The main problem laid in the way the routing costs were calculated. The

simulation was responsible for keeping track of the amount of packets it had to pass to its

neighbor nearest to the sink then subtracting the communication costs of each node from
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its total battery charge. The inconsistency was how the simulation counted the number of

packets that each node had to pass along. In the routing function, every node’s communi-

cation cost was calculated by its receiving cost plus its sending cost. The receiving cost is

how many packets it receives from its children times the battery drain to receive a packet.

The sending cost is how many packets it forwards to the sink times the battery drain to send

a packet.

The broken routing function only counted the packets it received from its direct neigh-

bors, referred to as children, but it did not take into consideration its grandchildren or nodes

even more extended than that. Therefore, regardless of grid size, the network acted like a

small grid size where no node had any grandchildren, great-grandchildren, etc. This created

a network whose energy cost was independent of the grid size.

The problem in the routing function was that it was unable to take into account every

node’s ancestor, and therefore unable to calculate the true amount of packets needed to be

forwarded. A few algorithms were developed, attempting to process the node’s communi-

cation costs in different ways, but none that accurately calculated the packets of information

for every node. The problem in this approach was that at compilation time it was impossi-

ble to know how many nodes were connected to it when it began the cost calculation. At

this point, we realized a completely different approach was needed.

We realized we needed to construct our algorithm such that we could keep an accurate

count of any one node’s children, grandchildren and beyond. The only thing that the algo-

rithm knew at compilation time was that the outer-most perimeter nodes had no children

at all. Thus, the nodes right next to the outer-most nodes only had children nodes, but no

grandchildren nodes or more. The nodes next to those had only children and grandchil-
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dren, but no great-grandchildren. With this understanding, we could figure out how many

ancestors each node had if we started from the leaf nodes and worked toward the sink.

The problem was we did not know which nodes were the outer-most perimeter nodes at

compilation time.

The problem then became identifying which nodes were leaf nodes, or outer-most

perimeter nodes. With this new goal in mind, we began to look at the node’s structure

in a different way. We realized that our nodes could be viewed as a tree-like hierarchal

structure, with the sink being the root node and the perimeter nodes being the leaves of the

tree.

Using this hierarchal view of our network, we could employ a Depth-First Search al-

gorithm to determine leaf nodes and their hierarchal connection to the sink, or root node.

Employing the Depth-First Search algorithm created an accurate list of how many packets

each node sends and receives regardless of the complexity, size or shape of the network.

Using the results from this algorithm, we were able to simulate the actual cost communi-

cation behavior of a wireless sensor network.

4.3 Post-Processing

When the simulation is finished, data collected during the simulation is examined. The

simulation collects many different variables; however, for the analysis of this paper the two

most important variables is the network lifetime and the sink history. The network lifetime

is determined by the time the first node in the network dies. And the sink history details

which node was the sink at every time unit in the network. Using these two variables, it

is possible to compare each experimental run against the others. The network lifetime can
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be analyzed to show which sink algorithm provides the most energy savings while the sink

history can be analyzed to provide insight as to how the energy load is being distributed by

the sink’s movement.

4.4 Summary

We use this simulation to test our different objectives on UAV recharging and sink

mobility energy conservation. Our simulation runs through various square and rectangular

grid sizes to see the overall behavior of the network without constraining it to be any one

size. Using our network assumptions, the network communication path and cost was cal-

culated for every time unit in the life of the network. After every experiment was run, all

of the different scenarios were compared against each other to find the network layout and

behavior which provides the longest network lifetime in our network setup.



41

Chapter 5: Sink Classifications

Research into energy conservation by specific positioning of the sink can be classified

in four ways; static sink positioning, random sink movement, controlled sink movement

and dynamic sink movement. This research looked into these four different classifications

to find the best way to optimize the impact the UAV has on the network. This section will

discuss in depth the types of algorithms that have been previously implemented and how

we will adapt them to our network. In the results section, we will discuss the comparison of

these different algorithms to determine which extends the lifetime of the network longest

with the limited infusion of power from the UAV.

It is important to note when discussing sink movement, there are two possible ways

a sink can move; physically moving around the network, and algorithmically upgrading a

node’s function to temporarily become the sink. In our network, the nodes will be placed

statically on a structural surface, making it impossible for any node to physically move

around the network. Fortunately, we assume every node in our network has the exact same

hardware, and thus can have its software upgraded to act as the sink at any point in time.

Therefore, when we discuss sink ’movement’ we are not referring to a physically moving

node, but instead any node in the network temporarily becoming the sink for that time unit.
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5.1 Static Sink Positioning

The static sink algorithm fixes the sink at a stationary location throughout the lifetime

of the sensor network. Early sensor networks used this method of sink positioning, and

a lot of research explored finding the optimal position in the network [24]. The research

conducted by Lou et al. mathematically found the optimal placement of a static sink was

in the center of the network [20]. We applied these findings to our static sink scenario.

5.2 Random Sink Movement

As research into sink positioning grew, discoveries were made that moving the sink

around greatly improved the network lifetime [1]. The work of Chatzigiannakis proved

that mobile sinks moving randomly around the network proved to have a longer network

lifetime as compared to the sink remaining motionless [5]. For this sink classification, we

used a random function to choose the placement of the sink. The sink stays at a node for

one time interval and then it uses the random function to choose the next node to become

the sink. Every time interval, the sink moves in a complete random pattern.

