Omni-Directional Hovercraft Design as a Foundation for
MAV Education

Carrick Detweiler, Brent Griffin, and Heath Roehr

Abstract— Quad-rotor Micro Aerial Vehicles (MAVs) are
used widely in research and increasingly in commercial ap-
plications as the cost of these platforms has dropped. The cost
of entry, however, is still high in large part due to the time
and effort involved in repairing vehicles after crashes while
learning about the system design and dynamics. In this paper,
we present an omni-directional hovercraft, which has dynamics
similar to MAVs and can be used as an educational platform
to teach students about the behavior and control of MAV-
like platforms with minimal cost and effort. Teaching students
about the capabilities and challenges associated with MAVs is
critical for educating future engineers and scientists that will
develop and use the next generation of MAVs. In addition,
the hovercraft provides a safe platform for researchers to test
control and coordination algorithms before trying them on
higher-cost MAVs.

I. INTRODUCTION

Quad-rotor Micro Aerial Vehicles (MAVs) and Unmanned
Aerial Vehicles (UAVs) are being used widely in research
labs and are finding an increasing number of commercial
applications as the cost of these platforms continues to drop.
It is critical to educate students how to design and control
MAVs to advance future research and commercial adoption.
Traditional robotics education with wheeled robots fails to
address many of the fundamental challenges associated with
MAVs. In particular, MAVs cannot simply stop to process
data and collect sensor information since their dynamics
will likely cause their position to drift. This requires an
educational focus on dynamics and real-time control and
should be taught on a MAV-like platform.

In our MAV-focused research lab!, we use a variety of
MAVs ranging from platforms provided by Ascending Tech-
nologies [1] to Parrot AR.Drones [2] that cost approximately
$5-10k and $300, respectively. At $300, the Parrot AR.Drone
seems like an ideal, low-cost platform to teach and educate
undergraduate students about using and developing MAVs.
Our experience, however, is that the low-cost platforms have
limited payloads, closed-source firmware, and limited inputs
for additional sensors. In addition, while learning how to
control the MAVs, students tend to quickly and frequently
crash these vehicles, greatly increasing the cost and effort
involved in using MAVs with the classroom.

We are grateful to NSF 1IS-1116221 and NSF CNS-1217400, the UNL
CSE department, and a UNL Faculty Seed Grant for supporting parts of
this work.

All authors are members of the Nebraska Intelligent MoBile
Unmanned Systems (NIMBUS) Lab, Computer Science and
Engineering, University of Nebraska—Lincoln, Lincoln, NE 68588,
USA. carrick@cse.unl.edu, bagriffin@gmail.com and
hroehr@cse.unl.edu

'Nebraska Intelligent MoBile Unmanned Systems (NIMBUS) Lab

Nimbus Hovercraft

AR.Drone

AscTec Hummingbird

Fig. 1. MAVs and hovercraft in the NIMBUS Lab.

We have designed an omni-directional hovercraft, shown
in Fig. 1, that has control architecture and dynamics similar
to most quad-rotor MAVs. We have used this platform
in the classroom to teach students about the fundamental
challenges associated with developing and controlling MAV-
like platforms in two courses: Embedded Systems (CSCE
436/836) and Robotics (CSCE 496/896). In addition, we use
this platform in our research lab to prototype algorithms
before moving them onto MAVs.

The hovercraft has a flexible design with typical diam-
eters ranging from 12 to 18 inches. It is constructed from
inexpensive and easily available materials. This encourages
exploration of the design space and various configurations,
since it is easy and inexpensive to try a different arrangement.
For our classes and research we configure the thrusters
to enable control of all degrees of freedom in the two
dimensional plane. This makes the control and dynamics of
the hovercraft very similar to a MAV.

The rest of this paper details the similarities and differ-
ences between MAVs and our omni-directional hovercraft.
In Section III, we explore the dynamics of both vehicles
and note that they are inertia-driven, which makes them
significantly different from traditional wheel-based ground
robots. In Section IV, we examine the low and high-level
architecture of the hovercraft. At a low-level, we use custom
designed circuit boards to control the system. At a high-level,
we use Robot Operating System (ROS) [3] for control of the
hovercraft, which makes it easy to substitute a hovercraft
for a MAV when testing various algorithms. In Section V,
we discuss our implementation and experiences using the
hovercraft for a variety of tasks in the classroom. Finally, we
conclude in Section VI by discussing limitations and future
work. But first, we begin with the related work in Section II.

