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Abstract

Over 70% of our planet is covered by water. It is widely believed that the underwater
world holds ideas and resources that will fuel much of the next generation of science
and business. Unfortunately, underwater operations are fraught with di�culty due
to the absence of an easy way to collect and monitor data. In this thesis we propose
a novel underwater sensor network designed to mitigate the problems of underwater
sensing and communication. A key feature of this system is the ability of individual
nodes to control their depth in water. This single degree of freedom allows the network
to cooperatively optimize placement for communication and data collection while
minimizing time and energy use. The sensor network also enables a GPS-like system
for localizing underwater robots to aid in data retrieval and sensing.

We develop a gradient-based decentralized controller that dynamically adjusts
the depth of a network of underwater sensors to optimize sensing for modeling 3D
properties of the water. We prove that the controller converges to a local minimum,
and implement the controller on our underwater sensor network, where each node
is capable of adjusting its depth. We verify the algorithm through simulations and
in-water experiments.

Most applications require that we associate a location with the sensed data. We
have developed an underwater mobile robot localization algorithm that allows un-
derwater robots to act as mobile sensors in the sensor network by using ranging
information. The algorithm is a minimalist, geometric-based algorithm that only re-
lies on knowing an upper bound on the robot speed and known static node locations.
We prove that the algorithm �nds the optimal location of the robot and analyze the
algorithm in simulation and in water with our underwater sensor network.

Thesis Supervisor: Daniela Rus
Title: Professor
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Chapter 1

Introduction

More than 70% of our planet is covered by water, and it holds ideas and resources that

will fuel much of the next generation of science and business. However, underwater

operations are fraught with di�culties due to the absence of an easy way to collect

and monitor data. Although underwater sensors do exist and can alleviate some of

the problems associated with manual data collection, they are not networked, and

their use introduces many additional challenges:

• Deploying, retrieving, and using the sensors is labor intensive;

• Collecting the data is subject to very long delays;

• Radio does not work underwater and acoustic communication bandwidth is
limited (300 bits per second);

• GPS does not work underwater;

• Power is limited to the batteries carried;

• The manual aspects of the sensors leads to error;

• The spatial scope for data collection with individual sensors is limited;

• Individual sensors are unable to perform operations that require cooperation,
such as tracking relative movement and locating events.

These challenges have limited research, industrial, and military underwater appli-

cations and kept them small and narrow in scope. What is required is a low-cost, ver-

satile, high-quality, easily deployable, self-con�gurable platform for underwater sensor
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networks that will (a) automate data collection and scale-up in time and space, (b)

speed-up access to collected data and (c) be easy to use.

Easily deployable and usable underwater sensor networks promise to increase the

scope and e�ciency of underwater operations through automation and communica-

tion. They will enable many applications that are now di�cult or impossible, such as

mapping the ocean �oor, modeling coral reefs, monitoring pollution, prospecting for

natural resources, and monitoring the safety and security of harbors. Marine biolo-

gists and environmental monitoring organizations, for example, could deploy sensor

networks to collect precise data with higher temporal and spatial density and far less

labor intensity than current alternatives.

In this thesis we propose a novel underwater sensor network. The network enables

algorithms to improve sensing, provides localization information to mobile underwater

robots, and allows near real-time feedback to scientists. A key feature of the sensor

nodes, called AquaNodes, is a depth adjustment system that allows the sensor

nodes to change their depth in the water column. More speci�cally, the research in

this thesis investigates:

• A decentralized algorithm to optimize depths for sensing and data inference;

• A localization algorithm for mobile underwater robots;

• The development of the underwater sensor network hardware platform with
depth control;

• Field experiments in the context of underwater monitoring applications;

The nodes are anchored and move up and down in the water column using a depth

adjustment system. The AquaNodes use this depth degree of freedom to coopera-

tively con�gure the nodes of the system to optimize sensing and data collection. In

addition to enabling algorithms for optimizing sensing, the depth adjustment system

allows:

• Easy deployment and retrieval of the nodes, as they can adjust their depth to
return to the surface on command;

• Radio and GPS use at the surface;

• Sampling and sensing the full water column.
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Algorithmically, we utilize the depth adjustment system to develop and analyze

a decentralized depth control algorithm that coordinates the one degree of freedom

in each of the nodes in our 3D sensor network to improve the positioning for data

collection for data �eld reconstruction. This algorithm is provably convergent and

requires little communication and processing.

In addition to the decentralized depth adjustment algorithm, we have also devel-

oped an underwater mobile robot localization algorithm, which runs on our under-

water network. Using this algorithm the network can act as a GPS-like system for

underwater vehicles and divers (since GPS is unavailable underwater). This algo-

rithm address the challenges of underwater localization. For example, mobile nodes

only get ranges from the network every few seconds, this is su�cient for the algo-

rithm. In addition, as dead-reckoning information is di�cult to obtain underwater,

dead-reckoning is not needed for the algorithm.

We extensively analyze and test both of these algorithms in simulation and in lab,

pool, and real-water experiments. Simulations stress the algorithms under varying

conditions and setups. The lab and pool tests verify the functionality of the algorithms

on the hardware platform and the deployments in rivers, lakes, and oceans test the

algorithms in real-world environments.

The rest of this chapter is organized as follows. Section 1.1 gives examples of cur-

rent environmental sensing systems and approaches. Section 1.2.1 gives an overview

of the sensor network and robot platform. This is followed by an overview of the

algorithms developed in this thesis (Section 1.2.2) and the corresponding simulations

and experiments (Section 1.2.3). Finally, Section 1.3 gives an overview of the contri-

butions, and Section 1.4 outlines the rest of the thesis.

1.1 Current Environmental Sensing

One example where underwater sensors networks are needed is coral reef environ-

ments. Coral reefs are extremely sensitive ecosystems, and many have died-out re-

cently due to subtle changes in the environment. Scientists are still trying to under-

stand the impact of natural and human-induced changes on these ecosystems. Marine
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(a) (b)

Figure 1-1: (a) Coral reef with tiles placed by a scientist to monitor growth.
(b) Crown-of-thorns star�sh attacking the reef.

biologists have found that pollution and minor temperature variations can have devas-

tating impacts on coral reefs. Any improvements in the temporal and spatial �delity

of the measurements helps scientists detect, react, and learn about the impact on

coral reef ecosystems.

Consider, for example, the coral reef o� the island of Moorea, French Polynesia.

This reef is a varied and complex ecosystem, which requires frequent observation and

measurement. As such, the University of California, Berkeley maintains the Gump

Marine Biology Station on the island to study the coral reef [1]. The biologists there

make use of a variety of techniques to study the environment, however, all are labor

intensive and/or result in a large lag between data collection and retrieval.

To study the growth of corals at di�erent locations the marine scientists deploy

small square tiles (see Figure 1-1(a)). The biologists periodically retrieve the tiles

and bring them into the lab to photograph and measure growth. This is an extremely

labor intensive process. A diver recovers and analyzes about 20 tiles a day and at

any time there are over 200 tiles deployed. Due to the large time commitment, the

tiles typically are only analyzed a few times a year. Automating the tile monitoring

and data collection has the potential to greatly reduce manual labor involved in

deploying and recovering tiles, thereby freeing scientists to study and analyze the
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collected data. In addition, with an underwater sensor network, the data can have

much higher spacial and temporal data. For instance, tiles can be photographed

hourly to capture time-varying properties that scientists would otherwise miss.

Another case where scientists and local communities can be aided by advanced

underwater sensor networks is in detecting and monitoring the explosive growth of

crown-of-thorns star�sh in coral reef environments. Figure 1-1(b) shows a crown-of-

thorns attacking a coral reef in Moorea. The crown-of-thorns is an invasive species

that eats coral and has few predators. As such, an infestation of crown-of-thorns

can devastate coral reefs. Being able to actively monitor coral reefs for crown-of-

thorns and count their numbers would help local communities react appropriately to

potential outbreaks.

Monitoring and studying coral reef and other underwater environments is cur-

rently performed using a number of methods: (1) divers manually observing and

measuring; (2) data loggers on moorings; (3) remotely operated vehicles (ROVs);

or (4) autonomous underwater vehicles (AUVs). Collecting data manually is time-

consuming and prone to errors. Static sensors, often at the surface or at a �xed

depth are one of the most common methods for collecting time-series data in the

ocean. These are only able to capture data at a single point in the water column. To

obtain a larger spatial sampling, oceanographers must deploy multiple buoys. The

buoy's depth is determined a-priori and they must be positioned precisely, otherwise

the sensing coverage of the region may not be ideal. Current coverage of bodies of

water is minimal. For example all of Massachusetts Bay is covered by only three

NOAA surface buoys to measure tide, temperature, wind, etc. [4].

At the other end of the spectrum, ships, ROVs, and AUVs are used as sensing

platforms. These are expensive and have short deployment times. While they obtain

samples over large geographic regions, it is impractical to leave them in one location

for large periods of time. Water column pro�ling sensors fall between moored buoys

and ROVs/AUVs in terms of spatial coverage and capabilities. These are moored in

a �xed location but are able to change depth to obtain measurements at numerous

positions. Further, pro�lers have �xed schedules and do not communicate with other
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sensors to determine optimal pro�ling trajectories. The operator decides the schedule

for pro�ling before the deployment, determining the trade-o� between battery life and

longevity of the system.

1.2 Advancing Environmental Sensing

In this thesis we mitigate the problems of traditional environmental sensing ap-

proaches by combining the strengths of AUVs and moored pro�ling sensors and adding

networking and computation capabilities. We propose and implement a novel under-

water sensor network and robot system with supporting algorithms to aid scientists.

The network utilizes the networking and computation capabilities to create a power-

ful, adaptive system. This system of hardware and algorithms addresses many of the

shortcomings of current state of the art underwater sensor systems. Our system is:

• Easy to deploy: the nodes can be thrown o� the side of a boat;

• Able to adjust the sensor node depths using a winch-based depth adjustment
system to improve positioning for reconstructing sensory �elds;

• Statically localized using a static acoustic localization algorithm or by surfacing
to use GPS;

• Dynamically localized to allow the robot moving through the network to obtain
position information for collecting sensor information and �nding the sensors;

• Networked acoustically to provide low-bandwidth, real-time information from
the system;

• Networked via radio at the surface to provide periodic higher-bandwidth feed-
back;

• Networked optically to allow the robot to download large data payloads from
the sensor nodes.

Deploying traditional sensor systems in coral reef environments requires divers to

precisely position the sensors so the scientist knows where the data is coming from

and so the sensor can be located for recovery. Our system, on the other hand, is easily

deployed by tossing the sensor nodes o� the side of a small boat. The sensor nodes

then localize themselves by either going to the surface using the depth adjustment
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system and then using GPS or by obtaining inter-node ranges and running a static

localization algorithm. Once the nodes are positioned, they use an acoustic modem

to communicate and run a decentralized depth adjustment algorithm to improve their

sensing positions for reconstructing sensory �elds. If they detect an abnormal change

in the sensor readings, perhaps an increase in pollution, for example, the sensor nodes

can contact the shore and request further investigation by the robot.

The robot localizes itself in the network using the mobile robot acoustic localiza-

tion algorithm. This allows it to position itself in the area of increased pollution to

take more detailed readings. It may, for instance, take water samples for later analysis

or take photos to determine if the pollution has caused coral reef bleaching�a sign of

poor reef health. The robot also can download data directly from the sensor network

nodes to obtain the detailed sensor data time-series from the past weeks or months.

This system greatly improves upon the current state of the art in underwater

sensing by creating a �exible and powerful network of sensors and robots. Leveraging

communication, computation, and mobility allows the system to adapt to changing

conditions. In addition, the system provides feedback to scientists in near real-time

so they can make informed decisions. In the rest of this section we give an overview

the platform, algorithms, and experiments developed in this thesis.

1.2.1 Platform Overview

Figure 1-2 shows a picture of our underwater robot, Amour, and the underwater

sensor nodes, AquaNodes. All are triple-networked. They have: (1) acoustic com-

munication for long-range low-bitrate; (2) radio for above-water long-range medium-

bitrate; and (3) optical communication for short-range high-bitrate data transfer.

This thesis focuses on the development of the underwater sensor network platform.

We give an overview of Amour and note that many of the speci�cs from the AquaN-

odes apply directly to Amour. They were developed in parallel and share many

common components. For instance, the communication, GPS, and logging facilities

on Amour are all components shared with the AquaNodes (often an AquaNode

is placed externally on the robot for these purposes).
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Figure 1-2: Picture of Amour with AquaNodes.

The AquaNode is cylindrically shaped with a diameter of 8.9cm and a length of

25.4cm. It weights 1.8kg and is 200g buoyant. It contains the three communication

systems, GPS, and on-board batteries, as well as logging, sensing, and processing

capabilities. All AquaNodes contain temperature and pressure sensors. In addition,

they have inputs for high-precision analog sensors, as well as a variety of digital sensor

interfaces. The on-board batteries allow for deployments ranging from 2 days with

constant acoustic communication to months with only periodic communication and

sensing.

At the heart of the AquaNodes is a generic sensor network platform hardware

and software system we designed in part for this thesis. The platform was designed

as a �exible, multi-functional sensor network platform that enables a wide range of

heterogeneous applications in the air, on the ground, and in the water. It provides

support for a wide range of communication and sensor systems not found in other

sensor network systems.

In addition to the AquaNodes, the platform is also used in a variety of other

projects such as river �ood monitoring [14] and cow virtual fencing [35, 87]. The

software is a custom-designed, extensible, multi-tasking, non-preemptive schedule-
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based operating system. Over 80% of the code used for the AquaNodes is code that

is core to the sensor board software system.

The underwater robot, Amour, is cylindrically shaped with a diameter of 17.8cm

and a length of 72.4cm. It weighs approximately 17.5kg and is 3kg buoyant, depending

on the con�guration. A buoyancy and docking module can be attached to the robot

to allow it to deploy and pick up AquaNodes. The on-board Lithium-Ion battery

allows for operation of over 8 hours. It has inputs for a variety of sensors, including

camera systems.

1.2.2 Algorithms Overview

We develop and analyze two di�erent algorithms in this thesis. The �rst is a decen-

tralized, adaptive algorithm for adjusting the depths of the AquaNodes to optimize

their placement in support of computing maximally detailed models of the full 3D

volume of the water. The algorithm is a gradient descent-based algorithm with guar-

anteed stability properties. We prove that the controller converges to a local minimum

of the system.

The decentralized depth adjustment algorithm positions the nodes so that they

are in good locations to collect data to model the values of the system over the whole

region, not just the particular points where there are sensors. This is critical as the size

of the ocean prohibits a brute-force deployment of enough sensors to cover all points

of interest. The sensor nodes use a covariance function that describes the relationship

between the possible positions of the sensor nodes and the region of interest. Because

the algorithm is computationally e�cient and requires little memory, we are able to

implement the algorithm on the AquaNodes.

The second algorithm is an acoustic mobile robot localization algorithm that lo-

calizes the robot underwater where GPS is unavailable. The localization algorithm is

a minimalist, geometric-based algorithm with provable optimality. It uses periodic,

asynchronous range measurements to the AquaNodes. We prove that the location

regions found are optimal given the range measurements. That is, the regions are the

smallest regions where all points are reachable by the robot.
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The challenge in underwater localization is that the ranges are obtained separately

over time and the robot may move many meters between range measurements. In

addition, expensive dead-reckoning systems are cost-prohibitive on our inexpensive

robot platform. As such, the only information available to the localization algorithm

is an upper bound on the maximum speed the robot could travel. The algorithm

handles these constraints and is computationally e�cient. In practice, it runs in

constant time per location update.

1.2.3 Experiments Overview

In addition to theoretical analysis of the decentralized depth adjustment and localiza-

tion algorithms, we also performed numerous simulation and in-water experiments.

For the depth adjustment algorithm we perform a number of simulations to show that

the controller �nds con�gurations at or very near the global minimum of the system.

In addition, we compare the algorithm to entropy minimization approaches as well

as a centralized solver. We show that entropy and similar algorithms require storage

space and computation time that exceed the capacity of the AquaNodes and other

embedded systems. Similarly, we �nd that centralized solvers require signi�cantly

more computation time then our decentralized algorithm. We also examine the var-

ious algorithm parameters and show that for reasonable and a wide range of values

the algorithm converges quickly.

We then use a data-driven physics-based model of the Neponset river, which feeds

into Boston harbor, to numerically derive a covariance model that describes the re-

lationship between di�erent points in the water for use by the decentralized depth

adjustment algorithm. We implemented this and other models on the AquaNodes

and show in pool and river experiments that the controller converges rapidly with

this real-world model. We also test changing covariance models and show that the

controller converges and performs well when changing covariance functions.

We tested the underwater mobile robot localization algorithm in simulation and

in rivers, lakes, and oceans. In simulation, we studied the e�ect of a number of

parameters, including ranging rate, error, number of nodes, and maximum node speed.
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We characterize the errors in these cases and show that the error is reasonable and the

algorithm performs as expected. We implemented a discretized, grid-based version of

the localization algorithm on Amour. We performed numerous experiments showing

that the algorithm performs well in rivers, lakes, and oceans. We compare the results

to GPS ground-truth gathered by driving the robot at the surface. The errors in

the acoustic localization algorithm are typically under 2.5 meters. This error is well

within the expected noise in the GPS reading.