5.3 Controlled Sink Movement

The third sink classification that this paper looks at is controlled sink movement. As

opposed to random sink positioning, this movement is consciously controlled and planned

before the network begins operating. The following two sink algorithms are controlled sink

movements that we studied.
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Figure 8.: Poisson Node Distribution

5.3.1 Circles In one algorithm proposed by Luo et al. [20], moving the sink in

the outermost perimeter of the network would dramatically increase the network lifetime

versus a static sink. Using multi-hop routing, moving the sink around the perimeter in the

network balanced the energy load equally across the network, thus improving the lifetime.

However, this paper assumes a Poisson Process circular distribution of nodes, as seen in

figure 8., [20], where the nodes in our network are evenly distributed in a square or rectan-

gular pattern.

In our implementation of the circular sink positioning algorithm, first we must prove

the hypothesis that walking on the outer perimeter increases the network lifetime given a

square or rectangular grid. If this holds true, then we will compare this algorithm with our

other sink movement algorithms with the added dimension of recharging from the UAV.

5.3.2 Linear Programming Another controlled sink movement that we will im-

plement is a mathematical optimization algorithm called Linear Programming Optimiza-

tion. This algorithm is one we base off of the work done by Wang et al. [26]. In this

work, the linear programming algorithm determines the optimal sink placement to maxi-

mize the network lifetime. The following section will first describe the basic idea of Linear

Programming Optimization, then we will describe how we implement this optimization in
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conjunction with our constraints and network setup.

This optimization first starts out as a basic set of linear equations, an example can be

seen in Equations 5.1 and 5.2. With any set of linear equations there are three possible

results; no solution, a unique solution and an infinite set of solutions. Linear Programming

Optimization deals with a set of linear equations, at least one or more, that have an infinite

set of solutions. Within this set of solutions, it computes the optimal solution, given a set

of constraints.

x+2y (5.1)

−5x+ y = 7 (5.2)

For example, using the set of linear equations 5.1 and 5.2, a linear programming opti-

mization would attempt to find the optimal solution to these equations based on a given set

of constraints. Let us assume we want the value x and y be as small as possible, but at the

same time x must be greater than or equal to three and y must be greater than or equal to

four. These three statements represent constraints in the optimization. We say that we want

the minimal solution of the two equations, with constraints subject to 5.3 and 5.4.

x≥ 3 (5.3)

y≥ 4 (5.4)

The result from this optimization can be seen in equations 5.5 and 5.6. This is the

minimal solution to the set of equations 5.1 and 5.2, with x being greater than three and y
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being greater than four.

x = 19/6 (5.5)

y = 137/6 (5.6)

We employ this same idea to our network. We first create our linear equation, denoting

it to be the time that the sink stays at any one particular node. For example, in a 3 by 3

grid size, our linear equation can be found in Equation 5.7. In this equation, t represents

the amount of time that node is the sink during the lifetime of the network. This equation

can also be simplified into Equation 5.8.

t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 (5.7)

In the Linear Programming example above, we found the minimum solution to x and

y. However, in our example, we wish to find the maximum solution to this equation by

prolonging the sink’s sojourn time at each node. In doing so, we will maximize the network

lifetime because the longer the sink stays at every node, the longer the network lifetime will

be. We call this a maximization of our linear equation. Our network linear programming

optimization algorithms can be found in the equations 5.8, 5.9 and 5.10.

Max Network Lifetime:

∑
∀k∈N

tk (5.8)

Subject to:

∑
∀k∈N

ck
i tk ≤ e0 (5.9)
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tk ≥ 0 (5.10)

Where:

• N is the set of all nodes in the grid.

• k represents the current sink.

• i represents a general node in the grid.

• tk represents the sojourn time spent at each sink.

• ck
i represents the cost of one node sending and receiving data in one time interval

when the sink is at position k.

Equation 5.9 is one of our most important constraints. This equation represents the

cost of sending and receiving packets of information for each node when the sink is at po-

sition k, but not draining the battery more than its initial energy. This constraint represents

our power limitation in the network. No battery can be drained more than the power it

begins with. Our last constraint, Equation 5.10 ensures that the result does not give us a

negative value for a sink sojourn time. It is impossible to stay at a sink for negative time

values.

These set of equations and constraints represent our network setup, and attempts to

maximize the length of the network lifetime. Once this optimization has finished com-

puting, the algorithm creates a sink movement based on the results. The next two sections

describe the obstacles our network constraints have on the implementation of this optimiza-

tion, and how we overcome them.
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5.3.3 Linear Programming: Periodic versus Exact Movement In the paper by

Wang et al [26], the authors state that applying the linear programming optimization results

could be implemented irregardless of the order in which the sink follows the optimization.

However, this paper did not consider limited recharging while implementing the optimiza-

tion.

Since the optimization we are using is a linear one, we can only account for the energy

drain as a direct results of the sink’s position, and not directly optimize for the recharging

of the UAV. Because of this, we adjusted the cost of sending and receiving messages to

reflect the variable recharge placement as an even distribution of power across all the nodes.

In doing so, we hypothesized the implementation would matter, and set to prove which

implementation of the results would be optimal for our network.

The two main implementations discussed in the paper was exact sink movement and

periodic sink movement, and we implemented both of them in our network. In exact sink

movement, the sink would directly relay the results of the linear programming optimization

into its movement. For a periodic sink movement, the sink will stay at a node for one time

unit, then move to the next. When the sink has visited all the nodes once, it will go back to

the first node again and repeat.

Take an example grid given in figure 9.. Remember, the basic linear optimization

output is a list of which nodes in the network should be the sink, and for how long. Let’s

say the results of an LP Optimization were given in Table 1..