Robot Cost
USC robomote $150
iRobot Create $220
Rice r-one $220
UNL Hovercraft $225-$275
LEGO Mindstorms $250
CEENBoT $300
Parrot AR.Drone MAV $300
HandyBoard $350
EPFL e-puck $979
TABLE 1

COST OF SELECTED EDUCATIONAL ROBOTS, SOME DATA FROM [4], [5].

II. RELATED WORK

With the advent of smaller and less expensive robotic
platforms, purchasing robots such as the Roomba for educa-
tional purposes has become a viable way to teach students
about advanced robotic principles without the need for large
robotic laboratories [6], [7], [5]. Because small, yet capable
robots can be purchased within the budget of a typical course,
more educators can take advantage of unique opportunities to
help students learn robotics with hands-on experiences. This
makes it possible for students to learn about the challenges
associated with the uncertainty in sensing and control on
real robots. Table I summarizes the cost of a small subset
of robots that are used in education, including the hovercraft
developed in this paper.

In addition to ground-based robots, education and research
on the control and applications of robotic quad-rotor MAVs
has been rapidly expanding in recent years [8], [9], [10].
While the physical design and flight dynamics of quad-rotor
MAVs is greatly simplified when compared to a fixed-wing
aircraft or helicopter, the algorithms and heuristics used to
control MAVs are quite complex [8].

The cost associated with purchasing and repairing MAVs
(after inevitable crashes) has largely kept MAVs out of the
classroom, except under highly supervised conditions that
may prevent students from learning by experiencing mis-
takes. Quad-rotor MAVs are different from most traditional
ground robots because they are omni-directional and largely
inertia-driven. Ground based omni-directional robots have
been designed and optimized for a variety of tasks [11], [12]
and have also been used in education. However, MAVs differ
from these platforms because their inertia is large compared
to their input forces and they do not have friction based
wheels (or wings in the case of an airplane) that can be
used to turn the vehicle. In this paper, we develop an omni-
directional, inertia-driven hovercraft robot that operates near
the ground with characteristics similar to most quad-rotor
MAVs. This inexpensive platform enables MAV research and
education with a significantly lower operational cost.

In addition to hardware, software advancements with ROS
have enabled rapid and reliable software engineering for
robotic systems, both for educators and researchers [13].
ROS offers students a way to learn about fault-tolerant
and scalable software engineering in the context of robotic
engineering. We use ROS to enable modularity and the
ability to use the same interfaces for both our hovercraft
and MAVs (which have existing ROS interfaces).

III. SIMILARITIES IN DYNAMICS

The key characteristic that distinguishes omni-directional
hovercrafts and MAVs from traditional ground-based omni-
directional vehicles is that they have small input forces
compared to their inertia. The speed and direction of an
omni-directional wheeled vehicle can be directly controlled
and adjusted by turning its wheels [14], [15], which requires
little energy. Hovercrafts and MAVs, however, are subject to
a much higher ratio of inertia to resistance. In order to shift
directions, the current momentum must be countered with a
significant new input force. If active control is not applied,
it will continue to drift and/or rotate.

Hovercrafts have the same number of degrees of freedom
(DOF) as MAVs when they are performing tasks independent
of elevation (e.g. navigating an unknown building [16]).
There is less of a connection between MAVs and hovercrafts
when the MAVs are performing aggressive maneuvers [17],
[18] due to the large tilt angles and changes in elevation. In
this paper, we analyze MAV and hovercraft similarities under
situations where speeds are low and maneuvers are smooth.
We now present an overview and comparison of the inertial
dynamics for MAVs and hovercrafts.