1.3 Thesis Contributions

This thesis contributes to the �elds of sensor networks and underwater robotics.

The underwater sensor network is the �rst underwater sensor network developed and

deployed that uses communication and computation capabilities to improve sensing

and data retrieval. In particular, this thesis develops a depth adjustment algorithm to

improve sensor placement and a localization algorithm to enable underwater robots to

participate in data collection and retrieval. This thesis makes a number of theoretical

contributions, including:

• A decentralized depth adjustment algorithm for improving the positioning of
sensor nodes for sensing. The algorithm is provably convergent and stable;

• Underwater mobile robot localization algorithm with minimal assumptions and
requirements;

• Analysis of energy trade-o�s between the three communication methods (acous-
tic, radio, and optical).

This thesis also contributes to the �eld from a system development and experiment

perspective:

• Development of a generic sensor network hardware platform that is used for
AquaNodes and in a variety of other projects;

• Development of a �exible sensor network operating system;

• Implementation of a sensor network operating system that is easily customizable
for a variety of projects;

• A novel underwater sensor network platform, called AquaNodes;
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Figure 1-3: Thesis overview.

• A novel winch-based depth adjustment system for the AquaNodes;

• Simulations verifying the depth adjustment algorithm;

• Experiments and implementation of the decentralized depth adjustment algo-
rithm on the AquaNode platform. These experiments verify the algorithm
under real-world communication, motion, and sensing;

• Simulations verifying the localization algorithm;

• Experiments and implementation of the localization algorithm showing its per-
formance on embedded hardware in-situ.

1.4 Thesis Outline

This thesis develops an underwater sensor network and develops novel algorithms that

improve sensing and enable localization of underwater vehicles. Figure 1-3 shows a

block diagram outline of this thesis. There are three main components to this re-

search. The �rst is the design of a novel generic sensor network hardware and soft-

ware system and the speci�c AquaNode implementation with the depth adjustment

system. The second is the development of two novel algorithms that give underwater

sensor networks novel capabilities for placing the nodes optimally for the purpose of

32



data collection (the decentralized depth adjustment algorithm) and for computing

the location of mobile nodes in the network (the localization algorithm). Each of

these components include theory and implementation sections. This is re�ected in

the layout of this thesis.

We start by detailing related work in Chapter 2. Following this, we discuss our

generic sensor network platform and the speci�c AquaNode implementation and

analyze the platform and communication systems in Chapter 3. Chapter 4 intro-

duces the decentralized depth adjustment algorithm and proves algorithm conver-

gence. Chapter 5 follows the presentation of the algorithm and characterizes and

veri�es the algorithm using detailed simulations and pool and river experiments. In

addition, this chapter utilizes a covariance model based on a physics-driven hydro-

dynamic river model. Chapter 6 introduces the underwater mobile robot localization

algorithm and proves its optimality. Next, Chapter 7 analyzes the localization algo-

rithm using simulations and real-world experiments. Finally, we conclude and discuss

lessons learned in Chapter 8.
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Chapter 2

Related Work

2.1 Overview

The technology to develop underwater sensor networks has only recently become

available. Acoustic communication, a key component of underwater networks, has

been a focus of underwater research since World War II [96]. However, the thrust of

acoustic communication underwater was, for a long time, focused on point-to-point

systems, enabling communication between submarines and ships. These systems were

bulky and required large amounts of power. It was not until the past decade or so

that acoustic communication was used to create networks of autonomous underwater

sensors. Our AquaNode platform is among the �rst underwater sensor networks

with the ability to communicate, sense, and act autonomously.

There are, however, a number of theoretical challenges that must be overcome in

order to make underwater sensor networks useful to scientists. The �rst is to develop

algorithms and techniques for optimally placing the sensors to collect data. This is

critical in underwater systems as it is unlikely that there will ever be enough sensors to

fully cover the underwater environment. Thus, choosing positions is critical. A second

theoretical challenge is to develop algorithms that are able to localize static and mobile

nodes underwater. Having localization data is critical to give position information to

the sensed values. This is di�cult with inexpensive underwater systems that do not
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have expensive inertial sensors that cost orders of magnitudes more than the devices

themselves. In this thesis we develop solutions to both of these theoretical challenges.

A key feature of the AquaNode platform is its ability to dynamically adjust

its depth in the water. We use this ability to optimally place the sensors to gather

and reconstruct sensory data. Few researchers have explored the optimal placement

of sensors underwater using depth adjustment. There is, however, much work in

optimizing placement for sensors on land. In the sensor network community, these

systems typically preplan the positions before deployment. In the distributed robotics

community, the robots are typically assumed to have full 2D or 3D degrees of freedom

to plan their paths for sensing. Some of these trajectories are preplanned, although,

many are adjusted online. Our work falls between a fully autonomous and a pre-

planned system in that our system has very constrained motion (more like a sensor

network) but distributedly plans the placement and motion online.

Researchers have studied underwater localization extensively and it is still an

active area of research. The motivation from this work comes from Naval research

in localizing vehicles and targets underwater. Early systems, which are still used,

employ statically deployed buoys that respond to pings from the moving vehicle.

These systems are not networked. Our system takes advantage of the networking

capabilities of the sensor network to share information on locations and ranges in the

network.

In this chapter we go into the details of previous work related to this thesis. We

start by discussing other underwater sensor network systems. We then discuss prior

work in sensor placement for optimizing sensing. Finally, we present other approaches

to underwater localization.

2.2 Prior Work in Underwater Sensor Networks
At the heart of our underwater sensor node is a generic sensor network platform that

was developed largely for this thesis. We build on several years of important work in

designing and �elding sensor network systems on a variety of platforms including the

Mote [6, 51, 72, 73, 79], Fleck [105], Cricket [83], Meraki [15, 70], and others [37, 54,
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60]. We start this section by describing a small subset of available research sensor

network platforms as well as a selection of applications in which they are used. We

then discuss particular underwater sensor network systems.

The Berkeley Mote was one of the �rst widely used sensor network platforms [51].

Many systems descend from the original Berkeley Mote. These range from the Intel

Mote, operating on a 12 MHz ARM7 CPU and with increased RAM [73], to the

Telos Mote, designed to be extremely low power [79]. The Epic platform provides an

open-source platform designed to be modular and hierarchical [37]. Extending the

Mote concepts but with new platforms, the MIT Cricket is a sensor network node

that adds the capability to obtain ranges between sensors [83] and the CSIRO Fleck

node includes solar charging capabilities as well as a longer range radio [105].

Most Motes run TinyOS, an operating system developed for use on the original

Berkeley Mote [68]. Its small footprint and processor usage come from its heritage

of operating on processors with relatively limited capabilities. Our operating system

takes a similar approach to TinyOS in that the core is based on a non-preemptive

multi-tasking scheduler. However, our operating system takes advantage of the

greater memory and processing capabilities of our platform. In addition, TinyOS

is abstracted in such a way that attempts to be accessible to scientists that have

little programming experience. We do not abstract to this level and as such give

programmers more �exibility in implementation decisions.

Another class of sensor network nodes handles demanding processing tasks, such

as image processing, but at the cost of using signi�cantly more power. The Intel Mote

2 uses an Intel XScale core which can be clocked at up to 416 MHz [6, 72]. The Meraki

sensor network [70] (a commercial spino� of the MIT RoofNet project [15]) runs linux

and can form adhoc 802.11 mesh networks. Cell phones have also been used as sensor

networks [60]. In the AquaNodes the acoustic modem has a 600MHz DSP processor

that can handle demanding processing tasks such as the signal processing for acoustic

communication. This processor is shutdown when these processing capabilities are

not needed, which saves energy. This multi-tiered approach enables deployment times

of months while still enabling complex processing tasks.
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While all of these platforms provide good options for sensor network research,

none supports a full range of communication and sensing options while also supporting

complicated algorithms. As these are vital requirements for theAquaNode platform,

we developed our own hardware and software platform that enables the study of

underwater environments.

The deployment of underwater sensor systems provides the opportunity to study

the ocean at a scale never before possible. One method used to study the under-

water environment is deploying trial and longer-term �ocean observatories.� The

Mediterranean Operational Oceanography Network (MOON) aims to create an ocean

observatory in the Mediterranean Sea for monitoring and forecasting weather, envi-

ronmental monitoring, and marine research [3]. MOON is part of the Global Ocean

Observing System (GOOS) which was created in the 1980s to monitor all of the

world's oceans [11]. GOOS has achieved 60% of their target ocean coverage with

sensors placed mostly on the surface. While these sensors provide good whole-ocean

coverage, they do not provide the detailed measurements that are desirable in many

areas. The Ocean Observatories Initiative (OOI) combines deep-sea buoys, cabled

underwater networks, as well as independent AUVs and sensors [12, 55]. The goal is

to provide high resolution information in certain areas and also to provide coverage

for GOOS in the United States. Patrikalakis et al.developed the Poseidon system

that allowed easy exchange and search of oceanographic information, including the

ability to forecast and adaptively sample the ocean [78].

A number of smaller scale ocean observatories also have been deployed to better

understand smaller scale ecosystems. Jannasch et al. have developed and deployed

a system of statically moored ocean sensors to monitor environmental processes o�

the coast of California in Monterey Bay [56]. The mooring buoys are at the surface

and provide real-time data feedback via a radio link. Glenn et al. are improving the

20 year old LEO-15 cabled observatory located o� the coast of New Jersey in 15

meters of water. The new system includes more support for integration with AUVs

and other types of sensors [46]. Curtin et al. present the Autonomous Oceanographic

Sampling Network (AOSN), which combines static sensors and AUVs [30]. One of the
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goals of AOSN was to adapt the trajectories of the AUVs based on the readings from

the static sensors. The Proudman Oceanographic Laboratory has deployed an ocean

observatory in the Irish Sea [52]. Frye et al. have deployed a deep ocean observatory,

located o� the coast of Vancouver Island, which uses ocean �oor sensors that are

acoustically linked to a surface buoy. The surface buoy transmits collected data via

a satellite link [42]. The Monterey Bay Aquarium Research Institute (MBARI) has

designed a mooring system for deep sea deployment. This system provides power

and communication links to multiple sea bottom sensors from a surface buoy [25].

Howe and McGinnis have developed a subsurface moored platform for the ALOHA

Observatory north of Oahu. This platform has a variety of sensors and supports

docking of an ROV/AUV and has a water-column pro�ler which can travel along

the mooring line [53]. Our system aims to be easy to integrate with any of these

ocean observatory systems, while providing new capabilities such as easy deployment

and recovery, automatic self localization and tracking, multi-model communications,

enhanced routing, and optimization of the acoustic communications channel through

mobility.

Our platform contains acoustic, optical and radio communications systems. The

Woods Hole Oceanographic Institute (WHOI) acoustic modem [41] and the Benthos

modem [5] are two commercial acoustic modems that have similar performance to our

acoustic modem. We built our own systems for a number of reasons. At the time, the

available acoustic systems cost more than the total cost of our nodes,1 were larger than

our node, and did not give access to the low-level interfaces to customize the commu-

nication protocols. Acoustic communication is extremely challenging due to the path

loss, noise, multi-path, and delay [8, 97, 77]. Most e�ort has gone into improving

the physical and MAC layers of acoustic communication to improve throughput and

e�ciency. We, however, take a di�erent approach. Instead of trying to improve the

physical and MAC layers of the acoustic system, we change the placement of the

sensors online to improve the throughput and e�ciency.

1Our nodes cost approximately $1k, while commercial acoustic modems cost over $3k.
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Our optical communications system is detailed in [36]. The recent development of

high powered blue-green lasers and LEDs has enabled the development of underwater

optical communication systems. A number of studies explore the theory of optical

transmission in water and suggested possible optical modem designs [27, 93, 28, 45].

Tsuchida et al. report an early underwater analog communication system for wire-

lessly monitoring cray�sh neuronal activity in [98]. Schill et al. create an underwater

optical system by combining blue-green LEDs with an IrDA physical layer with the

intent of communicating between a swarm of underwater robots [85]. Hanson and

Radic proposed the use of waveguide modulated optically lasers for high speed opti-

cal comms [50]. Farr et al. discuss the possibility of using optical communication for

control of underwater vehicles and present the results of an early prototype optical

communication system [39]. High-speed underwater optical communication systems

are not commercially available at this time, so we built our own system. We im-

prove upon existing systems by increasing speed, while reducing size and are able to

integrate the system inside the AquaNodes.

The focus of this thesis is not on the physical communications systems themselves

but rather on the novel combination of these systems into one platform to improve

overall communications e�ciency and reliability.

2.2.1 Depth Adjustment

In this thesis we develop a depth adjustment system for our underwater sensor net-

work. As far back as 1964 researchers constructed devices to sample water conditions

at particular depths. Joeris devised a device which could take samples at particular

depths by being lowered via a winch from a boat at the surface of the water [58].

Spiess devised a device for supporting multiple packages of oceanographic equipment

at a particular depth. This device used two vertical anchor lines with a horizontal

line suspended between. A buoyant device moved up and down on the vertical lines

to adjust the depth of the sensor packages [94]. Springer et al. use a winch from a

surface platform to automatically lower and raise a hydrological sensor developed by

the Center for Applied Aquatic Ecology at North Carolina State University [95].
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The LEO-15 platform developed jointly by WHOI and Rutgers University has a

bottom mounted winch system for water column pro�ling [46]. Howe and McGinnis

have developed a water column pro�ler which travels along the mooring cable of their

system and is able to recharge inductively at the surface platform [53]. Bokser et

al. developed an underwater sensor (based on the Mica2 Mote) that can adjust its

depth by moving a piston to change its buoyancy [20]. Pompili et al. mention using a

bottom-based winch or in�atable buoy to adjust the depth of sensors to more easily

deploy 3D sensor networks underwater [81, 80].

Our system di�ers from this prior work in that we use the depth adjustment

capabilities of our system for more than just water column pro�ling. We use depth

adjustment with feedback in an autonomous cooperative system of sensor nodes that

interact, sense, and decide on best node placement. Utilizing the depth adjustment

system in conjunction with an underwater sensor network enables algorithms that

improve sensing and communications. In addition, this system makes localization

and recovery/deployment of large systems much easier than traditional underwater

sensor networks.

A few papers discuss changing the depth of a moored underwater sensor to im-

prove sensing or communication. Akyildiz et al. discuss the bene�t and challenges

associated with adjusting the depth of underwater sensor nodes [8, 9]. They note that

depth adjustment allows greater sensor coverage, however, other factors need to be

taken into consideration, such as maintaining network communication connectivity.

Akkaya et al. propose adjusting the depths of nodes in an underwater sensor network

to reduce overlap to improve sensor coverage [7]. These papers present some theory,

but do not implement depth adjustment systems for underwater sensor networks.

2.3 Prior Work in Sensor Placement

The algorithm developed in this paper is closely related to previous work in sensor

placement and robot path planning to optimize sensing. Here we summarize a few

of the many related papers in this area. Cayirci et al. try to distribute underwa-

ter sensors to maximize coverage of a region [24]. They break the area of interest
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into cubes and adjust the depths to place at most one sensor in each cube. The

algorithm assumes near-ideal communication between nodes by way of surface buoys

and they do not test the algorithm on a hardware platform. Akkaya et al. simulate

optimizing sensor positioning in an underwater sensor network with depth adjusting

capabilities [7]. Their approach is to evenly spread out the nodes while maintaining

communication links using a decentralized graph coloring algorithm. Our approach

is di�erent in that we account for sensing covariances, use realistic communication

assumptions, and implement the algorithm on a real underwater sensor network.

Pompili et al. present di�erent deployment strategies and analyze the number of

nodes needed to provide full sensing coverage in an underwater sensor network [80].

Alam and Haas �nd from a theoretic perspective that a Voronoi tessellation is the

best approach for node placement in 3D to maintain communication while maximizing

spacing between nodes for sensing [10].

Ko et al. develop an algorithm for sampling at informative locations based on min-

imizing the entropy [62]. Guestrin et al. introduce the optimization criterion called

mutual information [47]. Mutual information �nds sensor placements that provide the

most information about unsensed locations. They prove that the problem of picking

optimal sensor location is NP-complete and provide a constant factor approximation

algorithm. Leonard et al. develop controllers to create optimal ellipsoidal trajectories

for mobile underwater sensors based on minimizing the posterior error assuming a

Gaussian process [67]. Yilmas et al. plan a path for an AUV that will decrease mea-

surement uncertainty using a linear programming approach [108]. Rigby develops an

algorithm that uses Monte-Carlo simulations to pick a path for an AUV that mini-

mizes the trace of the posterior covariance matrix assuming a Gaussian process [84].

Singh et al. present an o�ine algorithm for planning paths of multiple robots using

mutual information [92]. In general this problem is NP-hard in both the o�ine and

online versions. Krause et al. develop an algorithm to simultaneously choose where

to place sensors and determine their optimal power schedule [64]. They show empiri-

cally that optimizing both of these together works much better than �rst optimizing

placement and then optimizing scheduling.
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Our algorithm di�ers from these works on sensor placement and path planning

in a number of ways. Our algorithm is decentralized and runs in real-time on our

underwater sensor network, whereas much of the related work computes placements

and trajectories before the deployment. One of the key components of our algorithm

that allows us to run in real-time is a choice of an objective function that is easier to

compute on a sensor network platform with limited memory and processing capabil-

ities. Most current approaches are based on the minimization of entropy, posterior

error, or the use of mutual information. All of these formulations require the com-

putation of the inverse or determinate of the full covariance matrix for the system.