In this example, an exact sink movement implementation would be the following. The

sink will stay at node 1 for three time units then move on to sink 2 for one time unit. It will

move to node 3 for three time units, node 4 for one time unit. The node will skip node 5,
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Figure 9.: An Example 3 by 3 Grid Topology

Table 1.: Example Linear Programming Results
Node Number Time units a node should be the sink

1 3
2 1
3 3
4 1
5 0
6 1
7 3
8 1
9 3
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Table 2.: More Realistic Linear Programming Results
Node Number Time units a node should be the sink

1 3.1
2 .9
3 2.9
4 1.1
5 0.1
6 1.3
7 3.2
8 .9
9 3.4

because the results is zero, then go to node 6 for one time unit, and so on and so forth.

For this example with a periodic sink movement, the sink will stay at node one for one

time unit, then node two for one time unit and continue around the network, staying at each

node, if the LP results did not output zero for that node. When it finishes its first round, it

will come back to node one and stay at it for one time unit. Because the optimization had

node two being the sink only once, it will now skip this node and go to node three for one

time unit. This will continue, the sink staying at a particular node for one time unit. Once

the sink leaves a node, it notifies the network that it has been there by subtracting one from

the result. It then moves onto the next node if its results have not yet reached zero.

5.3.4 Linear Programming: Naivety The type of linear programming optimiza-

tion we are implementing is a deterministic and solvable problem. However, the output

from this algorithm is a non-integer number. Table 1. results are given as integers. How-

ever, Table 2. is actually what the Linear Programming Optimization will give us.

In the setup of our network, we have constrained the sink to stay at one location

for at least one time unit. When the results comes back from the linear programming

optimization, the non-integer numbers represent a fraction of a time unit. To configure
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the results into an implementable solution, we had to round the results to whole numbers.

There are three different types of common rounding; general Rounding, floor rounding,

which truncates the answer by rounding down, and ceiling rounding, which truncates the

answer by rounding up. To make sure we took the best rounding approach, we ran three

experiments with three different rounding techniques.

It has been said that such rounding of results of a Linear Programming Optimization is

a naive approach and does not obtain the optimal results. There is an optimization that will

provide the results as integers, however it then becomes an NP-hard problem. This means,

worst case, there is no solution. In addition, computing the answer to this optimization

requires a drastic increase in computational power. As such, we experimented with the

three types of rounding techniques to decide which type of rounding was optimal.

5.4 Dynamic Sink Movement

The previous sink algorithms are calculated based of initial known variables before the

network begins. Our last sink algorithm differs in that it uses the ever-changing network

energies to determine the next node to be the sink.

We use an algorithm developed in the work introduced by Basagni et al. [4]. This

work found a common problem in multi-hop networks called the neighborhood problem.

Nodes surrounding the sink, called ’neighbor’ nodes, become inundated with all packets

being sent to the sink. This inundation drains these nodes faster than the others farther

away from the sink. Using this information, the paper creates a heuristic called Greedy

Maximum Residual Energy (GMRE). This algorithm moves the sink to the section of nodes

with the highest energy levels in an effort to drain the nodes energy more evenly around
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Time Unit 1 Time Unit 20

Time Unit 40 Time Unit 60

Figure 10.: An Example 5 by 5 Sink Neighboorhood Problem.

the network. Each iteration the algorithm calculates the highest energy groupings in the

network, and moves the sink to that location, knowing that the nodes around it will become

more drained than the others. In Figure 10., you can see a five by five grid over the length

of the simulation. A yellow block represents a node with over 80% charge, where green

represents a node between 80% and 50%, and blue between 50% and 30%. A red block

represents a node that is about to die.

Here we apply this heuristic to a limited recharging network, calculating the movement

of the sink based on the ever-changing energy in the network. As the network is operating

the sink polls all of the sensors energy levels and compares them in blocks. Depending on

the placement of the nodes, the blocks can vary in the amount of nodes in each block. An

example of these ”Blocks” can be seen in Figure 11.. Blocks within the network contain

9 nodes, which can be seen within the red block. Blocks near the edges of the network
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Figure 11.: An Example 8 by 8 Various Greedy Blocks

contain 6 nodes, which can be seen within the purple block. Blocks on the corners of the

network contain 4 nodes, which can be seen within the blue block.

5.5 Comparing the Algorithms

The algorithms we tested in this thesis are all implemented on a network that has no

availability to power during the life of the network. In addition, they have not yet been

previously compared to one another. Our work implement these algorithms and apply

them to our gridded topology with an added dimension of recharging. We then compare

these algorithms to each other to determine the optimal sink positioning algorithm to use

in addition to the limited recharging of the UAV.
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Chapter 6: Results

Given our network setup and constraints, we ran the simulation to gather data to help

us determine the answers to our key objectives. Does using an unmanned aerial vehicle

extend the network lifetime of a sensor network? We choose a UAV recharge amount of

25% with a static sink placement and looked at seven different grid topologies to under-

stand how the UAV impacts the sensor network lifetime. We determined that using a UAV

prolonged the network lifetime. We than ran simulations to determine how much the UAV

should recharge for to provide the longest network lifetime.

After determining the results to the first key objective, we then looked into the second.

Which node should the UAV recharge at every time unit? We choose two different nodes

we believed were the biggest failing points in the network, the sink and the lowest powered

node. We ran simulations with these different charging scenarios and determined which

node would provide the longer network lifetime.We determined the lowest powered node

was better to recharge so we re-ran the earlier simulation to determine how much the UAV

should recharge for with this new implementation.