A. MAV Dynamics

Translational movement in MAVs is performed through
the use of pitch and roll. Tilting the MAV will introduce
a horizontal thrust component that will allow the MAV to
translate (Translate Left, Fig. 2). In addition, the overall
thrust must be increased to maintain the MAVs current
elevation. Because pitch and roll are about perpendicular
axes, using them in conjunction allows translation in any
direction. A simple control scheme is to have the MAV’s
baseline thrust level adjust to control elevation, and then
perform small deviations on opposite rotors to control pitch
and roll. The equations for MAV translational movement are

as follows: Moy, = $in0 Z Fy — Fy

Mpa, = costd Z Fy —mng (1)

where m,,, is the mass of the MAYV,

ay, is the horizontal acceleration,

0 is the angle of tilt,

F} is the force of each rotor,

F, is the counter force from aerodynamic drag,

and a, is the vertical acceleration.

It is important to note that with the assumption of con-
stant elevation, translation becomes a function of tilt. Once
horizontal acceleration has begun, the only real limitations
on speed are maintaining elevation with enough component
of > F}, and drag which increases non-linearly with speed.

A MAV rotates by using the drag the rotor blades expe-
rience opposite to their direction of rotation, which creates
a torque on the vehicle. Since a quad-rotor MAV has two
pairs of rotors turning clockwise and counterclockwise, an
overall moment is generated by strategically increasing and
decreasing the speed of the rotors, in turn altering the drag
experienced by each pair. Since the drag of each rotor is

Translate

Thruster
Functions

tat:
Rotate Rotate

Clockwise

N

Translate Left

A,

Fig. 2.

¥ me

Schematic of the MAV forces to achieve rotation and translation.

proportional to the square of its rotational velocity [19], a
controlled unbalance can be introduced to rotate the MAV.
Fig. 2 shows that speeding up rotors with clockwise drag and
slowing down those with counterclockwise drag causes the
MAV to rotate clockwise. This does not induce additional
pitch or roll since the pairs are opposite one another and the
component of thrust remains balanced across the center of
the MAV. The rotational dynamics are:

Ina =Y M; — My ©))

where I,,, is the rotational inertia of the MAYV,

« is the angular acceleration,

M, is the drag moment of each rotor,

and My is the counter moment from aerodynamic drag.

B. Hovercraft Dynamics and Comparison

Translational movement of hovercrafts along the ground
plane is controlled by the one directional force output of
each thruster. Ideally, coordinated thrusters pointing in at
least three directions allow omni-directional acceleration and
deceleration (Fig. 3) in the same fashion as tilt does for
MAVs flying with small tilt angles (Eqn. 1). The equation
for hovercraft translational dynamics is:

mpa =Y Fy —F, (3)

where my, is the mass of the hovercraft,

a is the acceleration,

F; is the force of each thruster,

and Fj is the counter force from skirt drag.

Hovercraft speed, just as with MAVs, is limited by drag
and will reach a maximum when the force of drag is equal
to the thruster force input to the system. The drag on the
hovercraft is primarily due to limited contact between the
inflated skirt and the ground. It is important to note that
pure translation (i.e. translation without rotation) when using
a single thruster can only occur if the thruster is aligned
with the hovercraft’s center of mass. If a thruster has a
perpendicular offset from the hovercraft’s center of mass with
respect to the direction of its input force, it will introduce
a moment about the center of mass (Fig. 3). Each moment

l, Translate

/
==
—m = "y
'::;1::::: - -« —u *
Hover
—u
— . ‘
Thruster g
Functions Alternative
Layout
y
<j ® W

®.‘\\Q

Rotate
Clockwise

Translate Left

Fig. 3. Schematic of the hovercraft thruster layouts and forces to achieve
rotation and translation.

is equal to the cross product of distance from the center of
mass of the hovercraft to the thruster and thruster force. To
perform rotation without translation, rotational thrusters must
be countered with an equal magnitude of opposing thrust
input, but by translational thrusters aligned with the center of
mass. Just as rotation results from generated rotor moments
on a MAV (Eqgn. 2), rotation on the hovercraft is given by
the following equation:

Ina=Y Fxr— Mg 4)

where [}, is the rotational inertia of the hovercraft,

« is the angular acceleration,

F} is the force of each thruster,

r is the distance to each thruster from the center of mass,

and M, is the counter moment from skirt drag.