These computations exceed the memory and processing capabilities of most sensor

network systems. Our system only relies on having the covariance and thus we are

able to implement it on our sensor network platform. We show in Chapter 5, that our

algorithm also tends to minimize the entropy criteria, while requiring far less compu-

tational complexity. Our algorithm also runs continuously and can adapt to changing

conditions. Most of the previous work precomputes positions before deployment.

Further, our algorithm uses a decentralized gradient-descent based controller.

Cortes et al. use a decentralized gradient controller to perform Voronoi tessellations

for a known event distribution [29]. Details on these types of algorithms can be

found in the book by Bullo et al. [21]. Schwager et al. extends these controllers to

learn the underlying sensing function through consensus [89] and to monitoring en-

vironments using downward facing cameras on quad-rotor helicopters [88]. Our work

draws inspiration from these techniques, but di�ers in the problem speci�cation: our

underwater sensors are only able to adjust their depth and are extremely constrained

by communication.

Obtaining a covariance function for an underwater system is a problem that has

been previously studied. Leonard et al. use a multivariate Gaussian function, sim-

ilar to ours, to estimate the covariance in their system [67]. Lynch et al. note the

historic use of multivariate Gaussian functions to model underwater systems and use

stochastically-forced di�erential equations to analytically determine better covariance

models for ocean environments [69]. They use the covariance models they develop as
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input into objective analysis models. Objective analysis is statistical estimation un-

der Gauss-Markov conditions. Feng et al. develop a nonparametric model to estimate

a covariance matrix with a particular focus on �nancial systems [40]. In our system

we use a multivariate Gaussian function as a �rst estimate of the covariance for sys-

tems where detailed information is unavailable. For systems with sensed or modeled

data, we numerically compute a covariance function based on the actual data. These

functions can be updated online as the system runs to improve their accuracy.

2.4 Prior Work in Underwater Localization

Navigation and position estimation for traditional AUVs is typically achieved with

a combination of dead-reckoning systems and external localization systems. The

dead-reckoning systems are typically composed of a Doppler velocity logger (for dead

reckoning) and laser ring gyros (for precise orientation). These sensors are far too

large and expensive for the scale of our robot, Amour.2 For dead-reckoning Amour

has an inexpensive inertial measurement unit (IMU) that gives good orientation in-

formation but poor information on translational motion. Instead, our system relies on

an external localization system provided by a network of AquaNodes. The theory

behind this algorithm was developed in [31]. In this thesis, we consider how to move

the theory to a localization system that can be implemented and used underwater in

the presence of limited bandwidth and extensive uncertainty.

The most common method for external localization underwater is to deploy a long

base line (LBL) systems. This consists of a small number of static buoys deployed

manually in the water. These buoys typically contain sonar pingers. When they

receive a ping at a certain frequency they respond with a ping. Ranges can be

obtained by measuring the round trip time of the ping. The response pings of the

di�erent buoys are on di�erent frequencies so that simultaneous range measurements

can be obtained, making localization easier.

LBL systems di�er from our underwater sensor network in a number of ways. The

LBL buoys typically do not have any other means of communication with the mobile

2Our robot costs under $10k, while inexpensive versions of these sensors cost $50k.
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node that is being localized. Because of this and since all of the buoys respond to

pings, the number of buoys that can be deployed in a single area is limited to the

bandwidth of the acoustic communications channel. Typically at most four buoys are

deployed. This limits the e�ective area of localization to the range of an individual

LBL buoy (typically a few kilometers). This small area may be �ne for most current

deployments, but it is not su�cient to provide a GPS-type system over large areas of

the ocean.

The algorithms used for localization underwater generally fall in one of three cate-

gories: (1) geometric methods, (2) Markov or Monte Carlo methods, and (3) Kalman

�lters. Our systems is most related to geometric methods, although the on-robot

implementation also uses a Markovian approach. Existing localization techniques

and the unique challenges of the underwater environment, such as the di�culties in

obtaining ranges due to the variable speed of sound in water and multipath e�ects,

are surveyed by Chandrasekhar et al. [26].

Hahn presents a straight forward geometric least-squares approach that takes

ranges received from multiple static nodes to compute a position for an AUV [49].

The method does not handle ranges that are received over time and does not prop-

agate information back to re�ne previous location estimates. Olson et al. use a

geometrically inspired approach and dead-reckoning information to successfully �lter

out measurement noise before using an extended Kalman �lter (EKF) to solve the

simultaneous localization and mapping (SLAM) problem [75]. Our solution does not

rely on dead-reckoning information and only solves for robot location. Galstyan et

al. use geometric constraints to localize a network of static nodes by moving a mobile

node through the network [43]. This problem is in some senses an inverse problem

from ours as we are trying to locate the mobile node instead of the network. New-

man and Leonard use a non-linear optimization algorithm to solve for the vehicle

trajectory as well as the LBL node locations [74]. Their system assumes that the

vehicle is traveling in a straight line at a constant velocity with Gaussian noise in the

acceleration.
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Kantor and Singh present the theory behind Markov and Monte Carlo methods for

localizing moving robots based on range information [61]. Their Markov, grid-based

approach is similar to our implementation on Amour, but, they do not propagate in-

formation back to re�ne previous location estimates. Gutmann observes that Markov

approaches often yield better results than EKF approaches [48]. The main problem

is that once an EKF gets into a bad state, it tends to stay there. Gutmann combines

a Markov approach and an EKF to obtain better localization results for localizing

a RoboCup robot than either approach alone. He uses dead-reckoning, range, and

angle information to update the Markov grid.

Another approach to localization is to directly use a Kalman �lter. One of the

challenges with Kalman �lters is in the initialization of the �lter. The �lter might

diverge if a good estimate of the location of the mobile node is not known at the start.

It is also possible that measurements that fall outside the measurement model will

cause the �lter to diverge and end up in a bad state. Kurth performs experiments

with di�erent manually speci�ed initial locations and concludes that poorly initialized

�lters never recover [65]. Vaganay et al. initialize their location in their range-only

Kalman �lter by �tting a line to the �rst N trilaterated locations [99]. They assume

that they are able to obtain synchronous range measurements and that their initial

motion is a straight line. Djugash et al. initialize their �lter using a GPS reading [33].

Our algorithm does not require explicit initialization and gracefully recovers if the

algorithm diverges due to a large set of invalid measurements.

In addition to localizing single vehicles moving through a network, there has been

research on localizing groups or swarms of robots. Kottege and Zimmer [63] present

a localization system for swarms of robots underwater. In their system each robot

is equipped with a number of acoustic receivers. Using the acoustic receivers they

are able to obtain range and angle between pairs of robots. This single reading gives

them a relative location estimate between the pair which is su�cient for the swarm

behavior in which they are interested. However, they do not discuss how this could

be used to create a global coordinate system for the robots.
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Bahr and Leonard [13] and Vaganay et al. [100] look at a cooperative localization

system between a team vehicles with di�erent capabilities (e.g. some with expensive

navigation equipment and others without). The vehicles with poor localization capa-

bilities obtain ranges and location information from vehicles with good localization

information. Vaganay et al. show that this type of system maintains accurate relative

localization between the vehicles even after the absolute localization starts to drift due

to inaccuracies in the more capable navigation systems [100]. Bahr and Leonard focus

on minimizing the amount of communication that is needed while maximizing the in-

formation gain [13]. This is important in underwater systems where communication

bandwidth is limited.

The following chapters present our system and algorithms in detail. They also

discuss how they �ll in the gaps present in current systems.
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Chapter 3

Hardware and Software System

In this chapter we examine the details of the hardware and software that we developed

to enable the implementation of our algorithm and the experiments described in this

thesis. The core AquaNode hardware and software was developed primarily for this

thesis. The acoustic and optical communication systems, as well as the underwater

robot, Amour, were developed jointly. We start by examining the hardware and

software design of our underwater sensor network nodes which we call AquaNodes.

We then present the optical, acoustic and radio communication systems. Next, we

brie�y describe the underwater robot, Amour. Finally, we present the results of

analysis and experiments that characterize the components of the system.

3.1 AquaNode Design and Implementation

Figure 3-1 shows a picture of the AquaNode. We developed the hardware, elec-

tronics and the software for this system in our lab. The AquaNodes are designed

to be a �exible underwater sensing and communication system. Each AquaNode

has a pressure sensor (for depth) and temperature sensor. It also has an underwater

connector which allows for the connection of up to 4 other external analog or digi-

tal sensors. Communication is possible through acoustic, optical and radio systems

(bluetooth and 900MHz radio).
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Figure 3-1: Picture of the depth adjustment hardware on a sensor node and the
individual components.

Typically, AquaNodes are moored to an anchor and �oat in the water mid-

column. With the addition of the novel winch-based depth adjustment system, de-

scribed in Section 3.1.3, the AquaNodes are able to dynamically adjust their depth.

This opens a variety of new capabilities, including the decentralized depth adjustment

algorithm for improved sensing described in Chapter 4.

Figure 3-2 shows a block diagram of the AquaNode. The AquaNode consists

of three main circuit boards. At the core of the AquaNode is the base board, which

is a generic sensor board platform we developed in our lab for use in multiple projects.

Attached to the base board is the midlayer board which contains power management

as well as sensors speci�c to the underwater system. Additionally, the underwater

sensor nodes contain radio, acoustic, and optical modems. The radio does not work

underwater, but it can be used at the surface. The acoustic modem is a long-range,
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Figure 3-2: Block diagram of the AquaNode

low-datarate system used for underwater communication, and the optical modem is a

high-speed, short-range, point-to-point communication system used for downloading

large amounts of data. The rest of this section describes the individual components

of the AquaNode in more detail.

3.1.1 Base Board

The base board is the core of the AquaNode. This runs a custom built operating

system designed to be �exible and powerful for a variety of sensing-based tasks. We

use the base board in a number of di�erent projects beyond the underwater sensor

network discussed in this thesis. These projects include virtual fencing for cows and

other range animals [35, 87], river level monitoring for �ood detection [14], adaptive

illumination for color correct underwater photography [104], and a variety of other

smaller projects.
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Figure 3-3: Picture of the base board.

Hardware

Figure 3-3 shows a picture of the base board and Figure 3-2 shows a block dia-

gram of the hardware architecture. The operating system runs on an NXP LPC2148

ARM7TDMI processor clocked at up to 60MHz. This processor has 40kB of ram

and 512kB of on-chip �ash. It has two UART serial ports, two SPI ports, two I2C

ports, real-time clock, 10-bit analog to digital converter ports, and general purpose

I/O pins.

For sensing we have a 3-axis accelerometer and a 3-axis magnetic compass, which

we use to determine the 3D pose of the board. We also have a GPS on the board to

determine position when GPS is available.

For data storage we have a 512kB FRAM, which is a high speed non-volatile

RAM with no limit on the number of writes. Additionally, we have a miniSD card

slot which supports SD cards of size up to 2GB with a custom-implemented Fat16

�lesystem. The �lesystem has a logging interface that makes logging sensor or other

values extremely easy. The user just has to open a named log �le and then uses

fprintf-like syntax to write to the log �le. Log �les are stored in directories named by

the date and automatically rotated every day so that all log �les from a particular

day are stored in the same location.
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Figure 3-4: The core software of our operating systems and extensions added for the
AquaNodes.

For communication we have a 1 watt Aerocomm AC4790 900 MHz radio [2]. We

also have a small, low-power FPGA on the base board that primarily acts as a serial

bu�er and multiplexer that supplies 4 or more additional serial devices (the ARM

processor only has 2 serial ports). The board also has a USB slave port, allowing

direct USB connections to computers.

Additionally, the board has expansion connectors that allows the connection of

project-speci�c expansion boards. For the AquaNodes we have attached the mid-

layer board described in Section 3.1.2.

Software

The operating system on the base board is a cooperative multi-tasking schedule based

system. We chose to develop our own operating systems, as opposed to using existing

systems such as TinyOS, so that we could optimize the OS for our system while

maintaining �exibility. TinyOS was designed to run on systems with very limited

memory and processing capabilities. Our system has signi�cantly more memory and

processing ability and our operating system is designed to take advantage of these.

Figure 3-4 shows the various components of the operating system and extensions

added onto the core system for use by the AquaNodes. Over 80% of all of the
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software used by the AquaNodes is core code from the base board operating system.

This section describes the details of the base board core software system.

Scheduler

The base board runs a scheduler based operating system. Processes are sched-

uled to run at various intervals with millisecond granularity. To schedule a process

the function id = scheduleAdd(func,name,interval) is called. func is a function

pointer to the function that will be called at approximately interval milliseconds.

The string name is used by the system to display information about the process and

is also used to manipulate the process. Processes can also be manipulated by refer-

encing the id returned, or by using the function pointer func. For instance, events

can be deleted by calling scheduleDeleteFunc(func), scheduleDeleteId(id), or

scheduleDeleteStr(name). There are similar functions that allow the interval at

which a function runs to be updated.

In addition to running events repeatedly, it is possible to schedule events to run a

single time with the function id = scheduleRunOnce(func,name,when), where when

indicates the number of milliseconds from now at which to run the event. It is also

possible for an event to add or delete other events, as well as delete itself. This allows

maximum �exibility in the con�guration and running of events.

The scheduler itself is a fairly basic system that runs all the events that should

run at the time in sequence. The events are not preempted so they must yield control

within a reasonable amount of time. We decided to use this approach as we have

a limited amount of RAM available, which would limit the number of concurrent

processes that could run in a preemptive system. To prevent one long-running event

from keeping other events from running we de�ne a window over which events can

run. If one event runs longer than it should, preventing other events from running at

their designated time, the other events will be run �rst, before the long event is run

again. This prevents complete starvation of other events.

Communication

The operating system has a message routing system that allows messages to be

routed transparently between boards over the radio or other links. This allows users to
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interact with (and reprogram) all of the boards while only being physically connected

to a single board. The routing system is application-customizable so that manual or

dynamic routing protocols can easily be developed.

At a low level, the operating system supports communication over a variety of

interfaces including i2c, spi, uart, and RS485. Abstraction is provided for each of these

to enable quick addition or recon�guration of devices. For instance, a byte is sent over

a uart by calling success = uartSendByte(port,byte). The port speci�es the port

to send over and a value is returned to indicate if it was successfully sent or queued

to send. The command countSent = uartSendBytes(port,bytes,count) is used

to send multiple bytes. These commands abstract away the lower level queueing and

routing required to send bytes. For instance, only 2 of the uarts are physical ports

on the processor. The 4 other ports are located on the fpga and are accessed using

spi. Similar command allow receiving bytes and using the other types of interfaces.

On top of the low-level communication system is a binary communication system.

The binary communication works on any of the ports on any of the interfaces. The

packet structure supports a routing layer that enables routing of messages between

nodes and di�erent ports. Each packet contains a header with a start byte, hop count,

message id, source node id, and destination node id. This is followed by the data and

a checksum.

The hop count and source and destination node ids are used by the routing layer

to determine what to do when a packet is received. If the destination is the cur-

rent node id or if it is a broadcast id the packet is passed to a handler for the

speci�c message id. Packet handlers are added dynamically by calling the com-

mand binaryCommAddHandler(messageId,function). This speci�es that function

should be called for every packet destined to this node with the speci�ed messageId.

If a packet is destined for another node or broadcast then a routing table is

accessed to determine if this message should be forwarded. The interface for the

routing code is generic and any routing algorithm can be implemented on top of it.

At a low level, routes are added by calling routeAdd(destNodeId,rxPort,txPort).

This indicates that any message received on the port rxPort with a destination of
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destNodeId should be forwarded over the port txPort. A rxPort of -1 is speci�ed

to indicate how messages originating at this node should be routed. Addresses larger

than 0xF0 are reserved for special uses such as indicating a broadcast message or an

extended addressing range (to allow sending to more than 255 unique addresses). The

rxPort and txPort can also be the same (for instance to act as a radio repeater).

Ports that are used for receiving and sending messages are easily added by de�ning

a set of functions. The required functions are:

• getNumBytesAvailable(): Gets the number of bytes available on this port.

• peekByte(n): Peeks at the nth byte, but does not remove it.

• readBytes(dest,count): Reads count bytes into the bu�er dest and removes
them from the port bu�er.

• readNextByte(): Reads the next byte from the port and removes it from the
bu�er.

• sendBytes(bytes,count): Sends count bytes over the port.

• setDestination(port): Sets the destination node of the packet, useful for
addressed systems such as some radios, spi, or i2c.

These are the only functions that need to be de�ned to use a port as a binary

communications port. Most of these functions mirror low-level functions. How-

ever, de�ning them in this generic format allows the use of more complicated com-

munication protocols with the routing and binary communication system. For in-

stance, it is possible to add a port that uses spi to communicate. Calling the func-

tion binaryCommAddPort(portId,getNumBytesAvailable...) creates a new binary

communications port de�ned by the above functions.