Following the first two key objectives, we found out what sink positioning algorithm

would to optimize the influx of energy by the UAV. We compared five different sink algo-

rithms and found that using a UAV during the lifetime of the network is best with the static

sink algorithm for smaller grid sizes. For grids larger than the UAV can compensate for the

best sink algorithms were Greedy and Circles.
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6.1 Unmanned Aerial Vehicle Impact

To test the viability of an unmanned aerial vehicle in a wireless sensor network, we

started with a static sink directly in the center of the network. A sink placed in the middle

of the network is the most general form of sink selection algorithm, and thus we used it

as a basis for our preliminary tests. Using this algorithm; seven sensor networks were

simulated, each with a different square and rectangular grid topologies.

6.1.1 Recharging versus No Recharging Every time unit during the simulation

we set the UAV to recharge the sink node. We chose the sink because it is the most impor-

tant node in the network, and has the greatest cost in communication per each time unit.

Every node in the network must pass on the packets of information from its neighbor nodes,

but the sink must forward all of the packets of the network to the UAV as it passes by.

We set the amount the UAV would recharge as a ratio of the initial energy of each

node. Remember that every node in the sensor network is homogeneous, and contains the

same initial energy. We began with the UAV recharging at 25% of the initial energy to

determine if the UAV had any impact on the network lifetime. We ran two simulations on

the seven grid topologies; a normal wireless sensor network with no recharging, and one

with recharging. We ran the simulation against seven grid topologies; 8 by 8, 8 by 13, 8 by

18, 11 by 18, 14 by 18, 17 by 18, and finally, 20 by 18. These grids were chosen because

the total number of nodes in these grid sizes were near 50, 100, 150, 200, 250, 300 and

350, respectively.

Table 3. reflects you can see the impact of recharging versus no recharging. The first

column represents a grid topology in terms of number of nodes in each row versus number
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Table 3.: Multiple Grid Topologies: How recharging with a UAV Affects the Network
Lifetime

Grid Topologies Total Number of Nodes No Recharge Recharging
8 by 8 64 17 66
8 by 13 104 11 33
8 by 18 144 8 20

11 by 18 198 7 16
14 by 18 252 5 15
17 by 18 306 5 14
20 by 18 360 4 8

of nodes in each column, and the second column represents the number of nodes in the

network for this given row by column topology. The third column contains the results of

the grid simulation with no recharging, shown as the time unit at which the first node failed.

The fourth column shows the results of the simulation where the UAV recharged a single

node at every time unit. The results are displayed as the network lifetime, which is the time

unit when the first node failed.

These results show that the there is a positive impact on network lifetime when the

UAV recharges for at least twenty-five percent of each node’s initial energy. It’s also im-

portant to note that as the number of nodes increase, the impact that the UAV has on the

network decreases. This happens due to the fact that as the number of nodes increase, the

amount of communication and energy cost increases. The UAV’s recharge amount, how-

ever, stays the same. This results in a decrease the ratio of recharge to energy drain of the

network, thus impacting the network less as the network gets larger.

6.1.2 UAV Recharge Amount The next question becomes, given there is a posi-

tive impact on network lifetime when utilizing a UAV, how much does the UAV need to

recharge to become a viable option for use? Constructing a UAV takes time and resources.
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Figure 12.: Multiple Grid Topologies with Varying Recharge Amounts: Recharging the
Sink

The amount the UAV can recharge is limited to the complexity of the UAV’s hardware. The

more the UAV can recharge a node every time unit is directly proportional to how many

resources must be put into the UAV, prior to use. Because of this, it is necessary to deter-

mine the amount of the UAV needs to recharge, taking into account the constraints of the

hardware and what impact the UAV must have to be worth using. Thus, the less the UAV

must recharge, the better for the cost and setup time of the network.

The next experiment was run to test the best recharging amount for the same static sink

placement. The seven grid topologies were run again, this time amongst varying recharge

amounts to find exactly where the UAV has the biggest impact. The sink was recharged at

every time unit as per a percentage of each node’s initial energy. The results can be seen in

figure 12..

When the UAV recharges below 30 percent of a node’s initial energy, the network

lifetime suffers. At and above 30 percent, the network lifetime does not change and stays

constant. As stated earlier, the less the UAV has to recharge, the cheaper it is to implement.

Since there is no positive impact to the network lifetime if the UAV charges more than 30
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Table 4.: Static Sink: Recharging Impact at 30%
Grid Topologies Total Number of Nodes Network Lifetime

8 by 8 64 66
8 by 13 104 33
8 by 18 144 20

11 by 18 198 16
14 by 18 252 15
17 by 18 306 14
20 by 18 360 12

percent, we decided it was the best recharge amount for the UAV.

In table 4., you can see the network lifetime as the time until the first node failed.

Again, it is important to note that as the network grows, the impact of the UAV decreases

because the ratio of energy the UAV can provide decreases.

6.2 Node Recharging Selection

The next key objective is to find out how the UAV should recharge the network. In

our results above we assumed that the sink was the best node to recharge due to its need

to communicate the entirety of the networks environmental data collection, and that if the

sink dies, the entire network becomes inoperable. Also, once the sink has received all of the

packets, it is responsible for passing along all of the information from the sensor network

to the UAV flying by. This puts a heavy burden on the sink to receive then transmit the

entirety of the network’s gathered data.