Careful planning of thruster placement and control im-
plementation allows a hovercraft to rotate and translate in
any direction, in varying magnitude, in the same fashion as
a MAV. Thrusters add momentum to the system, and this
momentum is typically higher than the drag. This means that
sufficient planning must be made in advance to coordinate a
change in direction or to stop.

The payload capacity of the hovercraft is proportional
to the thrust generated by the downward-facing thruster,
the hovercraft diameter, efficiency, and the diameter of the
downward-facing thruster:

(&)

where P is the payload of the hovercraft,

F; is the force produced by the downward-facing thruster,

Dy, is the diameter of the hovercraft,

7 is the efficiency,

and A; is the area of the downward-facing thruster.
Efficiency accounts for the air that escapes underneath the
skirt of the hovercraft. It varies depending on the uniformity
of the skirt and the smoothness of the ground surface.
Efficiency can be determined experimentally for different
configurations.

" otor cgnncr_lor'.

[P

Fig. 4. Picture of the hoverboard that provides low-level control.

A final principal attribute shared between hovercrafts and
MAVs is the importance of balanced and controlled correc-
tions. Because control is based on the force input of placed
thrusters or rotors, changes to either vehicle that unbalance
the center of mass or rotational inertia can dramatically
change the handling of the vehicle. If too many components
are placed on one side of the hovercraft, for example, the
shift in the center of mass will cause previously aligned
translational thrusters to generate moments and rotations
when not intended. Best results are obtained by mechanically
balancing the system and then using feedback control to
maintain constant heading to correct for unwanted rotation
from unaligned thrusters or uneven drag. The similarities in
dynamics between hovercrafts and MAVs show that omni-
directional hovercrafts can be used to learn about the funda-
mentals of control and component placement that are directly
applicable to MAVs.

IV. SIMILARITIES IN ARCHITECTURE

We designed the control architecture of the hovercraft
similar to that of most MAVs. At a low-level there is a pair of
microcontrollers that perform motor control, interface with
sensors, and provide an abstracted interface for the higher-
level system. The high-level control is implemented in ROS,
with an interface that is compatible with existing ROS MAV
control nodes. In this section, we detail both the low and
high-level control systems and architectures.

A. Low-Level Architecture

The hoverboard was designed to easily interface with a
wide variety of sensors and to provide base onboard sensors
that are similar to those found on most MAVs. At the low-
level the hovercraft is controlled by the hoverboard, shown
in Fig. 4. The hoverboard has a pair of ATmegal284P
processors, with one operating at 8MHz at 3.3V and the
other at 20MHz at 5.0V. The two processors are connected
over an I2C bus that is also exposed externally to enable
easy expansion. Nearly all MAVs are controlled by multiple
processors, so when designing the hoverboard, we decided
to put two lower-end processors instead of a single more
capable processor. This gives students in embedded systems-
type courses the opportunity to learn how to implement
protocols to communicate between the processors and they
are also able to learn how to balance tasks between the
processors to ensure real-time operation.

The hoverboard has a magnetometer and a one-axis gyro-
scope. These are used to control the rotation of the hover-
craft and to teach students about data fusion on embedded
systems. These are the same sensors found on most MAVs,
minus the accelerometer, which is not needed since the
hovercraft always stays level relative to the ground.

The hoverboard also has current feedback sensors, analog
sensor inputs, digital I/O pins, serial, SPI ports, and PWM
outputs. Since the hoverboard has both 5V and 3.3V inputs
and outputs, it is possible to interface with nearly any type
of sensor or actuator. We have added range finders, line
detectors, bump sensors, accelerometers, servos, computer
mice sensors, and a number of other devices. The ability to
expand makes it easy to do a wide variety of course projects.

For wireless external control the 5V processor has a
Zigbee radio. The 3.3V processor drives the hoverboard
thrusters using a PWM signal to control MOSEFTs, which
enables variable speed, uni-directional control of the thrusters
(they can push, but not pull). The hovercraft is typically
powered by a 7.4V two cell LiPo battery that is monitored by
on-board circuitry to disable operation if the voltage drops
too low. The system is protected from over current or short
circuits with an 8A replaceable fuse.