The communication system provides a number of di�erent layers of abstraction to

aid in development and deployment. The higher layers enable transparent routing of

messages to nodes. At a low level the abstraction enables the addition and recon�g-

uration of communication systems and ports without having to change higher-level

code.
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Logging

The platform contains a number of systems to enable storing and logging of data.

At a high level there is a logging interface that allows logging of data to named �les

using a printf-like syntax. This is implemented on top of a FAT16 �lesystem on the SD

card that allows the log �les to be easily read using a SD card reader on a computer.

In addition, data can be stored on the non-volatile FRAM. This is typically used for

storing con�guration data.

We implemented a FAT16 �lesystem for the SD card slot on the sensor nodes.

FAT16 allows access to SD cards of up to 2 gigabytes. Using FAT16 has the advan-

tage that it is easily readable by most all computers. The �lesystem drivers use a

layered approach with separate layers and interfaces for the low-level hardware, drive,

partitions, and �lesystem. This enables future expansion of the �lesystem driver to

support other �lesystems such as FAT32 (up to 32G), exFAT (up to 2TB), or other

�lesystems that are speci�cally designed for mobile devices. Filesystem-independent

interfaces allow �les and directories to be created, deleted, read, written, and moved.

A logging interface is available on top of the �lesystem interface. The logging inter-

face enables quick and easy creation of log �les. The command id = logNewLog(name)

creates a new log �le with the speci�ed name. The id returned is a handle to reference

this log �le when writing to the �le using the command logWrite(id,str,params,...).

The string, str, and parameters, params follow the printf-type syntax. This al-

lows logging of data in any format. By convention, the log �les are comma delim-

ited and any lines starting with # are considered comments. Using the function

logWriteBytes(id,bytes,count) enables directly writing count raw bytes to the

log �le. This is useful, for instance, when directly logging the data received from a

peripheral device as the bytes received can be directly logged.

The log �les are created in the directory named by the year, month, day with the

format: /YYYY/MM/DD/. The log �les are rotated on a daily basis. This ensures that

the �les are a manageable size, contain some minimum date information (if none is

stored in the �le), and are easily located. The time of the day the rotation occurs

can be set so that the rotation occurs at a convenient time. For instance, if the
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experiment is measuring air temperature at night, an o�set of 8 hours can be set so

the log �les will rotate in the morning. This will ensure that the periods of interest

are all located in one contiguous log �le. This is merely for convenience as the logging

systems transparently rotates the �les without interruption.

Power Control

The base sensor network system provides a number of high and low-level power

control features. Each device can be turned on or o� by calling a device speci�c

function. For instance, the GPS can be turned on or o� by calling gpsPower(on).

This allows the applications to reduce power usage by disabling peripherals.

Another method to conserve power in the system is to change the clock speed

of the processor. The clock speed is set by calling pllSet(clockSpeedHz). This

function sets the clock speed of the processor to the speci�ed clock speed if it is

available. The current implementation allows clock speed settings between 12MHz

and 60MHz in 12MHz steps. The processor also supports running at slower clock

speeds for further power savings if desired.

Finally, the processor can be placed in a very low power sleep mode by calling

powerDown(time). The time speci�es the maximum number of seconds the system

should sleep. It will automatically wakeup after this time expires or if an external

event triggers a wakeup (external wakeups are con�gurable).

In addition to manually powering down the processor, the power management

system is also integrated with the event scheduler. Each event has a �ag that can

be set to specify if the event should wakeup the processor. The scheduler computes

the time until the next event needs to run. If the period until this event is long

enough, the processor will power down if it has been con�gured to do so by call-

ing powerFlagChange(shouldAutoPowerDown). The automatic power down can be

con�gured using the functions:

• powerSetMinSleepTime(sec): Sets the minimum number of seconds to sleep
for. There must be at least this many seconds before the next event is scheduled
to run for the system to sleep.

• powerSetWakeupPost(sec): Sets the number of seconds after the last required
event is run before sleeping. This allows other non-required events to run.
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Figure 3-5: The Java user interface.

• powerSetWakeupPre(sec): Sets the number of seconds to wakeup before the
next required event is run. This allows initialization time and time for other
non-required events to run.

User Interface

The system provides two di�erent user interfaces. The �rst is a console-like test

interface. The second is a Java graphical user interface. These interfaces allow users

to interact with the board, change scheduled events, con�gure parameters, and re-

program the board.

The Java user interface is shown in Figure 3-5, with the console interface in the left

portion of the �gure. The user is able to con�gure most aspects of the system using

this interface. For instance running events are listed using the command listevents

or le. Events are added using the command addevent id or ae id where id is a

numeric id for the desired event. The id is determined by calling addevent or ae

with no arguments.

Console commands are added in the code by calling

consoleAddCommand(function,name,shortname,paramDescript,helpMsg).

The function is a pointer to the function that should be called when the console
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command is executed by the user typing the name or shortname into the console. The

paramDescript provides a description of any parameters and helpMsg is a short help

message given when the user types help. Commands can also be grouped together for

ease of use. For instance, all commands related to the acoustic are grouped together

and can be accessed by typing modem. The console is accessed by directly connecting

to a sensor board over a serial port, bluetooth, or radio. Alternatively, it can be

accessed via the Java user interface.

The Java user interface (UI) also provides the same console interface and in addi-

tion it has an easily con�gurable graphical interface (shown in Figure 3-5). The user

can connect to the UI using a direct serial connection, bluetooth, radio, or any other

binary communication port. In addition, as the messaging between the sensor node

and UI uses the binary communication packets, the UI can connect to many sensor

nodes, perhaps over multiple communication hops. This allows the UI to control

multiple sensor nodes over a variety of communication links. For instance, the UI

can connect to a local sensor node over RS232, a nearby node using bluetooth, and

many remote nodes over radio using the bluetooth node as a gateway. These are all

connected at the same time. The con�guration of how to connect to nodes in the UI

is setup in an XML �le.

The UI has multiple panels that enable easy customization based on the needed

functionality and the project. For instance, there is a debug panel that collects

communication statistics. This is not typically needed, so it can be added or removed

from the UI by (un)checking a checkbox in the con�guration window. This allows the

same UI to be used for multiple projects. The default layout for a particular node

is con�gured using an XML �le. This dynamic con�guration enables mixed use of

the UI. For instance, a network containing land-based and underwater-based sensors

can all be controlled by the same UI, with the UI showing the proper controls for the

di�erent types of nodes.

Reprogramming

The sensor network system is easily reprogrammed using the Java user interface

or by updating a �le on the SD card. The sensor nodes have a bootloader that runs
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each time the board boots. The bootloader looks on the SD card for two �les. The

�rst is main.bin and the second is main.crc. The �rst �le contains an image of the

code that should be loaded onto the board. The crc �les contains a 32 bit crc of the

bin �le. This is used to verify the integrity of the bin �le. Each time the board boots

the code in the bin �le is compared to the currently loaded program. This takes under

�ve seconds. If they di�er the new program is loaded, otherwise the main operating

system is booted.

A safety system is built in to prevent the bricking1 of a sensor node in an inaccessi-

ble location. If the board quickly reboots more than 5 times in a row, the bootloader

will load the �le mainbk.crc. This allows con�dent reprogramming of the board even

when it is inaccessible.

The �le on the SD card can be updated by manually placing the �le on the SD card.

Alternatively, the Java user interface enables the user to send a new image �le to the

node. It is possible to do this with a direct connection or over other communication

links such as the radio. Directly connected, it takes under two minutes to reprogram

the node and only requires pressing one button in the UI. Over radio it can take

over 15 minutes depending on the link quality. The UI allows multiple boards to be

reprogrammed at the same time.

The UI also enables reprogramming of other peripheral devices. For instance, the

acoustic modem can be reprogrammed in a similar manner by sending the program

�le to the acoustic modem from the user interface.

3.1.2 Midlayer Sensor and Power Management Board

The midlayer board is attached to the extension port of the base board. Figure 3-6

shows a picture of the midlayer board. The midlayer board has its own low power

8-bit processor, Atmel AtMega164P, which runs at 8MHz. This processor has 1kB of

RAM, 16kB of program �ash, and 512B of EEPROM.

1Bricking is a term to describe a sensor node that has been improperly programmed, resulting
in a node that cannot be accessed or reprogrammed.
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Figure 3-6: Picture of the midlayer board and the display.

The midlayer also has a battery monitoring and charging circuit, RS232 serial

level shifter, bluetooth module, 24-bit analog to digital converter, motor controller

and encoder, internal and external pressure sensor, and a 132x132 color LCD display.

Additionally, it has a 1.5A H-bridge with software quadrature encoder for motor

control. Some of these devices are directly connected to the Atmel processor, while

others are connected to the base board. The midlayer and base board communicate

via the I2C bus.

The midlayer board controls the power to the base board. This allows it to

completely shut down the base board when full sensing and computation power are

not needed. TheAquaNodes have lithium-ion batteries which have 60Whr of energy.

In its lowest power mode (about 8mW) this is su�cient for about a year of standby

time. In full sensing mode the AquaNode uses about 150mW which allows for two

weeks of full sensing (reading recorded at least once a second). With frequent acoustic

communication it uses about 1W allowing for an operation time of over two days. By

varying the duty cycle of the sensing and the acoustic communication the desired

deployment time can be achieved.
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Figure 3-7: Details of the depth adjustment system.

3.1.3 Depth Adjustment System Design

The AquaNode is anchored and the depth adjustment system allows the length

of anchor line to be altered to adjust the depth in the water. The AquaNode is

cylindrically shaped with a diameter of 8.9cm and a length of 25.4cm without the

depth adjustment mechanism and 30.5cm with the system attached. It weighs 1.8kg

and is 200g buoyant with the depth adjustment system attached. Typically, the node

is anchored using a 2 to 5kg weight, depending on water conditions. The depth

adjustment system allows the AquaNodes to adjust their depth in water at a speed

of up to 0.5m/s and use approximately 1.6W when in motion.

The depth adjustment system is a winch-based module that can be added to the

core AquaNode system to enable depth adjustment in water of up to 50m deep.

Figure 3-1 shows the depth adjustment system attached to an AquaNode as well as
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a disassembled node. The winch-based depth adjustment system is normally oriented

down in the water. In the image the node is inverted for visibility.

Figure 3-7 depicts the details of the depth adjustment system. Internal to the

node is a motor, gearhead, and timing belt drive. A magnetic coupler transmits the

drive power through the AquaNode case to turn a spool of anchor line. The motor

is tightly packed inside the sensor node housing alongside the batteries.

The depth adjustment system allows the AquaNodes to change their depth in

water with a speed of 2.4m/min and uses approximately 0.6W when in motion. The

winch is driven by a 1.5A motor controller with a software quadrature decoder running

on the AquaNode processor. This connects to the motor that drives the winch. The

motor is a 1.3W output power 1224-12V Faulhaber with a spur gearhead having a

20.6 to 1 reduction. The motor and gearbox assembly is 51.6mm long and 12mm

wide. We connect the gearbox output to a timing belt drive that further reduces the

output by 6 to 1, providing a total reduction of 123.6 to 1.

The timing belt drive connects to a custom designed magnetic coupler. The

magnetic coupler transmits drive power from the inside of the housing to the out-

side without needing to penetrate the housing with a shaft. This has a number of

advantages. First, there is no chance of leaking. Second, this allows the external com-

ponents of the winch to be easily removed. Finally, the magnetic coupler is compliant

to misalignments of the two sides of the coupler.

The internal and external magnetic couplers are identical and consist of four parts.

We designed a holder that contains places for six magnets. We orient the magnets in

the holder with poles alternating so that the magnetic �eld forms a closed loop when

connected to the other coupler. In order to concentrate the magnetic �eld, a steel

ring sits on top of the magnets. On the bottom of the holder we place a custom built

glass thrust bearing. This gives the couplers very low-friction, ensuring e�ciency.
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Figure 3-8: Block diagram of the acoustic modem

The external magnetic coupler is designed to be submersed in salt water, so resis-

tance to corrosion is important. Both couplers use corrosion-resistant nickel plated

neodymium magnets and we also coat the steel rings.

The external magnetic coupler attaches directly to the spool on which the anchor

line is wound via an aluminum shaft. Bronze bushings support the shaft in order to

allow it to spin with low-friction. Since the anchor line winds perpendicular to the

shaft, three delrin pulley wheels guide and redirect the anchor line. These provide a

low-friction method for properly aligning the anchor line on the spool. We use 30lb

test �shing line as the anchor line on the spool. The spool holds over 50 meters of

line.

3.2 Communication Systems

In this section we detail the acoustic, radio, and optical modems used in the under-

water sensor nodes and robot.

3.2.1 Acoustic Modem

Figure 3-8 shows a block diagram of the acoustic modem and Figure 3-9 shows a

picture of the hardware. The hardware and signal processing in the acoustic modem

used in the AquaNodes was developed in our lab primarily by Iuliu Vasilescu [101].

Higher layer interfaces and protocols were developed for this thesis. We choose to

develop an acoustic modem due to the high cost and lack of �exibility of existing

systems. Commercial modems cost over $3k, whereas the total cost of our node is
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Figure 3-9: Picture of the acoustic modem

$1k. In addition, other modems are bulky and would have increased the overall size of

the AquaNodes. Finally, at the time we designed the acoustic modem commercial

modems did not provide access to low level protocols we needed enable e�cient multi-

node communication and ranging capabilities.

At the core is an Analog Devices Black�n BF533 �xed point DSP processor run-

ning at 600MHz. The processor generates a pulse-width modulated (PWM) signal

that goes through a 10W class D power ampli�er operating with nearly 90% e�-

ciency. A PWM signal is used to allow di�erent power output signals. The power

ampli�er drives a piezo-ceramic cylindrical transducer that we developed. We mea-

sured a maximum range of about 400 meters and typical working range on the order

of 100 meters.

Signals are received through the same transducer used for sending. The signal

passes through a variable gain ampli�er and is then band pass �ltered. The signal is

�nally digitized using a 12bit analog to digital converter.

The acoustic modem uses a frequency-shift keying (FSK) modulation with a

30KHz carrier frequency. This means that a zero bit is, for instance, represented

as a pulse of frequency of 27KHz, while a one bit is represented by a frequency of

33KHz. The pulse length for each bit in the transmission is 1 millisecond followed

by a 2ms pause. The total 3ms time per bit is known as the symbol size. The large

pause is needed to reduce inter-symbol interference. This gives us a physical layer

transmission speed of approximately 300 bits per second.
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The MAC layer is a self-synchronizing time division multiple access (TDMA)

scheme.2 Each acoustic modem is given a time slot during which it is the master and

controls communication during that slot. The slots are each 4 seconds long split into

a master and slave portion. During the master portion of the slot the master node can

transmit a 16 byte packet. A slave, speci�ed by the master during its transmission,

can respond during the second half of the slot with a 16 byte packet.

Typically, if there are N acoustic modems, there are N communication slots. By

default node i will own slot i. This means that each node will be master every 4N

seconds. For typical deployments of 10 nodes each sensor will be master every 40

seconds. The acoustic modems also have the ability to give and take slots remotely

over the acoustic channel. Thus, a single node may have zero, one or many slots.

The time slots are synchronized automatically without the need for a global clock.

When a modem hears another modem it automatically adjusts its clock to be in

the slot of the transmitting modem. Su�cient guard times are present in the slots

such that time of �ight of the signal can be neglected in this slot synchronization.

We have tested the automatic slot synchronization algorithm extensively in our �eld

experiments.

We use a standardized 16 byte packet for transmission. This includes an 11 byte

payload, 2 byte CRC, 1 byte source ID, 1 byte destination ID, and 1 byte for the slot

number. Additionally, at the start of each packet is a 2.2ms linear frequency sweep

that is used by receivers to detect and synchronize on the beginning of each packet.

The rest of the time in each transmission slot is used for guard times to account for

the propagation time of the acoustic waves.

3.2.2 Radio Modem

The sensor node also contains an o� the shelf Aerocomm AC4790 radio. This radio has

1W transmit power and operates on the 900MHz band. The physical layer baud rate

is 57600b/s. The claimed range of the radio is over 32km, however, in our experiments

2TDMA is ine�cient and generally not used in air-based communication systems. However, un-
derwater, large propagation delays make carrier-sense based systems perform poorly. Thus, TDMA
is the common approach to underwater acoustic MAC design. See the survey by Partan et al.for
details [77].
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Figure 3-10: Picture of the optical board.

the radio achieved at most 3km and typical operation range was 100m. The radio has

its own internal packet structure. Messages can be broadcast or directed to speci�c

receivers. In the directed mode, the radio will retransmit up to a �xed number of

times until it receives an ack for that packet from the receiver.

In our system, we typically use broadcast mode so other nodes can listen in on

the packets others are transmitting. In this mode, the radio transmits each packet

multiple times (set to 4 in our case). The radio simulates a full-duplex link by using

�xed-length time slots for transmission. An individual radio transmits in at most half

of the time slots. This reserves time for responses.

3.2.3 Optical Modem

The optical modem was designed in our lab primarily by Marek Doniec and Iuliu

Vasilescu [36]. Figure 3-10 shows a picture of the optical modem. The optical modem

is connected to the FPGA on the midlayer board and is powered directly from the

batteries. The FPGA is used as it runs at a frequency of 32MHz and can do the

timing of the LED modulation at that speed.