This makes recharging the sink a very logical choice for recharging selection, however

does this apply to every scenario? What if there is another node that needs the recharge

amount more than the sink? The sink might have the greatest drain on the network, however

what if there is a node that is in danger of dying more than the sink? We define the ”lowest
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Table 5.: Recharging the Sink versus Recharging the Lowest Powered Node
Grid Topologies Total Number of Nodes Sink Recharged Lowest Powered Node Recharged

8 by 8 64 66 200
8 by 13 104 33 200
8 by 18 144 20 42
11 by 18 198 16 28
14 by 18 252 15 19
17 by 18 306 14 17
20 by 18 360 12 10

powered node” to be a node that has the least amount of energy left in its battery at any

given time unit. We setup our next experiment to see if recharging the lowest powered node

improved the network lifetime better than recharging the sink node.

6.2.1 UAV Amount to Recharge This experiment involved using the same seven

grid topologies. In one set of experiments, the sink was recharged at every time unit.

The second set the lowest powered node was recharged at every time unit. The previous

experiments showed that the biggest impact the UAV had was recharging was 30% of the

initial node’s energy, and thus we set this as the recharge amount. The results of this test

are shown in table 5..

The first column shows which grid topology was being tested, and the second column

shows the number of nodes in that topology. The third and fourth columns represent the

network lifetime, which is the time the first node fails. The simulation was run for a total

of 200 time units, so on simulations that had a network lifetime of 200 never had a node

die and was considered to be 100% successful for our network setup.

The results show that recharging the lowest powered node is greater in all cases but

the last grid, 20 by 18. These results also show that as the number of nodes get larger, both
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Table 6.: Recharging the Sink versus Recharging the Lowest Powered Node: Larger Grid
Sizes

Grid Topologies Total Number of Nodes Sink Recharged Lowest Powered Node Recharged
17 by 18 306 14 17
18 by 18 324 14 13
19 by 18 342 14 11
22 by 18 396 9 9
20 by 20 400 9 9

Figure 13.: Decreasing Impact of Recharging as the Number of Nodes in the Network
Increase

forms of recharging have less of an impact. In fact, as the number of nodes get bigger,

the impact of recharging the lowest powered node gets less effective faster than the sink

recharging impact. We found these results to be of interest to our objectives, and sought to

investigate this further. Additional experiments were done with larger grids to see if type of

recharging depends on the grid sizes of the network. We ran larger grid sizes and compared

the results to the rest of the topologies. These results can be seen in table 6..

At grid sizes between 306 nodes and 324 nodes the most effective recharging schema

with the sink versus recharging the lowest powered node switches. Below 306 nodes,

powering the lowest powered node is the best, however at grid sizes larger than 350 nodes
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recharging the sink is a better choice. We graphed the impact of recharging the sink versus

recharging the lowest powered node versus the number of nodes in the network, as seen in

figure 13..

The y-axis is the network lifetime. The x-axis is the number of nodes in the net-

work. The results show that recharging the network drops off exponentially as a function

of the number of nodes in the network. These results also show that the lowest powered

node drops off faster than recharging the sink, and around 306 nodes, recharging the sink

becomes better than recharging the lowest powered node.

This result were not unexpected. As the number of nodes in the network become

larger, the amount of packets the sink has to forward to the UAV becomes exponentially

larger than the rest of the packets the nodes around it must pass on. As such, the sink

becomes the node that requires the most energy. At times in the network, the sink is not the

lowest powered node, however because of the large amount of communication it must pass

on and the large requirement of power to do so, it is the most needy node. After just one

time unit, passing along those packets without an infusion of energy can cause the sink to

lose power completely, making it need the energy infusion more than the lowest powered

node. For the rest of the experiments, any grid size with 324 nodes or more will have the

sink being recharged, and any nodes less than that will have the lowest powered node being

recharged.

6.2.2 Revisiting Recharge Amount Now that we have determined recharging the

lowest powered node provides the longest network lifetime, it is necessary to revisit the

question of how much should the UAV recharge to provide a positive impact, given this
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Figure 14.: Multiple Grid Topologies with Varying Recharge Amounts: Recharging
Lowest Powered Node

different type of node to recharge. To do so, we ran another simulation with the seven

grid topologies against varying amounts of UAV recharge as per a ratio of the initial node’s

energy. The results can be seen in figure 14..

The results from this run shows the UAV’s recharge amount is heavily dependent on

the number of nodes in the network. As the network size increases, the amount the UAV

should recharger for becomes larger. Table 7. shows the point at which the UAV has the

biggest impact per every grid topology. The first column denotes the grid topology as per

number of nodes per row and column, the second denotes the total number of nodes in

the network and the third column is the UAV recharge amount at which the UAV has the

biggest impact. These results are shown as a percentage of the initial node’s energy.

These results show that when a square or rectangular sensor network is setup with a
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Table 7.: UAV Recharge Amount per Grid Topology
Grid Topologies Total Number of Nodes Node Recharged UAV Recharge Amount

8 by 8 64 Lowest Powered Node 10%
8 by 13 104 Lowest Powered Node 25%
8 by 18 144 Lowest Powered Node 55%
11 by 18 198 Lowest Powered Node 80%
14 by 18 252 Lowest Powered Node 80%
17 by 18 306 Lowest Powered Node 95%
20 by 18 360 Sink 30%

static sink, determining the UAV recharge amount should be a function of the number of

nodes setup in the network. When we begin to compare sink algorithms together we will

use table 7. to determine how much the UAV should recharge.

The 20 by 18 grid size is the only size that does not follow the normal progression

because the sink is being recharged, not the lowest powered node. Recharging the sink for

larger grid sizes not only saves us in computational complexity of determining the lowest

powered node, but also provides us with a UAV that is less costly.

6.3 Sink Selection

The next key objective is to determine which sink algorithm best optimizes the limited

recharging capability of the UAV. In Chapter 5, we discussed previous research that out-

lined different load balancing algorithms that strategically moved or placed the sink. For

our experiments we recreated those algorithms, adjusting for our network constraints and

grid topologies, then compared the results together to find which algorithm worked best in

conjunction to the UAV recharging.