The hovercraft was used as the core platform for an
embedded systems course. In the course the students learned
to configure and control most of the peripherals on the hover-
board and implemented data fusion algorithms, proportional-
integral-derivative (PID) rotation controllers, communication
protocols, and task schedulers. The design of the hoverboard
is available online, but much of the functionality could also
be replicated using a pair of Arduinos along with motor
control shields.

B. High-Level Control in ROS

Robotic Operating System (ROS) is a meta-operating sys-
tem framework that enables distributed control of a robotic
system. In addition, ROS greatly simplifies the inherent
complexity of engineering software for robotic systems. The
architecture of ROS is based on a collection of computational
units (referred to as nodes) that communicate with one
another via a set of distinct publishers and subscribers
(collectively referred to as topics). The nodes are highly
cohesive and loosely coupled, making a system built with
ROS evolvable, fault-tolerant, and scalable. Further, ROS
nodes in the same system are capable of running on different
computers (or robots), enabling off-line control and real
time communication. Because ROS nodes can be written in
either python or C++, object-oriented programming can be
leveraged to increase modularity and encapsulation.

ROS is widely used by MAV researchers and there are
open-source implementations for controlling both the MAVs
used in our research (Parrot AR.Drone and Ascending Tech-
nologies Hummingbird). This, along with node modularity,
makes ROS an ideal choice for our MAV-hovercraft, cross-
compatible implementation. As shown in Fig. 5, we logically
separate the ROS nodes in our system into four categories:

Lt
PELIN R
N\,
\ \
1

4 4 4 N, ' 4
I \ ' ’ ’ A
Zigbee : Hoverboard Thruster 1 ! PID
| t— 1 “wrapper 11 1~ controler }
1 H \

: J.
- ! -
’ ~, !
N

Motion

; \Interface,' ,' \ Mapper Planner

' \, '
\\ /’ ! ~, ~ /’ |

- - N_—’ -

Joystick
Interface

Joystick
Wrapper

Movement
Wrapper

Landmark
Detector

Low-Level
Processing

Fig. 5. ROS control architecture. Dashed nodes are easily replaced with
MAV-specific nodes, enabling algorithm prototyping on hovercraft.

Landmark
Mapper

Camera
Interface

Mid-Level

Pr

; High-Level |
P i H

Low-Level
Interface

(1) low-level interface, (2) low-level processing, (3) mid-
level processing, and (4) high-level processing.

The nodes in the low-level interface are responsible for
low level communication and interfacing with devices such
as radios and sensors. These nodes subscribe to (i.e. con-
sume) topics that contain low level data that is directly
received from or destined for sensors, thrusters, rotors,
etc. They are responsible for converting low level data to
and from serial message formats. In the event the data is
outbound (from other ROS nodes) these nodes instruct the
operating system to send them via the appropriate output
device. Inbound data (from sensors or radios) is appropriately
converted and published (i.e. emitted) to other ROS nodes.

The primary responsibility of low-level nodes is the
abstraction to or from low level commands. These nodes
subscribe to topics that are published from the low-level
interface nodes, abstract the data in some way, and then
publish the abstracted data to other ROS nodes. They also
subscribe to topics that send abstracted data from higher level
nodes that must be converted into low-level commands that
are then published to the low-level interface nodes.

The mid-level processing nodes are central to the system.
They often subscribe to and publish many topics. They are
equipped to process both lower level data and higher level
data (in terms of abstraction). In essence, they perform the
required system functions that bridge the gap between the
low-level nodes and high-level nodes.

High-level processing nodes generally interact with the
most abstracted and processed data. In addition, they typi-
cally implement the most sophisticated and complex features
of the system. Because many fine-grain and platform-specific
details are abstracted away at this level, the developer is free
to implement complex algorithms without having to manage
large amounts of system implementation complexity.

ROS Example Implementation:

Fig. 5 presents an example system that uses a camera
to identify landmarks (in this case, barcodes), map their
locations, and then plan motions within the map based on the
location of the landmarks. In addition, the system provides
support for a manual override (i.e. the user can use a joystick
to introduce movement commands at any time).

In this example, there are three low-level interface nodes:
an interface for a Zigbee radio, joystick, and camera. These
nodes enable communication with their respective devices
and bridge the gap between the operating system and ROS.