The optical modem is a point-to-point protocol. It has a range of up to about 3

meters in a 90◦ cone. It operates at variable speeds up to 4 megabits per second. It

uses a pulse-position modulation (PPM) scheme, which is typical for optical commu-

nications systems. The optical modem uses a green (532nm wavelength) LED that is

not absorbed as much as other wavelengths underwater.
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Figure 3-11: Picture of Amour by the pool

The optical modem has a serial port-type interface on the base board. This allows

transparent use of the optical modem, it looks just like the bluetooth and physical

serial connections to applications on the base board. This means it is easy to use

our preexisting code for transferring �les and reprogramming the base board over the

optical modem.

3.3 Robot: Amour

Our underwater robot is called Amour, which stands for Autonomous Modular Opti-

cal Underwater Robot. We developed Amour in our lab. Typically, an AquaNode

is attached to the robot to add communication, sensing, and navigation capabilities

to the base robotic platform. Figure 3-11 shows a picture of the robot. The robot is

controlled by radio when it is at the surface and a tether or acoustic communication

when underwater. In addition, the robot can be programmed to perform autonomous

missions.
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Amour has 5 thrusters which gives it enough degrees of freedom to operate hor-

izontally or vertically. It has a mass of 25.5kg and a length of 0.86 meters. It has

750Wh of lithium-ion batteries. The horizontal operation is more streamlined allow-

ing for more e�cient long range travel. The vertical orientation is more maneuverable

and is used to stay over a node for optical communication or docking for retrieval.

In order to pick up, carry, and drop o� sensor nodes we have developed a dynamic

buoyancy and balance system. These systems can adjust for a payload of over 1kg

attached to the base of the robot in under 30 seconds. The balance is adjusted by

moving the battery pack up and down in the robot. The buoyancy is adjusted by

moving a piston which changes the internal volume of the robot. These systems save

energy as the thrusters need not be used to compensate for the balance and buoyancy

changes in the robot. For details, see [32, 102].

3.4 System Analysis and Experiments

In this section we analyze the performance and present experiments testing some of

the components of the sensor network system. We start by presenting the energy

usage of the components of the system. We then discuss experimental results that

test the depth adjustment system. Next, we present experiments to characterize the

three communication systems. Finally, we present an analysis of the amount of energy

and time it takes to transmit data from the sensor network to land using each of the

communication systems.

3.4.1 Energy Usage

Table 3.1 characterizes the power usage of the subcomponents of the AquaNodes.

The acoustic and optical modems dominate when transmitting, however, the optical

requires very little power when receiving, whereas the acoustic modem requires a

signi�cant amount of power even when waiting to receive a message. With all devices

disabled and the midlayer board in standby mode, the system uses less than 1mA.
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Component Current (mA)
Base Board Sleep Mode 2
CPU Low Usage 16
CPU Max Usage 59
FPGA <1
Base Sensors 6
GPS no �x 44
GPS �x 35�40
900 MHz Radio Receive Only 20
900 MHz Radio Transmit 1 Hz 73
Underwater Midlayer Standby <1
Underwater Midlayer Active 15
Acoustic Receive 110
Acoustic Transmit 200
Optical Receive 15
Optical Transmit 100�500

Table 3.1: Subsystem power usage.

Adding the main board in with a low processing load yields a current usage of just

over 16mA. Turning on sensors on the main and midlayer board draws an additional

21mA. This is signi�cantly less than the radio, optical, and acoustic modem. This

indicates that minimizing communication is extremely important to maximizing the

lifetime of the sensor network.

3.4.2 Depth Adjustment System Performance

We performed experiments to characterize the depth adjustment mechanism in air, in

a pool, and in a river. In addition, we performed a preliminary experiment to illustrate

how acoustic communication is a�ected by changing the depth of the underwater

sensor nodes.

Trials In Air

We performed experiments in air to characterize the performance of the depth ad-

justment system under varying loads. These experiments account for over 12 hours

of near continuous motion of the depth adjustment system with greater than typical

loads (200g) and serve as a stress test for the system.
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We began by characterizing the depth adjustment system's lifting capabilities. We

calculated the theoretical stall torque of the system. The motor provides 3.6mNm

of torque and the spur gearhead has an e�ciency of 86%. With an average spool

diameter of 20mm, this results in a computed lifting force of 38.2N or a weight of

approximately 3.9kg. We experimentally veri�ed this by attaching the depth adjust-

ment system to a spring scale. The system could support up to 3.4kg before stalling.

This results in a timing belt and magnetic coupler system e�ciency of 87%.

Next, we setup a compound pulley system that enables the winding and unwinding

of over 20m of line. We adjusted the weight on the end of the pulley to vary the load

on the depth adjustment system. Table 3.2 shows the current needed from the 3-cell

Li-Ion battery (nominal voltage of 12V) to move the test rig up and down. The table

also lists the average speed as well as the total amount of time the depth adjustment

system could operate with the 60WHrs of energy available on-board theAquaNodes.

Force(N)

Current

Down (mA)

Current

Up (mA)

Speed

Down ( m
min)

Speed

Up ( m
min)

Time

(Hours)

1.5 68.36 89.12 2.90 2.75 64.63

2.5 66.70 103.29 2.88 2.66 61.69

3.0 70.16 113.85 2.97 2.72 57.60

4.0 76.80 132.48 2.91 2.62 51.42

4.4 86.07 152.76 2.82 2.50 45.41

5.4 83.30 160.01 2.82 2.36 45.64

6.9 81.78 171.95 2.84 2.31 45.11

Table 3.2: Current usage, speed, and total amount of time the winch can move given
di�erent forces (in Newtons).

Examining the table provides insights into system operation. The speed increases

and the energy decreases when moving down due to gravitational e�ects. The down

speed stays nearly constant; however, the up speed decreases as the force increases.

We expect this as the downward motion force tries to increase the motor speed,

reaching a maximum. When moving upward the force acts against the motor, reducing

the speed as the force increases. Additionally, even with high loads and continuous

depth adjustment, the system can operate for nearly 2 days.
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Figure 3-12: Current, temperature, and depth for one AquaNode deployed in the
Charles River in Cambridge, MA.

Sensing In Water

We next tested the depth adjustment system in a pool and in the Charles River in

Cambridge. We performed 7 multi-hour experiments. These tests characterized the

performance of the system in water and illustrated how the depth adjustment system

captures temperature variations.

We deployed 3 nodes with the depth adjustment system in the Charles River for

2 hours. Node depths ranged from 2 to 3.5m over the course of the experiment. The

nodes traversed the water column every 2 minutes. Every second, the sensor nodes

recorded temperature, depth, and battery current values.

Figure 3-12 depicts 45 minutes of the results from the experiment for one node.

The node used approximately 50mA when idle and about 100mA when in motion. It

moved at a speed of 2.40m/min up and 2.44m/min down.

The temperature of the water varied by over 0.5◦C from the surface of the water

to the bottom. The response of the temperature sensor shows that it takes some
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Figure 3-13: Acoustic communication success rate between two nodes spaced 2m
apart at varying depths.

time to adjust from one temperature to another indicated by the non-constant values

when the node stopped moving. This is most likely caused by the heat capacitance

of the temperature sensor. This indicates that at full speed the node moves too fast

to accurately measure the temperature. To obtain accurate water column readings,

the node must move more slowly or pause for longer periods at each depth.

Improving Communication

The acoustic communication channel is a challenging and �ckle medium. The physical

characteristics of the water and ocean �oor greatly impact the success rate of acoustic

packet reception. For example, thermoclines (temperature layers found in water) can

re�ect acoustic signals, preventing communication between layers [90]. Adjusting the

depth of the nodes in the network to optimize reception has the potential to greatly

increase the network throughput.

We performed preliminary experiments to illustrate the impact of adjusting node

depth on acoustic communication. We tested this in the Charles River. Due to boat
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tra�c, we placed the nodes on the inner side of a pier, which has walls on three

sides. This location is more akin to a pool than an open river. Shallow, closed-

in environments challenge acoustic communication as the walls re�ect the acoustic

signals, causing a high level of interference [77, 82, 97, 107].

We placed 2 AquaNodes approximately 2 meters apart in water that was about

2.5m deep. The 2 nodes each individually moved in 0.5m steps from 0m to 2m depth.

At every combination of depths each node transmitted approximately 25 packets. The

nodes were spaced closely to see the impact of changing the depth in the acoustics

(as the propagation of the signal is cylindrical, not spherical). In the future we plan

to do experiments with larger spacing in deeper water to see the impact of thermal

and bottom features on the acoustic communication.

Figure 3-13 shows the results of the packet success rate for this experiment. The

success rates are asymmetric. For instance, at depths for (A,B) of (1.5,1.0) the nodes

obtain better communication performance than at (1.0,1.5). On average, the acoustic

modems had the greatest success rate when they were both at similar depths, whereas

when the nodes were at the extremes very few packets were successful. The lack of

communication is most likely caused by the non-spherical signal propagation of our

cylindrical acoustic transducer. Our transducers transmit well horizontally in the

water, but poor vertically. For larger inter-node ranges, this does not impact the

system. However, when the nodes are closely spaced, this reduces the transmission

successes for nodes at very di�erent depths.

For more complex acoustic channels, for instance with thermoclines, we expect

these discrepancies and variations to be even more pronounced. In addition, the

channel quality may vary over time. As such, adjusting the depth of the nodes has

the potential to greatly improve the acoustic communication in the network.

Observations and Potential Improvements

In the tests we observed some other characteristics of the system. First, due to man-

ufacturing tolerances, some of the depth adjustment mechanisms have more friction

than others. This means the motors must work harder to overcome the friction.
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The motors are su�ciently strong to do this, however, this wastes energy. In the

experiments we observed some winches that used as much as 100mA more to move.

The second observation is the e�ect of waves and currents on the depth adjustment

system. These can cause the sensor node to move such that the line is no longer

taught. This does not cause problems if the winch is reeling in the line, but if it is

letting out line it is possible that this slack can cause the winding of the line to be

reversed. For instance, if the sensor node is moving to the surface and a wave causes

slack in the line it is possible the winding direction will reverse. This will cause the

depth adjustment system to start moving down in the water instead of continuing up.

The problem of the winding direction reversing can be addressed in a number

of ways. First, adding buoyancy or lowering the depth adjustment system speed

reduces the likelihood of this occurring. The winch speed can be adjusted based on

the waves in the water (perhaps detected using the on-board accelerometer). Second,

the depth sensor can be used to detect this problem. Reversing the winch when this

occurs alleviates this problem. Finally, a pretensioning system, as found in some

commercially available winches, can be added to address this problem. In practice,

all three of these approaches should be implemented to eliminate this problem.

3.4.3 Communication System Performance

Device Physical
Layer Rate

Real
Rate

Maximum
Range

Typical
Range

Success
Rate

Optical Modem 1Mbit/s 800Kbit/s 4m 3m 90%
Bluetooth 1Mbit/s 92.1kb/s 50m 5m 100%
Serial Cable 115200b/s 92.1kb/s 300m 1m 100%
900MHz Radio 57600b/s 7.2kb/s 3km 100m 25-50%
Acoustic Modem 300b/s 22b/s 400m 100m 56%

Table 3.3: Summary of the bitrates of the various communications we use. Real rate
is the throughput assuming 100% transmission success rate. This takes into account
the (estimated) overhead which is signi�cant for some of our devices. Success rate is
the packet success rate at the typical range.

Table 3.3 summarizes the results of experiments with 5 of the di�erent communi-

cation methods available on the underwater sensor nodes. In this table the physical
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Figure 3-14: Ranges between a pair of acoustic modems in 2 to 4m water depth.

layer data rate is shown as well as the real data rate. The real data rate is the mea-

sured rate. The measured rate takes into account the overhead each system. For

instance, the 900MHz radio broadcasts each packet in 6 times and shares the channel

to simulate full-duplex communication. The acoustic modem introduces numerous

guard times to prevent re�ections, thus greatly reducing the actual throughput.

Also shown in the table is the maximum obtained range of the system as well

as the maximum range we typically use. At this range the typical packet success

rate is listed. Direct serial connections and bluetooth links have near 100% success

rate. The former is a direct connection with little noise. The latter guarantees packet

transmission at a low level. The Aerocomm radio has the lowest success rate at a

range of 100m (far below the claimed maximum range). This may be due to channel

interference and the fact that the radio does not adjust its physical baud rate to

compensate for interference.
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Acoustic Modem Underwater

Figure 3-14 shows the ranges computed between a pair of sensor nodes using the

acoustic modem. One node was stationary and the second was moved in a step-wise

fashion. Ground-truth measurements were obtained for the �rst four measurements

by using a long measuring tape. The accuracy of the ground truth measurements is

not high, however, it does show that the ranges correspond well. Table 3.4 shows the

average measurement obtained from the acoustic modem and the ground truth for

the �rst four measurements. The two values are very close together and are within

the ground truth measurement error.

Acoustic Modem
Distance (m)

Ground Truth
Distance (m)

Di�erence/Error (m)

5.01 4.75 0.26
9.72 9.67 0.05
16.19 16.15 0.04
24.35 24.70 -0.35
37.88 N/A N/A
49.03 N/A N/A

Table 3.4: Range measurements in meters between a pair of acoustic modems.

Figures 3-15 and 3-16 show the results of an experiment where four static nodes

were deployed in Lake Otsego, NY. The depth of the water was approximately 10

meters deep and relatively clear and cool. The nodes self-localized and then the

robot drove through the network collecting ranging data. A range to a node was

obtained every one to four seconds.

Figure 3-15 plots range data to the four nodes over a 20 minute selection of the

hour long experiment. As can be seen from this plot, ranges are fairly continuous and

there are very few outliers. Outliers are typically caused by receiving the multipath

of a message instead of the direct path message. This causes an increase in the range

measurement as the message took longer to arrive than typical. Additionally, there

are a few measurements that are lower than expected. These can be explained by

multipath messages from the previous time slot, which arrive in the current time slot.

This is one of the many challenges associated with underwater communication and
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Figure 3-15: Ranges received by the robot while moving around in a network with
four static nodes.

ranging (since we use the round-trip time to compute ranges). We avoid this problem

in most cases by having a su�ciently long enough guard time, which allows most

of the re�ections to die down. These outliers are easily eliminated using a simple

smoothness �lter.

This data also shows that we successfully obtain ranges up to the maximum 140m

range that we traveled. We also have successfully obtained ranges at up to 400m,

however, at this larger range the communication is less reliable.

Figure 3-16 illustrates the round-trip message success rate for this same set of

data. Over this experiment we found that about 59% of messages were successful.

This is typical for most of our experimental sites except for the Charles River where

we �nd a much lower message success rate.

Notice that there are periods where the robot is unable to obtain ranges for 10s of

seconds from a particular node. Figure 3-15 shows that there is very little correlation

between the distances at which these communication failures occur. For instance, the

data for Node 2, shows that there is a period when no ranges are received when it
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Figure 3-16: The successful round-trip messages from the robot to four di�erent
nodes.

is over 100m away, but there is a similar communication gap at 20m, later in the

experiment. Other times the robot is able to obtain most all messages to Node 2

at over 100m. This indicates that the communications success rate is not merely a

function of range, rather it is highly depending on the particular con�guration of the

nodes and the water conditions.

Radio Modem

We collected data to characterize the performance of the Aerocomm 900MHz radio.

Figure 3-17 shows the results of these tests. This data was collected as part of the

cow virtual fencing project [35]. Each cow had one of the base sensor network boards

and was allowed to roam over a large �eld. The radio antenna was attached on top of

the heads of the cows. Every two minutes each cow broadcast its own GPS position

over the radio. The sensors were deployed many days collecting data.

Figure 3-17 shows percent of the time pairs of cows were at particular distances

from each other (dashed line). Most of the time, the cows were grouped together
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Figure 3-17: The success rate of radio packets at di�erent ranges. Also shown is the
amount of time spent at each range.

within 100 meters of each other. However, on occasion, cows were separated by over

300m. In addition, the �gure shows the message success rate based on distance. When

extremely close, the success rate was near 70%. Once the distance increased to over

150m, however, the success rate dropped below 10%. The only exception is a peek

at slightly over 250m, which was most likely caused by the low number of samples at

this distance in�uencing the statistics.

This experiment shows that the performance of the radios is poor even for rela-

tively close ranges over �at land. We also tested the radios between the Longfellow

and Harvard bridge in Cambridge. These bridges are slightly over 1km apart. We

obtained just over 50% of the packets at this distance with line-of-sight over water.

Optical Modem

We performed experiments to characterize the performance of the optical modem [36].

Figure 3-18 shows the results experiments performed in the Singapore Harbor, which
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Figure 3-18: Optical modem range experiments performed in Singapore Harbor.

had less than 3m of visibility. The optical modems were placed at a depth of 4m

in the water to reduce the e�ect of ambient light on the experiment. The modem

transmitted 128 byte packets at a 1.2Mbit/sec. We tested green and blue LEDs.

Figure 3-18 shows both the full packet and symbol success rate versus distance.