6.3.1 Perimeter Walk As discussed in section 5.3.1, work done by Luo et al. [20],

showed that moving the sink in a periodic, circular direction increased the network lifetime.



63

Figure 15.: Four Different Periodic Movements; Perimeter Walk, P-1 Walk, P-2 Walk, P-3
Walk

Table 8.: Periodic, Square Movement in an 8x8 Grid
Circular Path Network Lifetime

Perimeter 168
P-1 122
P-2 86
P-3 42

They further showed that moving along the outer-most perimeter achieved the highest net-

work lifetime by load balancing the energy in the network. Before we can consider utilizing

this algorithm in our network, first we must prove that moving the sink on the outer-most

perimeter holds true for a square or rectangular grid.

We took an 8 row by 8 column topology and ran four experiments. Each experiment

involved the sink moving in a square pattern, with differing distances from the center of the

network, as seen in figure 15..

We did not implement any recharging in this network so that we could accurately

assess and compare a circular periodic movement to a square periodic movement. As you

can see in table 8., the sink that moves on the outer-most perimeter is indeed the better

sink movement. As the sink moves closer to the center of the network the lifetime becomes

smaller, which is consistent with the statements made in the paper done by Luo et al. [20].
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6.3.2 Linear Programming: Periodic versus Exact Movement The other sink

algorithm that needed extra testing to properly apply to our network was the Linear Pro-

gramming Optimization. Because our implementation of the LP optimization was con-

strained to a naive implementation, we had to first determine which execution of the al-

gorithm provided the longest network lifetime. We ran two experiments over the seven

various grid topologies. The UAV recharge amount per each grid size was determined by

the previous results, as shown in table 7.. The results are displayed in figure 16..

Figure 16.: LP Periodic Implementation versus Exact Implementation

The results are not definitively conclusive, but the LP periodic implementation pro-

vides the longest network lifetime compared to the exact sink LP implementation for the
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Table 9.: Periodic vs Exact Sink LP Implementation
Grid Topologies Total Number of Nodes Periodic Movement Exact Movement

8 by 8 64 200 200
8 by 13 104 200 76
8 by 18 144 113 34
11 by 18 198 95 38
14 by 18 252 42 29
17 by 18 306 24 30
20 by 18 360 23 25

majority of the grid sizes. For grid sizes with less than 300 nodes, the periodic implemen-

tation of the LP algorithm works better. In grid sizes greater than 300, the exact movement

can be a better choice. However, there are larger grid sizes, such as 20 by 18, that do not

preform better with an exact sink movement. This can be seen in table 9.. That, and because

the change in network lifetime is at best 3 percent, we have decided to use the periodic sink

movement for all future implementations of the Linear Programming Optimization.

In the paper detailing the Linear Programming Optimization [26], it was stated that

the exact implementation and periodic implementation would provide the same results.

We believe our implementation differed from this statement because we are attempting to

balance the infusion of UAV energy into the network. Because the LP algorithm is not fully

representing our UAV recharging capabilities and our naive implementation, the results in

their paper are not perfectly comparable to the actual behavior of our network. Therefore

there is extra energy in our network, and periodic sink movement balances this energy best.

6.3.3 Linear Programming: Naivety For the second experiment on the imple-

mentation of the Linear Programming Optimization, we looked at how best to round the

non-integer results that would give us the longest network lifetime. We took various grid

topologies, with the experimentally found amount of recharging by the UAV at each time
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Table 10.: LP Approximation: Normal Rounding
Grid Topologies Number of Nodes Network Lifetime

8 by 8 64 200
8 by 13 104 200
8 by 18 144 101

11 by 18 198 95
14 by 18 252 42
17 by 18 306 37
20 by 18 360 23

Table 11.: LP Approximation: Rounding Up
Grid Topologies Number of Nodes Network Lifetime

8 by 8 64 200
8 by 13 104 200
8 by 18 144 179

11 by 18 198 43
14 by 18 252 25
17 by 18 306 24
20 by 18 360 23

unit, delivered to the experimentally found appropriate node. We then used the periodic

sink movement. The results of these experiments can be seen below in tables 10., 11. and

12..

These results show that normal rounding operations are not the best way to approxi-

mate the Linear Programming results. When the number of nodes is small, under or around

150 nodes, using a ceiling rounding function to approximate the results is superior. How-

Table 12.: LP Approximation: Rounding Down
Grid Topologies Number of Nodes Network Lifetime

8 by 8 64 200
8 by 13 104 200
8 by 18 144 115

11 by 18 198 92
14 by 18 252 70
17 by 18 306 47
20 by 18 360 35
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Figure 17.: All Five Sink Positioning Algorithms Compared

ever, this increase in network lifetime when using the ceiling method drop dramatically

after 150 nodes. When the grid is larger, over 150 nodes, using the floor rounding function

is best. In future tests, when we do a Linear Programming Optimization, we will approxi-

mate the results as per the number of nodes in the grid. If the number of nodes is less than

150, we will use the ceiling function. If it is greater than, we will use the flooring rounding

function.

6.3.4 Comparison Between Sink Selection Algorithms Once all five algorithms

had been implemented in the simulation they were run and compared against one another.

Our test setup included all the results from earlier experiments. We ran these simulations

on the seven grid topologies we had been using previously; 8 by 8, 8 by 13, 8 by 18, 11 by

18, 14 by 18, 17 by 18, and finally, 20 by 18. Table 7. outlines the amount we set the UAV

to recharge per grid size, and which node it would recharge.