Each low-level interface node publishes and subscribes
to a low-level processing node’. For example, messages
received from the joystick (via a low-level interface node)
may have a high-precision data value for each button or
joystick on the device in the form of a multi-dimensional
array. However, other higher-level ROS nodes may require
that this be abstracted into a simple integer-valued format.
A low-level processing node would handle this abstraction.

At the mid-level, a PID controller is shown that is re-
sponsible for maintaining the desired heading and reducing
undesired translational drift, as well as subscribing to and
publishing movement commands when they are required
(acting as a movement command proxy of sorts).

In our example, there are two high-level processing nodes.
The landmark mapping node maintains a map of the known
environment that the motion planner node can use to deter-
mine which movement commands are required. The motion
planner node does not have to administer or control drift,
platform-specific message formats, or deal with image data
formats. All of this processing is handled in lower levels
and only relevant, concise information is published to the
high-level processing nodes.

ROS Modularity:

The majority of this system could also be used directly
by a MAV with little modification (assuming the MAV is
operating in a two dimensional plane). The four dashed nodes
in Fig. 5 are the only nodes that would need to be modified
if a MAV were used in lieu of our hovercraft.

The modifications that are required to adapt this system for
a MAV are low-level and platform specific. For example, the
Zigbee interface node must be modified to compute messages
in a format the MAV can understand. Similarly, the thruster
mapper node must be replaced by a rotor mapper node
(assuming the MAV requires individual rotor commands).
The PID controller node may only require that its control
gain parameters be adjusted. In any case, replacing nodes or
modifying node parameters is as simple as editing an XML
file that is used to launch the ROS nodes.

In the lab setting, a researcher can develop and test a
complex algorithm using our hovercraft implementation, and
then run the same algorithm using a MAV. If modifications
need to be made after switching to a MAV (or from a MAV
back to the hovercraft), they can be made to the high-level
processing nodes with little to no change required in the
mid-level processing nodes.

For educational use, individual courses can focus on
particular layers or touch on nodes at all levels. Classes
focused on hardware, sensors, or other device interfaces may
focus on developing low-level nodes. Courses on control-

2In our example there exists a one-to-one relationship between low-level
interface nodes and low-level processing nodes, however this is not required
and may not be the case in other examples.

Fig. 6.
theory may focus on the mid-level control processing tasks,
while courses on artificial intelligence may work on high-
level nodes. A more general topics robotics course may
address nodes at all levels.

PID controller step response to changing angles.

V. IMPLEMENTATION AND EXPERIENCES

In this section, we provide additional details on the hover-
craft implementation. We also discuss our experiences with
the hovercraft when teaching two courses: Embedded Sys-
tems (CSCE 436/836) and Robotics (CSCE 496/896). Both
of these courses had upper-level undergraduates as well as
graduate students. The Embedded Systems course had mostly
Computer Science and Computer Engineering students, while
the Robotics course also had students from Mechanical
Engineering, Electrical Engineering, and Physics.

A. Hovercraft Implementation Details

The hovercrafts are constructed from inexpensive materials
that are available at local and online hardware and hobby
shops. The base is made of 1.5 inch rigid foam insulation
and the skirt, which directs air to provide lift, is cut from a
5 mil plastic sheet. Thrust is provided by up to 6 standard
RC ducted fans. Control and processing is enabled by a
custom-designed circuit board detailed in Section IV-A. The
total cost of the platform is $275 for small build quantities
and drops to $225 for medium sized builds. This compares
favorably to other educational robotics platforms as shown
in Table I. The driving costs are the control board ($150 for
small quantities), motors ($60 total), and battery ($40). The
body components cost less than $25.

The low cost of the hovercraft’s body components encour-
ages exploration of different configurations and layouts. In
the courses using this platform, students have built circular
bases with diameters ranging from 12 to 18 inches and
some groups experimented with different shapes for the
base, although all groups ended up preferring the circular
bases that had better lift characteristics in practice. There
are multiple tradeoffs to consider when choosing the base
size. Larger bases tend to allow for larger payloads and are
less sensitive to weight imbalances. Having a large base and
payload, however, decreases the rate at which the hovercraft
can accelerate.