The symbol success rate roughly corresponds to receiving individual bits, while the

packet success rate indicates receiving a full 128 byte packet correctly. The optical

modem with the blue LEDs outperformed the modem with the green LEDs by ap-

proximately .25m. For both, the success rate at 2.25m was 100% for both the packet

and symbols. At 2.5m the blue LED rate was about 10% while for green it was over

60%. After this the packet success rate drops signi�cantly, while the symbol success

rate remains at near 100% until 2.75m and 3.0m for blue and green respectively.

This experiment and others show that the optical modem has a very strong cuto�

distance after which it performs poorly. Before this cuto� it performs extremely well.
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3.4.4 Communication Energy and Time

The amount of energy used by underwater sensor nodes is critical to the longevity

of the system. It is extremely di�cult to recharge devices underwater and it is not

feasible to regularly replace batteries or devices. The amount of energy used for

computation and storage has decreased radically in the past years. Unfortunately,

the amount of energy used for communication has not dropped. In our system, and

most underwater as well as terrestrial sensor networks, the power requirements of

communication far outweighs the power used by all other systems on the sensor node.

Thus, a key consideration of our system is the amount of energy used to transmit

each bit.

In this section we examine the amount of energy and time used by the three

di�erent communication systems to transmit data back to shore. The �rst system is

the acoustic communication system, which uses sound waves to communicate. The

second is the radio modem, which works at the water surface. To get to the surface

of the water we make use of our depth adjustment system. The third system is

the short-range optical communication system that we use in conjunction with our

underwater robot. The robot drives to the AquaNode, downloads the data optically

and then returns with the data.

Acoustic

The acoustic modem has a maximum transmission power of about 10 watts. However,

it typically operates using a lower power mode that uses about 5 watts. Recall that

the modem uses a decentralized TDMA algorithm. In each 4 second TDMA slot we

are able to send and receive a 16 byte packet with 11 bits of payload. Thus we have

a throughput of 5.5 bytes per second. This translates to an acoustic power per bit,

Pa, of:

Pa = 5 W/(5.5 ∗ 8 bits/sec) = 113.6 mJ/bit. (3.1)
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Depth Adjustment and Radio

Radio waves do not propagate underwater, however, by using the depth adjustment

system the AquaNodes can go to the surface and use the radio to communicate.

We use a 1 watt Aerocomm AC4790 900 MHz radio [2].

The radio has a theoretical range of 32km, although in our experiments we have

only achieved slightly over 3km. The physical layer has a �xed datarate of 76800

bits per second. However, in broadcast mode the radio transmits each packet 6 times

to increase the probability of being received. Additionally, to simulate full-duplex

operation following each packet transmission it waits for a period equal to the time it

would take to receive another packet to allow other radios to transmit. This means

the true datarate for this radio is closer to

76800/6/2 bits/sec = 6400 bits/sec. (3.2)

We can then calculate the power per bit using the radio, Pr to be:

Pr = 1 W/6400 bits/sec = 0.16 mJ/bit. (3.3)

However, to send using the radio it must �rst go to the surface using the depth

adjustment system. The depth adjustment system uses about 0.6 watts and moves

at 2.4m/min. Thus, we need a power per meter, Pw of:

Pw = 0.6 W/0.04 m/sec = 15000 mJ/m. (3.4)

The total power, Prw to transmit k bits from a depth of d meters using the radio

and depth adjustment system (assuming we return to the same location after) will

be:

Prw = 2dPw + kPr = 2d ∗ 15000 mJ + k ∗ 0.16 mJ. (3.5)
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Robot and Optical

The third method of communication in our system is to have the robot drive out to

the sensor node and download the data optically.

The optical communication system is a high speed point-to-point short range

communication system. The range is about 2 meters in water and it is somewhat

directional. The transmission rate is adjustable, but typically we use a 1 megabit

baud rate while using 7 watts. The power per bit for the optical system, Po is:

Po = 7 W/1000000 bits/sec = 0.007 mJ/bit. (3.6)

This is many orders of magnitude less energy per bit than the acoustic and radio.

However, the robot requires a lot of energy to travel to the sensor node. At typical

cruising speed the robot uses 300 watts and travels at 0.5 meters per second. So the

energy used per meter traveled, Pm is

Pm = 300 W/0.5 m/sec = 600, 000 mJ/m. (3.7)

The total power, Pom, to travel a distance D meters to a sensor node, transfer k

bits and then return is:

Pom = 2DPm + kPo = 2D ∗ 600, 000 mJ + k ∗ 0.007 mJ. (3.8)

Energy and Time Comparison

Figure 3-19 plots the total amount of power needed to send various amounts of data.

This plot is based on equations 3.1, 3.5 and 3.8. For this example we are assuming

that we want to transmit data 500 meters and that the sensor node is at a depth of

10 meters.

Figure 3-19 is on a log-log scale so that the large ranges of power usage depending

on the number of bytes sent is visible. The power used by the acoustic system increases

at a fast and constant rate as each additional bit sent requires the same amount of
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Figure 3-19: Power per transmission size on log-log plot for a message sent 500 meters
from a depth of 10 meters using each of the three communications systems

additional energy. For the radio and optical systems there is a large initial amount

of required energy, but then very little additional energy per bit. This initial o�set

is the amount of energy required to drive the robot to and from the sensor for the

optical download and the energy to bring the sensor node to and from the surface to

use the radio.

The power usage plot shows that there are clear decision points as to where to

should switch between the three communication systems. If sending less than 1328

bits, the acoustic system should be used. To send between 1328 bits and 1.9 gigabits

it is more power e�cient to �rst go to the surface with the depth adjustment system,

transmit with the radio and then return to the previous depth. Finally, sending more

than 1.9 gigabits it requires less power to send the robot to the AquaNode and

download the data optically.

Figure 3-20 similarly shows the amount of time it takes to send data. Interestingly,

the three communication systems have the same ordering as in the power analysis.
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Figure 3-20: Time to send bits on log-log plot for a message sent 500 meters from a
depth of 10 meters using each of the three communications systems

However, the switching points are somewhat di�erent. For this plot it is fastest to

send acoustically for less than 5594 bits. Faster to send after going to the surface

with the radio for between 5594 bits and 11.5 megabits. And faster to use the robot

and optical system for any larger data transmissions.

These two plots give two of the possible considerations when trying to decide

which communication system is best to use. However, there are other considerations.

For instance, it is easier to recharge the robot than it is to recharge the sensor node.

So it may be better to send the robot out to the sensor nodes to collect data even if

it is a relatively small amount of data. Additionally, if the robot is downloading data

from many sensor nodes the initial constant cost of going out to the sensor nodes can

be amortized over all the sensor nodes. Using the depth adjustment system to go

to the surface has the drawback that the sensors are no longer at the desired depth.

Thus, it may be advantageous to use the acoustic system for larger amounts of data

if it is important for the sensor to remain at a particular depth.
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Chapter 4

Decentralized Depth Adjustment:

Algorithm

4.1 Introduction

The vastness of the ocean prohibits placing sensors at every location of interest in

order to monitor underwater phenomena. As such, models are required that take

some sensed locations as input and derive the value of the �eld at other locations.

Modeling the surface characteristics is challenging, and to fully understand the depths

scientists must develop new ocean models that cover the full 3D system.

The AquaNode's depth adjustment system provides the capability to measure

the ocean at a variety of locations and depths over time. This system adds to the

wealth of knowledge that is starting to be collected by underwater gliders, pro�ling

�oats, AUVs, ROVs, and towed instruments. The recent development of optical and

acoustic sensors, such as laser optical plankton counters (LOPC), acoustic Doppler

current pro�lers (ADCP), and laser in-situ scattering and transmissometry (LISST)

aids these mobile sensing platforms [59].

The rapid accumulation of data and an increased understanding of ocean processes

has led to the advancement of ocean modeling and the development of new modeling

techniques, such as massive parallel programming and data assimilation [38]. These

models require accurate measurements of the spatial and temporal characteristics of
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ocean phenomena such as subsurface chlorophyll maxima, coastal fronts and jets,

river plumes, and meso-scale eddies. Measuring these phenomena, however, still

remains a challenge due to the highly dynamic nature of the processes and the slow

response time of most autonomous instruments. The lack of precise measurements

and characterizations of these phenomena poses a hurdle to advancing the accuracy

of ocean models. In the dynamic, shallow, coastal waters this is especially true.

The AquaNodes are low-cost, �exible systems that are well-suited for studying

coastal processes. In this chapter we develop and analyze a decentralized, adaptive

algorithm for positioning an underwater sensor network. Our AquaNodes dynam-

ically adjust their depths through a new decentralized gradient-descent based algo-

rithm with guaranteed properties. Through neighbor communication this algorithm

collaboratively optimizes their depths for placement from sensing in support of com-

puting maximally detailed volumetric models. We prove the controller algorithm

converges to a local minimum. In Chapter 5 we verify the algorithm with simulations

and experiments on our hardware platform.

The decentralized controller positions the nodes such that they are in good lo-

cations to collect data to model the values of the system over the whole region, not

just the particular points where there are sensors. This allows the reconstruction of

the whole sensory �eld, not just sensing at the locations of the sensors. The sensor

nodes use a covariance function that describes the relationship between the possible

positions of the sensor nodes and the whole region of interest. As a �rst pass, we

model the covariance as a multivariate Gaussian, as is often used in objective analysis

in underwater environments [69]. In Chapter 5 we extend this and compute a numeric

covariance for the Neponset river using a physics-based hydrodynamic model. The

algorithm assumes a �xed covariance model, however, it can be iterated with di�erent

covariance models to capture dynamic phenomena.

The controller uses the covariance in a decentralized gradient descent algorithm.

This algorithm requires very little communication, allowing each node to only send

its own depth information, as well as providing fault tolerance in instances where

communication packets are lost. Both of these are important in underwater sensor
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networks, which can only communicate acoustically�a low bandwidth (300b/s) and

limited reliability (<50% packet success) communication method. Our algorithm has

limited memory and computation requirements, allowing it to run in real-time on our

power e�cient underwater sensor network.

In Chapter 3 we detailed the underwater sensor network, AquaNodes, and the

winch-based depth adjustment system. In this Chapter we start by introducing and

analyzing our decentralized depth controller algorithm in Section 4.2. Next, we prove

it converges in Section 4.2.7. We then present the implemented algorithm in Sec-

tion 4.2.8. Finally, we extend the algorithm to cases where the covariance is changing

to allow sensing dynamic phenomena in Section 4.3. Chapter 5 veri�es the algorithm

in simulation and experiments on the AquaNode platform.

4.2 Decentralized Control Algorithm

In this section we formulate the problem, develop a general decentralized controller,

introduce a Gaussian covariance function, de�ne the controller in terms of the covari-

ance function, and prove the convergence of the controller.

4.2.1 Problem Formulation

GivenN sensors at locations p1 · · · pN we want to optimize their positions for providing

the most information about the change in the values of all other positions q ∈ Q, where

Q is the set of all points in our region of interest. We are especially interested in the

case where the motion of the sensors, pi, is constrained to some path R(i). In the

case of our underwater sensor network the nodes are constrained to move in 1D along

z with �xed x, y.

The best positions to place the sensors are positions that tell us the most about

other locations. Consider the case with one sensor at position p1, and one point q1 of

interest. Intuitively, we want to place p1 at the location along its path that is closest

to q1. At this position any changes in the sensory value at q1 are highly correlated

to observed changes we measure at p1. More generally, this correlation is captured

by covariance, so the sensor should be placed at the point of maximum covariance
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with the point of interest. Or more formally, position p1 such that the Cov(p1, q1) is

maximized.

More generally, we want to maximize the covariance between the point of interest

q1 and all sensed points pi by moving all pi to maximize:

arg max
pi

N∑
i=1

Cov (pi, q1) (4.1)

This is for the case of one point q1, if we have M points of interest in the region Q,

we can add an additional sum over the points of interest:

arg max
pi

M∑
j=1

N∑
i=1

Cov(pi, qj) (4.2)

This objective function, however, has the problem that some areas may be covered

well, while others are not covered. Figure 4-1 shows the case with three sensors, p1,

p2 and p3, covering two points, q1 and q2. For this example we assume that p1 and p3

are �xed and look at the e�ect of moving p2. Both con�gurations in Figure 4-1 yield

an objective function value of .5 + .5 + .5 = 1.5. This contradicts the intuition that

the con�guration on the right is better.

To prevent the problems associated with Equation 4.2 and illustrated in Figure 4-

1 we need to ensure that the objective function penalizes regions that are already

covered by other nodes. We achieve this by modifying the objective function to

minimize:

arg min
pi

M∑
j=1

(
N∑
i=1

Cov(pi, qj)

)−1

(4.3)

Instead of maximizing the double sum of the covariance, this objective function min-

imizes the sum of the inverse of the sum of covariance. This reduces the increase in

the sensing quality achieved when additional nodes move to cover an already covered

region.

92



0.5

0
.2
5

0
.0

0.5 0.5 0.5

0.5

0
.2
5

p
1

p
1

p
2

p
2

p
3 p

3

q
1

q
1

q
2

q
2

Figure 4-1: Dashed lines are the motion constraints on the AquaNode motion,
green circles are the points of sensor interest. Solid lines and the labels indicate the
covariance between the point of interest and the indicated sensor.

This changes the example at left in Figure 4-1 to give an objective value of:

1

.5 + .5
+

1

.5
= 3 (4.4)

It changes the right side in Figure 4-1 to:

1

.5 + .25
+

1

.5 + .25
= 2

2

3
(4.5)

Our new minimization of the objective function will select the rightmost con�guration

in Figure 4-1, which is intuitively better.

To extend this to optimize placement for sensing every point in the region, we

modify the objective function to integrate over all points q in the region Q of interest:

∫
Q

(
N∑
i=1

Cov(pi, q)

)−1

dq (4.6)
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4.2.2 Assumptions

The decentralized depth control algorithm we develop in this chapter makes some

assumptions about the system. These are:

• The nodes know their locations;

• The nodes can communicate with all other nodes (shown in simulation that
only neighborhood communication is needed);

• The nodes can adjust their depths;

• The nodes know the covariance function.

The nodes are able to determine their locations either by going to the surface

and obtaining a GPS �x or using a static localization algorithm based on range data.

Both of these are discussed in Section 6.2.2. The nodes communicate with each other

using the acoustic modem. In practice, all nodes will not be able to talk with each

other, however, we show in simulation in Section 5.4.2 that the nodes only need to

communicate within a local neighborhood in the network. The algorithm assumes that

the nodes are able to adjust their depths. We have implemented a depth adjustment

system on the AquaNodes that enables this.

The most di�cult assumption made by the algorithm is that the covariance func-

tion between node locations and points of interest is known. Section 5.2 discusses how

a model of the covariance can be derived using physical models of the system. An

initial model can be chosen and then updated online based on recent measurements.

If nothing is known about the system, the nodes can be deployed for a period of time

to collect data that can be used to determine the covariance of the system.

4.2.3 Objective Function

The objective function, g(q, p1, ..., pN), is the cost of sensing at point q given sensors

placed at positions p1, ..., pN . For N sensors, we de�ne the sensing cost at a point q

as:

g(q, p1, ..., pN) =

(
N∑
i=1

f(pi, q)

)−1

(4.7)
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This is the inner part of Equation 4.6 when f(pi, q) = Cov(pi, q).

Integrating the objective function over the region of interest gives the total cost

function. We call this function H(p1, ..., pN) and formally de�ne it as:

H(p1, ..., pN) =

∫
Q

g(q, p1, ..., pN) dq +
N∑
i=1

φ(pi) (4.8)

where Q is the region of interest. The sum over the function φ(pi) is a term added

to prevent sensors from trying to move outside of the water column. We need this

restriction on the node's movement to prove convergence of the controller for this cost

function. Speci�cally, we de�ne φ(pi) as:

φ(pi) =

(
zi − (di/2)

di/2

)β
(4.9)

where di is the depth at the location pi and β is an even positive value. The φ(pi)

component causes the cost function to be very large if a sensor is placed outside of

the water column.

4.2.4 General Decentralized Controller

Given the objective function in Equation 4.8, we wish to derive a decentralized control

algorithm that will move all nodes to optimal locations making use of local information

only. We derive a gradient descent controller which is localized, e�cient, and provably

convergent.

Our goal is to minimize H(p1, ..., pN), henceforth referred to as H. To do this we
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start by taking the gradient of H with respect to each of the zis:

∂H
∂zi

=
∂

∂zi

∫
Q

g(q, p1, ..., pN) dq +
∂

∂zi

N∑
j=1

φ(pj)

=

∫
Q

∂

∂zi

(
N∑
j=1

f(pj, q)

)−1

dq +
∂

∂zi
φ(pi)

=

∫
Q

−

(
N∑
j=1

f(pj, q)

)−2

∂

∂zi

N∑
j=1

f(pj, q) dq +
∂

∂zi
φ(pi)

=

∫
Q

−

(
N∑
j=1

f(pj, q)

)−2

∂

∂zi
f(pi, q) dq +

∂

∂zi
φ(pi) (4.10)

=

∫
Q

−g(q, p1, ..., pN)2 ∂

∂zi
f(pi, q) dq +

∂

∂zi
φ(pi) (4.11)

Next, we take the partial derivative of φ(pi) and �nd:

∂

∂zi
φ(pi) =

∂

∂zi

(
zi − (di/2)

di/2

)β
= β

(
zi − (di/2)

di/2

)β−1

(4.12)

Thus, the partial derivative ∂H
∂zi

is:

∫
Q

−g(q, p1, ..., pN)2 ∂

∂zi
f(pi, q) dq + β

(
zi − (di/2)

di/2

)β−1

(4.13)

To minimize H we move each sensor in the direction of the negative gradient. Let

ṗi be the control input to sensor i. Then the control input for each sensor is:

ṗi = −k∂H
∂zi

(4.14)

where k is some scalar constant. Moving each node in the negative direction of

the gradient minimizes the objective function. This controller provides a general

controller usable for any sensing function, f(pi, q). To use this controller we next

present a practical function for f(pi, q).