The results of this experiment can be seen in figure 17. and the policy we have created
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Table 13.: Policy of Sink Algorithm Choice per Grid Size
Grid Topologies Number of Nodes Chosen Algorithm

8 by 8 64 All 5 Equal
8 by 13 104 Static Sink, Random and LP
8 by 18 144 Static Sink

11 by 18 198 Static Sink
14 by 18 252 Greedy
17 by 18 306 Circles
20 by 18 360 Greedy

to decide which sink algorithm to use per grid size can be seen in table 13.. The first grid

size, 8 by 8, never fails during the simulation, regardless of which sink algorithm is being

implemented. With such small amount of nodes, any influx in extra energy that the UAV

supplies is greater than the amount of energy that is consumed by communication and can

easily keep up with uneven draining in the network. The second grid size, 8 by 13, the

static sink, random sink and LP sink all survive the entirety of the simulation time. Again,

the UAV infuses more energy into the network, however for some sink algorithms it cannot

keep up with uneven drains in the network and dies prematurely for the Circle and Greedy

algorithms.

The 8 by 18 and 11 by 18 grid sizes all survive the entirety of the simulation with the

static sink Algorithm. This was surprising at first, because all papers on sink positioning

algorithms all say that the static sink is the poorest performing algorithm. However, with

our added dimension of recharging, the reason the static sink easily outperforms all other

algorithms, is for the exact same reason that it performs the worst without recharging. In

section 5.4, we spoke of the neighborhood problem that occurred with static sinks. In figure

10., you can see that the sink and the nodes nearest the sink die out far faster than any other

node in the network. This provides a small group of nodes that need an infusion of energy,
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that which a UAV can provide. Other sink algorithms move the sink around, increasing this

group of nodes to such a large grouping that the UAV cannot provide support for them all.

At grid sizes larger than 200 nodes, the UAV can no longer provide enough energy

infusion to compensate for the energy drain in the network communication, thus the Static

Sink now behaves relatively as poorly as it has with no recharging. The best performing

sink positioning algorithms for the last three grid sizes are the greedy sink, circles sink

and random sink. Because the random function can provide uncertain results, and never

outperformed either that Circles or Greedy sink, we will discard it from consideration.

The greedy sink and circles sink provide very similar network lifetimes, never dif-

fering more than 16 time units. To choose an appropriate sink algorithm, it is possible to

follow table 13. exactly, or take into consideration other factors such as time/space com-

plexity or ease of implementation. These considerations are not investigated here, but have

been proposed in future work.
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

In this thesis we set out to find answers to three key objectives; does the UAV provide

enough energy infusion to increase the network lifetime of a WSN? If so, which node in

the network will optimize this limited infusion. Lastly, which sink positioning algorithm

will provide the longest network lifetime, given this added recharging capability.

7.1.1 Limited Recharging Experiments proved that the small amount of power

infusion that the UAV can provide does indeed improve the network lifetime. We also found

that when recharging the sink every time unit, the best performing amount of recharge

provided by the UAV was 30 percent of the initial energy of a node in the network. In

smaller grid sizes, using the UAV can increase the network lifetime over 24.5 percent more

than no recharging. However, as the grid sizes got bigger, the impact of a singular UAV

decreased. This is because as grid sizes get larger, the amount of energy infusion by the

UAV becomes a smaller ratio of the total energy in the network, and thus impacts it less.

7.1.2 Node Recharging Selection Once it has been determined that the UAV does

provide a positive impact on the network lifetime, this thesis then sought to determine

which node would be the best to recharge at every time unit. We found that recharging

the lowest powered node proved to increase the network lifetime over powering the sink in
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grid sizes smaller than 306 nodes. In grid sizes larger than 306 nodes, recharging the sink

proved to perform the best. At every time unit, the sink must pass on all of the packets from

every single node. This amount of communication places a great drain on the sink. At grid

sizes that are smaller, these large amounts of packets are smaller and can be compensated

for by the UAV. However, at larger grid sizes, if the sink is not recharged at every time unit,

the sink becomes in danger of dying each time unit. From these results, for grid sizes at or

smaller than 306 nodes per grid, we powered the lowest powered node, in grid sizes larger

than this, we powered the sink.

We then revisited the question of how much the UAV should recharge to provide the

biggest impact to the network. In Table 7., you can see the point at which the UAV has

the most effect on the network. We use this table in all future experiments, determining

the UAV recharge amount as a look-up table, determined by the number of nodes in the

network.

7.1.3 Energy Load-Balancing with Sink Positioning Before we could compare

each sink positioning algorithm, we first had to show the best implementations of each

algorithm. The two algorithms in question were the Circles algorithm and the Linear Pro-

gramming Optimization.

We proved that even with a square or rectangular topology, moving the sink along the

perimeter of the network was indeed better to periodic movements closer to the center of

the network. When we implemented this algorithm in the final comparison of all five sink

positioning algorithms, we moved the sink in a periodic movement around the perimeter of

the network.
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For the linear programming optimization, we proved that a periodic implementation

peformed better than an exact optimization for most smaller grid sizes. We found the

lifetime increase gained by the exact implementation in larger grid sizes was not large

enough to warrant the computational complexity of splitting the grid sizes up, we decided

to use the periodic sink movement for all grid sizes.