Compared to MAVs, the hovercrafts are very easy and
quick to build and modify. In addition, the hovercrafts have
significant payload capabilities that make it easy to mount
new hardware and sensors. The hovercrafts can hover with a

Fig. 7.

Ball detected (left) based on the HSV image (right). Also seen is
a scale-invariant landmark that can be identified for localization.

payload of over 2.5 kg (e.g. a netbook computer), but with
this much additional mass it accelerates very slowly. In typ-
ical course projects, students have added range finders, line
detectors, bump sensors, accelerometers, servos, computer
mouse sensors, cameras, and a number of other devices.
Fig. 8 shows a picture of the hovercraft configured with a
ball collection mechanism and camera, which was part of
the final project competition and is detailed in Section V-C.

B. Feedback Control

One of the early projects for both courses was the im-
plementation of a PID controller to enable precise heading
control of the hovercraft based on feedback from the gyro-
scope and magnetometer. This uses the base hardware on the
hoverboard and can be implemented either on the microcon-
trollers or at a higher level in ROS. Actively controlling the
angle is important even when trying to do pure translations
as small misalignments in the translational thrusters will add
torques that quickly add up to large rotational velocities
if uncorrected. This is similar to quad-rotor MAVs, where
control of each degree of freedom will impact the other
degrees of freedom.

Fig. 6 shows the impulse response of a PD controller when
changing the target angle. In practice no integral component
was needed since the hovercraft has low friction and no
external rotational forces. Note that there is a large initial
overshoot, which is due to the rotational inertia associated
with the hovercraft and is difficult to avoid with a PD
controller without significantly slowing the response rate. In
practice, we found that this level of overshoot is acceptable
for most applications which require smooth changes in angle
and not stepwise changes. The overshoot can be reduced by
adding a feed-forward component to the controller.

C. Ball Detection, Following, and Capture

The final project for the Robotics (CSCE 496/896) course
involved collecting as many balls at known locations as
possible in an environment augmented with scale-invariant
visual landmarks [20]. This combined techniques learned
in prior assignments including visual localization and nav-
igation, ball detecting (see Fig. 7), and visual servoing. In
addition, this project required augmenting the hovercraft with
a gripper or ball collection mechanism, see Fig. 8.

These tasks required vision processing, which was initially
performed using a small Gumstix processor onboard the
hovercraft. Unfortunately, the operational area had poor WiFi
bandwidth so ultimately students used wired webcams. Since

landmarks were spread out, most groups only used the
visual landmarks to opportunistically localize the hovercraft
whenever a landmark was visible. This is because dead
reckoning with the hovercraft (and also MAVs) is extremely
imprecise and cannot be relied upon for significant distances.

Detecting balls was performed by thresholding in the HSV
color-space and then looking for round objects as shown in
Fig. 7. While the balls were static in the competition, the
hovercrafts still needed to dynamically track and adjust their
trajectories when approaching a ball.

Each group developed a different mechanism for ball
collection. Most used more traditional graspers to pick up
a single ball and then drop it off at a target location. One
group instead developed a ball collection mechanism that
collected many balls at once as seen in Fig. 8. This worked
well since less time was spent traveling to dropoff locations.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we presented an overview of an omni-
directional hovercraft platform and compared its dynamics
to quad-rotor MAVs and more traditional ground robots.
We also examined the similarities in the low and high-
level control design of the hovercraft and MAVs that makes
interoperability easy. Finally, we looked at some of course
assignments that used the hovercraft.

The hovercraft worked well in these classes to teach
students about the challenges associated with developing and
controlling robots with significant momentum that cannot
easily or precisely stop or change direction. This forms a
foundation that prepares students to develop and control
MAVs in future courses and careers. In addition, we have
found that the hovercraft is a useful platform for developing
and testing algorithms in our research lab before implement-
ing them on an actual MAV.

While the hovercraft has similar dynamics to a quad-
rotor MAV in that it is an inertia-driven platform, there are
some differences. Mainly, MAVs pitch and roll to trans-
late, whereas the hovercraft does not. For some sensing
(e.g. taking pictures) and control tasks the pitch and roll
can have a significant impact. As such, the hovercraft is
best compared to MAVs that are moving slowly and not
performing aggressive maneuvers.