96



4.2.5 Gaussian Sensing Function

We use the covariance between points pi and q as the sensing function:

f(pi, q) = Cov(pi, q) (4.15)

In an ideal case we would know exactly the covariance between the ith sensor and

each point of interest, q. As this is not possible, we have chosen to use a multivariate

Gaussian as a �rst-approach approximation of the sensing quality function. Using a

Gaussian to estimate the covariance between points in underwater systems is common

in objective analysis [69]. In Section 5.2 we show how to numerically estimate the

covariance given real or modeled data.

We de�ne the Gaussian to have di�erent variances for depth (σ2
d) and for surface

distance (σ2
s). This captures the idea that quantities of interest (e.g. algae blooms)

in the oceans or rivers tend to be strati�ed in layers with higher concentrations at

certain depths. Thus, the sensor reading at a position pi and depth d is likely to be

similar to the reading at position q if it is also at depth d. However, sensor readings

are less likely to be correlated between two points at di�erent depths. Thus, the

covariance function is a three-dimensional Gaussian, which has one variance based

on the surface distance and another based on the di�erence in the depth between the

two points.

Let f(pi, q) = Cov(pi, q) be the sensing function where the sensor is located at

point pi = [xi, yi, zi] and the point of interest is q = [xq, yq, zq]. De�ne σ2
d to be the

variance in the direction of depth and σ2
s to be the variance in the sensing quality

based on the surface distance. We then write the sensing function as:

f(pi, q) = Cov(pi, q) = Ae
−

„
(xi−xq)

2+(yi−yq)
2

2σ2
s

+
(zi−zq)

2

2σ2
d

«
(4.16)

where A is a constant related to the two variances, which can be set to 1 for simplicity.

Note if σs = σd then this function is merely a 3D Gaussian based on the Euclidean

distance between the two points.
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In Section 5.5 we use data from a physics-based hydrodynamic model to numer-

ically estimate the covariance of chromophoric dissolved organic matter (CDOM) in

a river system. In this system the covariance between points decreases slowly as dis-

tance increases along the river in a nearly linear fashion over a range of kilometers.

The covariance in depth changes rapidly over a few meters as the area we are in-

terested in exhibits strati�cation and mixing of CDOM along a large stretch of the

river. We represent the covariance in this system using a Gaussian basis function,

which comes within 99% of the computed covariance. This basis function allows the

compact representation of the covariance and allows similar proofs of convergence of

the system. For ease of notation, we focus on the simple single Gaussian represen-

tation for the rest of this section. These techniques can be applied to more complex

representations.

4.2.6 Gaussian-Based Decentralized Controller

We take the partial derivative of the sensing function from Equation 4.16 to complete

the gradient of our objective function shown in Equation 4.11. The gradient of the

sensing function ∂
∂zi
f(pi, q) is:

∂

∂zi
f(pi, q) =

∂

∂zi
Cov(pi, q)

=
∂

∂zi
Ae
−

„
(xi−xq)

2+(yi−yq)
2

2σ2
s

+
(zi−zq)

2

2σ2
d

«

= Ae
−

„
(xi−xq)

2+(yi−yq)
2

2σ2
s

+
(zi−zq)

2

2σ2
d

«
∂

∂zi

(
−
(

(xi − xq)2 + (yi − yq)2

2σ2
s

+
(zi − zq)2

2σ2
d

))
= Ae

−
„

(xi−xq)
2+(yi−yq)

2

2σ2
s

+
(zi−zq)

2

2σ2
d

«
−(zi − zq)

σ2
d

= −f(pi, q)
(zi − zq)

σ2
d

(4.17)
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Substituting this into Equation 4.11, we get the objective function:

∂H
∂zi

= −
∫
Q

(
N∑
j=1

f(pj, q)

)−2

∂

∂zi
f(pi, q)

−1 dq +
∂

∂zi
φ(pi)

= −
∫
Q

(
N∑
j=1

f(pj, q)

)−2(
−f(pi, q)

(zi − zq)
σ2
d

)
dq +

∂

∂zi
φ(pi)

=

∫
Q

(
N∑
j=1

f(pj, q)

)−2

f(pi, q)
(zi − zq)

σ2
d

dq +
∂

∂zi
φ(pi)

=

∫
Q

g(q, p1, ..., pN)2f(pi, q)
(zi − zq)

σ2
d

dq +
∂

∂zi
φ(pi) (4.18)

4.2.7 Controller Convergence

To prove that the gradient controller (equation 4.14) converges to a critical point of

H, we must show [21, 66, 86]:

1. H must be di�erentiable;

2. ∂H
∂zi

must be locally Lipschitz;

3. H must have a lower bound;

4. Hmust be radially unbounded or the trajectories of the system must be bounded.

While this assures convergence to a critical point of H, small perturbations to the

system will cause the gradient controller to converge to a local minimum and not a

local maximum or saddle point of the cost function [86]. In Chapter 5 we show that

most local minimum are near the global minimum and that the algorithm performs

well in practice.

Theorem 1. The controller −k ∂H
∂zi

converges to a critical point of H. In other words

as time, t, progresses the output of the controller will go to zero:

lim
t←∞
−k∂H

∂zi
= 0 (4.19)
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Proof. We show that the objective function satis�es the conditions outlined above.

In Section 4.2.6 we determined the gradient of H, satisfying condition 1. ∂H
∂zi

has a

locally bounded slope, meaning it is locally Lipschitz and satis�es condition 2.

To show that H is bounded below, to satisfy condition 3, consider the composition

of the objective function:

H(p1, ..., pN) =

∫
Q

g(q, p1, ..., pN) dq +
N∑
i=1

φ(pi) (4.20)

The
∑
φ(pi) term is the sum of a number raised to an even power and is clearly

bounded below by zero. Expanding the notation in the integral term we can see:

∫
Q

g(q, p1, ..., pN) dq =

∫
Q

(
N∑
j=1

f(pj, q)

)−1

dq (4.21)

and f(pj, q) is a Gaussian which is always positive. The integral and sum of positive

terms is also positive. Thus, both terms and therefore H are bounded below by zero,

satisfying condition 3.

Unfortunately, H is not radially unbounded. However, the trajectories of the

system are bounded, satisfying condition 4. To see this note that the trajectories of

the system are along the z axis. Equation 4.9 de�nes the
∑
φ(pi) term. By choosing a

su�ciently large β the cost of moving outside of the column overcomes any potential

sensing advantage gained by moving outside as the integral term of H is bounded

below.

Thus, we have satis�ed all the conditions for controller convergence, proving that

the controller −k ∂H
∂zi

converges.

4.2.8 Algorithm Implementation

Algorithm 1 shows the implementation of the decentralized depth controller (Equa-

tion 4.10) in pseudo-code. The procedure receives as input the depths of all other

nodes in communication range. The procedure requires two functions F(p_i,x,y,z)

and FDz(p_i,x,y,z). These functions take the sensor location, pi, and the point,

100



Algorithm 1 Decentralized Depth Controller Update Step

1: procedure updateDepth(p1 · · · pN)
2: integral← 0
3: for x = xmin to xmax do
4: for y = ymin to ymax do
5: for z = zmin to zmax do
6: sum← 0
7: for i = 1 to N do
8: sum+ = F(p_i,x,y,z)

9: end for
10: integral+ = −1

sum2∗ FDz(p_i,x,y,z)

11: end for
12: end for
13: end for
14: delta = K ∗ integral
15: if delta > maxspeed then
16: delta = maxspeed
17: end if
18: if delta < −maxspeed then
19: delta = −maxspeed
20: end if
21: if abs(delta) < mindelta then
22: return true

23: end if
24: changeDepth(delta)

25: return false

26: end procedure

[x, y, z], that we want to cover. The �rst function, F(p_i,x,y,z), computes the co-

variance between the sensor location and the point of interest. The second function,

FDz(p_i,x,y,z), computes the gradient of the covariance function with respect to

z at the same pair of points.

After the procedure computes the numeric integral, it computes the change in the

desired depth. This change is bounded by the maximum speed the node can travel.

The algorithm then checks if the desired change is less then some threshold. If it is,

the algorithm returns true to indicate that the algorithm has converged. If it has

not converged, the procedure changes the node depth and returns false. Note that

for this implementation we ignore the impact of φ(pi) on the controller. We found

that this had little impact on the results.
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4.3 Control for Dynamic Phenomena

The decentralized controller positions the sensor nodes to optimize sensing based on

a single covariance model. However, many �elds of interest have covariances that

depend on other sensed or external factors. For instance, in the case of CDOM (see

Section 5.2) the covariance depends on the tide as it changes throughout the day. In

this section, we modify Algorithm 1 to handle systems with changing covariance.

4.3.1 Periodic Update of Covariance

The decentralized depth control algorithm converges to a local minimum con�gura-

tion. In our experimental work(see Section 5.5), we show that convergence occurs

within 20 minutes for the constant covariance functions tested. In practice, once

the algorithm converges, the positions should be maintained for a period of time to

collect data. However, after a su�cient amount of time has passed the covariance

should be updated and the algorithm rerun to update the positions of the nodes. The

choice of how long to stay in one location impacts the energy usage, and therefore the

longevity of the system. Staying less time enables �ner grained tracking of dynamic

phenomena.

Algorithm 2 shows the high-level algorithm that performs the depth control and

manages and updates the covariance function based on sensed or known parame-

ters. The algorithm continuously calls updateDepth(p1 · · · pN), in line 14, until the

function returns indicating that it has converged.

Once the decentralized controller converges the algorithm waits, in line 7, until

a period of time has elapsed (dependent on the desired deployment time) before

updating the covariance function to a new function based on the current time and

sensor readings. The function

updateCovarianceFunction(time,sensors) may update the covariance based on a

lookup table, model calculation, measurements, or other methods.

After the covariance function has been updated, the variable converged is set

to false. This will cause the controller to run during the next iteration of the loop.
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Algorithm 2 Dynamic Decentralized Depth Controller
1: procedure depthControl
2: converged← false

3: while true do
4: if converged then
5: if converged long enough then
6: updateCovarianceFunction(time,sensors)

7: . Update covariance function F

8: converged← false

9: if shouldScanWaterColumn then
10: scanWaterColumn()

11: end if
12: end if
13: else
14: converged← updateDepth(p1 · · · pN)
15: end if
16: end while
17: end procedure

Before this, in line 9, a variable shouldScanWaterColumn is checked. This externally

set variable indicates if the sensor should perform a full water column scan before

continuing onto its next sensing location.

Performing a full column scan (moving from sea �oor to surface) is useful to obtain

a wider range of sensed locations and adds variability to the locations the nodes will

next converge to. The variability is due to the fact that if the covariance function

only changes by a small amount, it is likely that the sensors will only move by a small

amount. This is desirable from an energy perspective, however, more variation in the

positions may be of interest to the scientists. In addition, this will lower the chances

that the nodes get stuck in a poor local minimum of the objective function for the

whole experiment.

4.3.2 Continuous Update of Covariance

Periodic updates of the covariance function is useful, however, this only positions

the sensor nodes at the optimal locations for a small period of time as the optimal

locations changes as the covariance changes. In this section we discuss the impact of

a continually variable covariance function on the algorithm and convergence.
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Consider, for example, the e�ect of tide on the optimal positions for the sensors

when measuring salinity at the mouth of a river that empties into the ocean. At low

tide, the depth may be just 2m deep, whereas at high tide it could be 3 or 4m. The

positions of the sensors should be updated continuously to account for the changing

depth of the water column.

Algorithm 1 is easily updated to re�ect dynamically changing covariance by up-

dating the functions F and FDz. These functions must be updated to use the most

up-to-date covariance function, instead of a static covariance function. In Section 4.2.7

we proved the decentralized gradient controller converges to a local minimum. How-

ever, this proof assumes that the covariance function is constant in time and does not

change. Thus, the update to the algorithm to allow for the continuous update of the

covariance may e�ect the convergence of the algorithm.

Since, dynamics in underwater systems tend to be slow compared to the motion

of the sensor nodes. As such, as long as the covariance is changing slow enough, it

can be considered static with respect to the dynamics of the sensor nodes. With this

assumption, the convergence proof in Section 4.2.7 will hold. Alternatively, we can

run the updates in stages and rely on static convergence at the end of each phase.

Another way to analyze Algorithm 2 is to consider the e�ect of a small change in

the covariance function on the �nal positions of the sensor nodes. If small changes in

the covariance result in small changes in the �nal positions, then the controller does

not need to move the nodes very far to account for the changes to the covariance and

is thus likely stabilize and converge. In Section 5.4.3 we show in simulation that this

is the case�small changes to the covariance function result in small changes in the

positions of the nodes.

Continuously updating the covariance and adjusting the positions, however, is not

an energy e�cient method. In Section 5.4.6 we analyze the energy usage of the system

and �nd that the deployment time is drastically reduced if the acoustic modem and

depth adjustment system is run continuously. This analysis suggest that periodic

updates of the covariance function is the best tradeo� between optimizing sensing

locations and sensor network life expectancy.
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Chapter 5

Decentralized Depth Adjustment:

Simulations and Experiments

5.1 Introduction

In Chapter 4 we introduced the decentralized depth control algorithm that optimizes

the depths of the sensor network nodes for sensing. In this chapter we explore the

performance of the algorithm in simulation and on our AquaNode underwater sensor

network platform (analyzed in detail in Chapter 3).

Scientists are starting to better understand ocean processes and are developing

improved ocean and coastal models. One example is the modeling of Boston Harbor

(shown in Figure 5-1). Currently, all of Massachusetts Bay is covered by only three

NOAA surface buoys to measure tide, temperature, wind, etc. [4]. These sensors feed

models of the bay that help scientists understand the dynamics of the Massachusetts

Bay system. Adding sensors to the bay, especially nodes able to measure at varying

depths, will greatly improve the modeling and understanding of this coastal water

system. However, to fully understand the system we must also understand the impact

of fresh water �ows into the harbor. One such river is the Neponset River.

We are interested in detecting and measuring the tidal front in the Neponset

River to feed a numerical model developed by researchers at UMass Boston [57].

Understanding the tidal front enables scientists to better determine the spread and
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impact of organic and inorganic matter carried by the river. The model used is

developed for Boston Harbor, based on the Estuarine, Coastal, Ocean Model (ECOM-

si) with Mellor and Yamada 2.5 turbulent closure for the vertical mixing [19, 18, 91].

The model domain covers the entire Boston Harbor (over 500km2) and a portion of

the Massachusetts Bay with a grid resolution around 70m, as shown in Figure 5-

1. The model is currently forced by surface winds and heat �uxes derived from

measurements at NOAA buoy 44013 in western Massachusetts Bay, and freshwater

discharges at the USGS gauges, and boundary forcing (tides, currents, temperature

and salinity) derived from the model output of the Massachusetts Bay hydrodynamic

model [57]. The model is able to capture the general dynamic processes including tidal

cycle, seasonal development of strati�cation, and wind- and river-driven circulation,

but adding information on the �ow from the Neponset river will greatly enhance the

model.

Our Oceanographer collaborators at UMass Boston are particularly interested in

measuring Chromophoric dissolved organic matter (CDOM) in the Neponset river.

CDOM is the optically active component of the total dissolved organic matter in the

oceans. In estuaries, CDOM is mostly produced in fringing marshes and exported

through freshwater discharges and hence it is closely tied to salinity with nearly

linear salinity-CDOMmixing curves [44]. Additional sources (sinks) from mid-estuary

production (removal) will lead to the mixing curve concave upward (downward). An

understanding of CDOM dynamics in coastal waters and of its resulting distribution is

important for remote sensing and for estimating light penetration in Boston Harbor

and the ocean [22, 16, 17]. Improved understanding of CDOM dynamics requires

sensor networks measuring the Neponset River.

To ensure that a reasonable dataset is collected we can use our numerical model to

inform a decentralized control algorithm with depth adjustment. Using this informa-

tion allows better placement for computing maximally detailed volumetric models. In

this chapter we simulate positioning sensors along the Neponset river and adjusting

their depths to optimize the sensing of CDOM as it is discharged into Boston harbor.
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Figure 5-1: Boston Harbor modeling area bathymetry, courtesy Mingshun Jiang
(UMass Boston).

To accurately position the sensor nodes in the Neponset river, we develop a co-

variance model based on a physics-driven hydrodynamic model and implement this

on the AquaNode platform. The techniques used to develop the covariance model

are general and can be applied to other systems with model or real data.

Section 5.2 discusses the numeric covariance model, while Section 5.3 discusses

the practical considerations that must be taken into account before implementing the

generic algorithm (discussed in Chapter 4) on a hardware system. We then analyze

the algorithm parameters and setup, compare it to other techniques and metrics, and

provide an energy analysis in Section 5.4.