The second implementation obstacle we faced with the Linear Programming Opti-

mization was our naive approach in implementing the results. From our three naive im-

plementations we found that for grid sizes smaller than 150 nodes per grid, the ceiling

function provided the longest network lifetime. However, in grid sizes larger than that, the

flooring function proved to obtain the largest network lifetime. Because of this, we decided

to implement the ceiling function for grid sizes smaller than 150, and the flooring function

for grid sizes over 150.

When we compared all five algorithms together we found that for grid sizes under

200, the Static Sink easily outperformed all other sink algorithms, lasting the entirety of the

simulation. At larger grid sizes, however, the UAV became unable to infuse enough energy

to make up for the drain in battery by the communication, and the Static Sink preformed

poorly. At this point either the Circles Sink or the Greedy Sink output similar network

lifetimes and either can be used. To help further determine which sink algorithm to use

in larger grid sizes, it might be beneficial to consider other trade-offs, such as time/space

complexity and ease of implementation.
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7.2 Future Work

7.2.1 Extra Tests In addition to the experiments already conducted, there are many

more aspects of UAV recharging amount versus the behavior of the grid. We’ve seen that

the UAV best recharge amount changes depending on which node is being recharged. Fu-

ture work into determining the appropriate amount of recharge for every single sink posi-

tioning algorithm may give us a more effective UAV recharge amount.

There were three types of recharging implemented in this thesis; no recharging, recharg-

ing the sink and recharging the lowest powered node. An additional node to be recharged

that was considered was the most needy node. This node is the lowest powered node after

the current time unit in question. One of the reasons why recharging the sink provides a

bigger impact at 324 nodes or greater is because the current lowest powered node is not

the node that needs the infusion the most, it is just currently the lowest powered node. For

future work, powering the most needy node may provide to be better than both powering

the sink and powering the lowest powered node.

In reviewing the findings from section 6.3.4, it would be interesting to see what the

impact of two UAV recharging at the same time would be. Would the results follow in

the same format, but double the grid sizes? Or would the impact of dual-charging change

the best performing sink algorithm? For future work, running tests that compare all five

algorithms together with multiple UAVs recharging the network.

7.2.2 Simulation All the work in this thesis is theoretical. To find answers to the

key objectives of this thesis, a simulation was created to test out different algorithms. The

simulation was built on a theoretical assumption of a perfectly functioning sensor network.
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In this network, there was no packet loss, no delay, no errors in recharging, and nodes

that always know where the sink is located. However, in real world applications, these

assumptions are not plausible. There is always error in wireless communication, creating

information packets to be lost. In addition, not all nodes will be able to transmit messages

in the same amount of time. If a node is malfunctioning, or a node is not synchronized with

the rest, it may take longer to transmit, or it may not transmit at all. For future work of

the simulation, implementing these errors into the simulation could add an extra dimension

into determining the best sink positioning algorithms.

All of these algorithms have been compared to each other in a singular dimension of

network lifetime, however there are many other dimensions that can be used for compari-

son. In this simulation, all nodes are omnipotent, always knowing where the sink is, thus

always knowing where to send their information. When dealing with dynamic sink move-

ment, this assumption is not plausible. The Maximum Greedy Residual Energy Heuristic

picks a sink movement based upon all nodes current energy, and changes the sink accord-

ingly. Implementation of this heuristic will require each node to first transmit their energy

level, then wait for communication to where the next sink is before sending their next

packet of information. This will require extra communication that this simulation did not

account for. This would play heavily into the determination of which sink positioning al-

gorithm is better, by giving the results an extra comparison into the time of the algorithm

versus the network lifetime.

7.2.3 Physical Implementation of a Real Network Currently, a live sensor net-

work is being set up to run through the same algorithms of sink mobility and UAV recharg-



75

ing. Once run, the results from this thesis will be compared to the results of the live net-

work. In addition to finding the best sink algorithm with real-world constraints, it will also

compare how realistic the sink algorithm is to implement, run and be processed. Once these

factors has been accounted for, the simulation can be updated to provide a more realistic

view of how a wireless sensor network behaves.

Another important question that has not been answered is the reliability of the UAV.

Using a UAV to recharge a network is a complex implementation. When implemented on

a live wireless sensor network, it will most likely miss a few targets, or recharge the wrong

node, leading to a non-ideal recharging scenario. Implementing a network with a fully

autonomous UAV and testing for errors and deviations of its behavior could give a good

insight into how dependable delivering an added power infusion into the network is.

7.2.4 Integer Linear and Non-Linear Programming We found that Linear Pro-

gramming Optimization provided an extremely high network lifetime. However, the imple-

mentation of the optimization was used in a naive manner. The sink sojourn time cannot be

done in fractions, so the output of the linear programming was rounded, in multiple ways,

to the nearest integer. There is an additional Linear Programming Optimization Model

that has results in integers, taking into account the constraints of implementing it in a net-

work. However, changing the output from floats to integers makes the problem an NP hard

problem, requiring inordinately long processing times on a normal computational machine.

In addition to integer linear programming, there is also a non-linear integer program-

ming optimization. Currently, we only optimized for the sink sojourn times, but with the

added ability of recharging it is necessary to see if there is a non-deterministic choice of
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which node to recharge. Adding the idea of which node to recharge will bring the opti-

mization from linear programming to non-linear programming. However, this also makes

the problem an NP hard problem, requiring more processing power then the lab currently

has.

For future work, the Integer Linear Program Optimization and Non-Linear Program-

ming Optimization will be parallelized and run in a cloud computation. With newer tech-

nology and services available, it is possible to ’borrow’ resources from outside providers,

making it possible to process complex algorithms across multiple cores and computers.

Creating and running this simulation in the cloud can greatly reduce the processing time

making it possible to gather a result in a reasonable amount of time.
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