In the future, we plan to work on reducing the cost of the
electronics to reach a target cost of under $200. At this price
point the hovercraft will be accessible to a larger set of users.
We also aim to develop followup courses that use MAVs
by building on the experience and knowledge the students
gained while working with the hovercraft.

ACKNOWLEDGMENT
Thanks to Brian Julian for initial ideas and discussions
about hovercraft, Tim Echtenkamp and Tyler Lemburg for
developing initial control and interfaces, NIMBUS Lab mem-
bers, UNL CSE Department, and especiall the many students
in CSCE436/836 and CSCE496/896.

REFERENCES

[1] “Ascending technologies.” [Online]. Available: http://www.asctec.de

[2] “Parrot AR.Drone.” [Online]. Available: http://ardrone.parrot.com/

[3] “Robot Operating System.” [Online]. Available: http://www.ros.org/

[4] J. McLurkin, S. Rixner, M. O’Malley, A. Lynch, and T. Barr, “A
low-cost multi-robot system for research, teaching, and outreach,” in
Distributed Autonomous Robotic Systems, 2010.

[5] B. Tribelhorn and Z. Dodds, “Evaluating the roomba: A low-cost,
ubiquitous platform for robotics research and education,” in Robotics
and Automation, 2007, pp. 1393-1399.

[6] B. Dickinson, O. Jenkins, M. Moseley, D. Bloom, and D. Hartmann,
“Roomba pac-man: Teaching autonomous robotics through embodied
gaming,” in AAAI Spring Symposium on Robots and Robot Venues:
Resources for Al Education, 2007, pp. 35-39.

[7]1 D. Housten and W. Regli, “Low-Cost localization for educational
robotic platforms via an external Fixed-Position camera,” in AAAI Al
Education Colloquium, 2008.

[8] K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh, “Pro-
gramming micro-aerial vehicle swarms with karma,” in Conference
on Embedded Networked Sensor Systems, 2011.

[9] J. Shepherd III and K. Tumer, “Robust neuro-control for a micro
quadrotor,” in Genetic and evolutionary computation, 2010, pp. 1131-
1138.

[10] P. Sujit, A. Sinha, and D. Ghose, “Multiple UAV task allocation using
negotiation,” in autonomous agents and multiagent systems, 2006, pp.
471-478.

[11] H. Asama, M. Sato, L. Bogoni, H. Kaetsu, A. Mitsumoto, and I. Endo,
“Development of an omni-directional mobile robot with 3 DOF
decoupling drive mechanism,” in Robotics and Automation, vol. 2,
1995, pp. 1925-1930.

[12] O. Diegel, A. Badve, G. Bright, J. Potgieter, and S. Tlale, “Improved
mecanum wheel design for omni-directional robots,” in Australasian
Conference on Robotics and Automation, 2002, pp. 117-121.

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, 2009.

[14] P. Muir and C. Neuman, “Kinematic modeling for feedback control of
an omnidirectional wheeled mobile robot,” in International Conference
on Robotics and Automation, vol. 4, mar 1987, pp. 1772 — 1778.

[15] I. Khan and M. Spenko, “Dynamics and control of an omnidirectional
unmanned ground vehicle,” in Intelligent Robots and Systems (IROS),
oct. 2009, pp. 4110 —4115.

[16] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unstructured
and unknown indoor environments,” in The European Micro Aerial
Vehicle Conference and Flight Competition 2009, 2009.

[17] H. Huang, G. Hoffmann, S. Waslander, and C. Tomlin, “Aerodynamics
and control of autonomous quadrotor helicopters in aggressive ma-
neuvering,” in International Conference on Robotics and Automation
(ICRA), may 2009, pp. 3277 —3282.

[18] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” in
International Symposium on Experimental Robotics (ISER), Dec 2010.

[19] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-uav testbed,” Robotics Automation Magazine, IEEE,
vol. 17, no. 3, pp. 56 —65, sept. 2010.

[20] D. Scharstein and A. Briggs, “Real-time recognition of self-similar
landmarks,” Image and Vision Computing, vol. 19, no. 11, pp. 763—
772, sept. 2001.