Finally, in Section 5.5, we implement the algorithm on the AquaNode platform

and perform experiments in the lab, the pool, and a river. We analyze the performance

of the algorithm in these setups where communication is far from ideal and show that

the algorithm performs well and converges. In these experiments we implemented

the Gaussian covariance, model-based covariance, and tested the later in the under

dynamic conditions using the periodic covariance update algorithm.
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Figure 5-2: Bottom: Model of the CDOM concentration in the Neponset river when
tide caused a river depth of on average 2m (a) and 3m (b). Top: The corresponding
numerically computed covariance.

5.2 Covariance Model

In Section 4.2 we developed the decentralized depth controller algorithm using a

multivariate Gaussian as the covariance function. However, more generally, if we

have real information about the system, we can numerically compute the covariance.

Figure 5-2 (bottom) shows the concentration of CDOM in the Neponset river,

which feeds into Boston Harbor at two di�erent tide levels. Figure 5-2 (top) shows

the numerically computed covariance along the length of the river and along the depth.

We numerically computed the covariance along the length of the river by examining

the each pair of points at distance k apart and taking the sample covariance, which is

Cov(pts k apart) =
∑

(ab)/N −mean(a) ∗mean(b) for the N points a and b that are

k distance apart. We compute the covariance along the depth of the river in a similar

manner. We �nd a high correlation along the length of the river over kilometers and

high variance over just a few meters in depth as shown in Figure 5-2.

We �t a Gaussian basis function to the numeric covariance curve. To do this we

use Matlab's newrb function. Figure 5-3 shows the result of the basis function �t.

The error in the �t depends on the number of Gaussians used. For this plot with 6

elements the error is 1.88%, whereas using 10 elements gives an error of 0.54%. Using

a basis function gives us a compact representation of the covariance function that a

sensor node can easily store and compute.
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Figure 5-3: The Gaussian basis function elements for a �t with 6 basis functions.

An advantage of using a Gaussian basis function is that it allows online updates

of the covariance function based on the sensed data. Nodes can share and learn the

parameters of the basis function using a number of existing techniques for �tting basis

functions to unknown data [76].

Figure 5-2 shows two di�erent tide level in the river system. Di�erent covariance

functions, based on the tide, enable dynamic repositioning of the sensor network to

adapt to changing conditions. In Section 5.5.4 we examine the results of experiments

where the covariance function is periodically changed.

5.3 Practical Considerations

We must examine a number of practical considerations before implementing this con-

troller in simulation and on the underwater sensor node hardware. These are:

• The controller continuously integrated over an area Q; practically the region

must discretized for numeric integration;

• The acoustic communication has limited bandwidth and messages are transmit-

ted infrequently;
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• The controller assumes knowledge of the location and depth of every node; in

practice a node only knows the location and depth of neighbors.

In this section we examine each of these issues and argue that the practical impli-

cations are minimal for our system. We back up these assertions with experimental

results in the following sections.

5.3.1 Discretization and Run Time

The controller requires integrating the cost function over the area Q. Processors

cannot integrate continuously so the regions are broken into discrete sections and

these sections are summed. There are two factors which a�ect how the region is

discretized. The �rst is the desired sensing accuracy and the second is computational

complexity. If the discretization is too coarse the sensing accuracy may deteriorate

as the algorithm will not di�erentiate between di�erent con�gurations. Alternatively,

if the discretization is too �ne, the computational time may become too long.

More speci�cally, we can analyze the run time of the distributed controller in the

discretized setting. Each node must compute its control input, which is the negative

gradient of the objective function H. This will be:

∂H
∂zi

= −
∑
x∈Q

∑
y∈Q

∑
z∈Q

(
g(q, p1, ...pN)2f(pi, q)

zi − zq
σ2
d

)

The triple summation has a computational cost related to the volume of the area,

while g(q, p1, ..., pN) has a computational complexity proportional to the number of

sensors in the system. Let |X|, |Y | and |Z| be the number of steps in the x, y and

z direction respectively. And as before, let N be the number of sensor nodes in the

system. Then the computational complexity is:

O(|X| · |Y | · |Z| ·N).

In practice, the number of steps in the numerical integration of the volume will

dominate the runtime. Thus, we must carefully choose the resolution to balance
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computational resources and accuracy. We explore the e�ect of changing the size of

the grid in Section 5.4.2 and �nd that computationally feasible grid sizes yield good

results.

5.3.2 Communication Bandwidth

Algorithm 1 assumes that the control input to the sensor nodes are occurring contin-

uously and with completely up-to-date knowledge of the whole system. In practice,

we can only compute the control input at �xed intervals due to the computational

costs. These intervals can be fast relative to the dynamics of the network mitigat-

ing problems regarding time discretation, however, we face another more important

problem.

The acoustic modems (described in Chapter 3) use a TDMA scheme to schedule

communications and each message is limited to 11 bytes. The depth can easily be

encoded within this byte limit, however, each node is only able to share its depth every

4N seconds as each TDMA slot is 4 seconds long. Thus, the algorithm must contend

with old information when making the control decisions. One approach to address

this issue is to only allow the nodes to move for a short time every 4N seconds. This

would give all nodes a relatively consistent snapshot of the network con�guration.

However, some packets will be lost, implying the period between motions would have

to be longer to get consistent con�gurations. This approach drastically slows down

the operation of the controller.

We use a controller update time of about 4N seconds. Despite packet loss we have

found in our experiments that it performs well. The reason for this is because the

minima of our cost function tend to be �deep� and stable. We expect con�gurations

where nodes alternate between an up and down con�guration, so if a node starts going

up it is likely that it's �nal con�guration will be nearly fully up. Thus, in practice the

controller can run at a reasonable rate and integrate new information as it becomes

available.
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5.3.3 Local Knowledge

The decentralized controller assumes that it has information about the depths of all

nodes in the system. In practice each node only knows the depths of its neighbors.

This is because the cost of forwarding depths over multiple hops in the network

would quickly saturate the limited acoustic bandwidth. Fortunately, the e�ect of

far away sensors is minimal as the covariance function decays rapidly with distance

so the algorithm can ignore the e�ect of sensors that it cannot hear. Similarly, in

Section 5.4.2 we show that the region, Q, of integration can be reduced. This is

because our local actions have practically no e�ect on regions far away.

5.4 Simulation and Analysis

In this section we discuss the results of simulation experiments. Several practical

considerations arise in implementing this controller on real hardware. In this section

we discuss parameter sensitivity, positioning sensitivity, comparison to other methods,

data reconstruction, and analyze the energy usage.

5.4.1 Simulation Setup

We implemented the decentralized depth controller in Matlab to test the performance

of the algorithm.

In these experiments, unless otherwise noted, we use the base Gaussian covariance

function described in Section 4.2.5, in later sections we examine the CDOM covariance

discussed in Section 5.2. We use a �k� value of 0.001, capped with a maximum speed

of ±2 m/s, and having σs = 10 and σd = 4. Each node performs twenty iterations

of the controller. The nodes are placed in a line spaced 15m apart from each other

and are in �water� of 30m depth. A 1 meter grid is used to integrate over for all

operations.

Figure 5-4(a) shows the results after running the decentralized controller on a net-

work of 20 nodes. Each iteration of the algorithm took 8s per node with convergence

occurring after 6 iterations.
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Figure 5-4: The �nal positions after the distributed controller converges for a (a)2D
and (b)3D setup.

Figure 5-4(b) shows the result of an experiment with 16 nodes arranged in a 4-by-4

grid with 15m spacing in 30m depth. Each iteration of the algorithm took 2min per

node with convergence occurring after 7 iterations.
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Figure 5-5: The objective value found when di�erent �k� values are used in a system
with 20 nodes. (a) Shows the full range of values explored. (b) Shows a zoomed in
section of (a).

5.4.2 Parameter Sensitivity

We analyze k, neighborhood size, and grid size.

Changing k

Figure 5-5 show the a�ect on the objective value, H, on changing the k value for a

system with 20 nodes. Recall that each node moves according to:

−k∂H
∂zi

(5.1)

Increasing the value of k causes the nodes to move down the gradient of H more

quickly. Values that are too large can lead to oscillations around the �nal con�gura-

tion or lead to instabilities in the system. If the value of k is too small, the system

may not move fast enough to converge within a reasonable number of steps.

Figure 5-5(a) shows the range of k's explored, while Figure 5-5(b) zooms in on k

values less then 0.003. Using a k value of less than 0.0005 yields very poor results

since the system does not converge within the 20 iterations of the algorithm that we

allow. However, values larger than this perform well.
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Figure 5-6: The (a) objective value and (b) runtime for a 15 node network when
changing the size of the neighborhood over which the integration occurs.

In Figure 5-5(b) we see that k values between 0.002 and 0.003 perform well. In

general the exact value of k has an impact on the results, however, it tends to be

minimal as long as a su�ciently large value of k is used.

One reason that large values of k yield good results is that the nodes are limited

in how fast they can move. Recall that in our simulations we limit the maximum

speed of the nodes to 2m/s. Thus, even with large values of k the system tends to

converge and not oscillate.

Changing Neighborhood Size

We examine the e�ect of changing the neighborhood size. The neighborhood size

is the size over which each node integrates when computing the numeric integral

(Algorithm 1, line 10). The decentralized controller assumes that it has information

about the depths of all nodes in the system. In practice we can only know the depths

of our neighbor nodes due to poor acoustic communication. The covariance function

decays rapidly with distance, reducing the a�ect of far away sensors, allowing nodes

to ignore the sensors they cannot hear.

Figure 5-6 shows the results of changing the size of the neighborhood over which we

integrate. For this simulation the nodes were placed 15m apart. The neighborhood
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Figure 5-7: Changing the grid size. (a) Objective value and (b) total search time as
the step size changes.

size varied from ±15m to ±150m. As can be seen from Figure 5-6 (a), using a

neighborhood of just 15m results in very poor performance. However, a slight increase

in neighborhood size drastically increases performance. This indicates that near-

neighbors have the largest impact. Thus, the neighborhood size should be chosen to

include all one-hop neighbors. The actual number of neighbors that need to be heard

will depend on the node spacing and how quickly the covariance decays. Figure 5-

6 (b) shows that the total runtime required for the algorithm increases in a linear

fashion as the neighborhood size increases. This experiment veri�es the intuition that

nodes only need to hear direct neighbors to have good performance.

Changing Grid Size

We examine the impact of changing the size of the grid over which we numerically

integrate. In simulation we uniformly change the step size in the x and z axes.

Using a large step size reduces the computations needed to perform the decentralized

controller, however, if the step size is too large, important regions may be overlooked,

causing a degradation in performance.

Analyzing Algorithm 1 we see a runtime of O(|X|·|Y |·|Z|·N), where |X| represents

the number of steps in the grid along the x-axis and N is the number of sensor nodes
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in the system. As shown in Figure 5-7 (b) the runtime decreases in a quadratic fashion

as the step size increases. The quadratic results from the 2D simulation; in the 3D

case the runtime would decrease cubically as the step size increases.

Figure 5-7 (a) shows the impact of changing the grid size on the objective function.

As step size increases the objective function does as well. Thus, a grid size of 1m

seems reasonable as this is the minimum and results in a good runtime. If the spacing

of the nodes was closer a �ner grid may be needed and similarly if they are spaced

further apart a larger grid could be used. In our experience having between ten and

twenty steps between each pair of nodes yields a good balance between runtime and

algorithm performance.

5.4.3 Positioning Sensitivity

We analyze start con�guration, random placement error, and changing the covariance

function.

Changing Start Con�gurations

We examine how close the decentralized controller comes to obtaining the global

minimum of the system. To do this we ran a number of simulations starting the nodes

at di�erent depths and examining the results. Figure 5-8 shows the various starting

and ending con�gurations, and (c) shows the �nal objective value and posterior error

for these trials.

We tested a number of starting con�gurations. In all of these experiments the

�nal con�guration ended up with nodes roughly alternating. However, some local

minimums occur that result in a worse objective function value. In particular, the

con�guration in Figure 5-9.9, which alternated two down and two up resulted in a

similar �nal con�guration. As can be seen in Figure 5-10 this con�guration yielded

the worst objective value and posterior error of all the trials.

We can contrast this with the con�guration in Figure 5-9.6, which resulted in the

best objective value. The remainder of the con�gurations fell somewhere in between
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Figure 5-8: The results of the running the depth adjustment algorithm on various
node start positions, con�gurations 1�5.

these two. Some con�gurations demonstrate that a local minimum can occur that

is hard to overcome. Fortunately, while this occurs occasionally, it is not often and

when it does occur the system still obtains fairly good results.

Random Placement Error

As it is impossible to perfectly place nodes in a real-world setup, we examine the

e�ects of random variation in the x-axis placement of the nodes. The nodes were

deployed starting in the ideal depth con�guration. Figure 5-11(a) demonstrates the

results of 100 trials with ±6m random error added to the ideal node positions in the

x-axis. We then run the depth adjustment algorithm on the mispositioned nodes,

which improves their overall depth positioning for sensing.

Figure 5-11(b) outlines this for errors in x-axis placement ranging from 2m to 16m.

Each point is the average of 100 random trials. Again the depth adjustment algorithm

improves the overall position. This experiment shows that the decentralized depth
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Figure 5-9: The results of the running the depth adjustment algorithm on various
node start positions, con�gurations 6�10.

adjustment algorithm can improve the overall sensing even if the start depths (z-axis)

are ideal and x-axis placement is not.

Changing Covariance

In this section we examine the e�ect of changing the covariance function on the

�nal positions of the sensor nodes. Recall, from Section 4.2.5, the Gaussian sensing

function:

f(pi, q) = Ae
−

„
(xi−xq)

2+(yi−yq)
2

2σ2
s

+
(zi−zq)

2

2σ2
d

«
(5.2)

Figure 5.1 compares the resultant positions of the sensor nodes when varying σs (the

surface distance variance) and σd (the depth variance). First, the controller was run

with σd = 4 and σs = 10 on a 20 node network in 30m of water. The sigmas were

then updated to the values in the table and the algorithm was rerun. The resultant

average absolute di�erence and percent di�erence in the �nal positions of the nodes

compared to the σd = 4 and σs = 10 run is shown.
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Figure 5-10: The objective value after running the depth adjustment algorithm on
various node start positions shown in Figure 5-8 and 5-9. Also shown is another
metric, the posterior error, which is discussed in Section 5.4.5.

This table shows that small changes in the covariance function results in small

�nal position changes. This implies that the controller is stable and convergent when

the covariance function is slowly changing. This enables the use of the controller

under dynamic conditions as discussed in Section 4.3.

change in σs change in σd Mean Absolute Di�erence (m) Percent Di�erence
1 1 0.1651 0.5%
0 1 0.3563 1.2%
1 0 0.4705 1.6%
-1 0 0.6580 2.2%
-2 0 0.9005 3.0%
-1 -1 2.6751 8.9%

Table 5.1: Mean absolute di�erence in node positions after changing the variance.
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Figure 5-11: Nodes deployed with random error in x-axis placement. (a) Plot of 100
runs with 6m error. (b) Average over many runs and positions.

5.4.4 Data Reconstruction

The ultimate goal of placing sensors in the water is reconstructing the complete data

�eld, not just the points where sensors exist. The distributed depth adjustment

algorithm places sensors in locations to maximize the utility of the sensed value for

doing this type of reconstruction. In this section we show the results of simulations

in reconstructing data �elds given point measurements at sensor node locations.

Figure 5-12 shows the results of reconstructing a �eld given three manually con-

�gured sensor placements and the depth adjustment algorithm. At top in Figure 5-12

we show the actual �eld we attempt to recover. This �eld has similar covariance

properties to the Gaussian covariance. The manually chosen con�gurations were: (1)

sensors placed alternatively at the top and bottom of the water column; (2) sensors

placed in the middle of the water column; (3) sensors placed a quarter of the way o�

the top and bottom. Finally, at the bottom is the positioning based on the depth

adjustment algorithm. While visually similar to the manually chosen con�gurations,

it slightly improves upon the positions to better cover the region.

To quantify this we use the sum of squared error metric, comparing the actual

model data to the recovered using Matlab's `v4` version of griddata. The actual

Matlab code used was:
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Figure 5-12: At top is the model data (d6) followed by three manual node positionings
and, at bottom, the results of the decentralized depth controller. Black dots indicate
node positions, at right is the sum of squared error for each set of recovered data.

x = nodeLocations(:,1);

y = nodeLocations(:,3);

z = getFuncVals((x-xmin)./(xmax-xmin),

(y-zmin)./(zmax-zmin));

[XI,YI] = meshgrid(xmin:xstep:xmax,

zmin:zstep:zmax);

ZI = griddata(x,y,z,XI,YI,'v4');

ZIgt = getFuncVals((XI-xmin)./(xmax-xmin),

(YI-zmin)./(zmax-zmin));

sqerr = sum(sum((ZI-ZIgt).^2));

The code starts by obtaining the actual value of the sensory function at the node

locations x,y and places them in z. A grid is then overlayed on the area and the

�eld is reconstructed using the 'v4' interpolation engine of Matlab's griddata. This

method is used as it reconstructs data outside of the convex hull of the sensor node

locations which is desired in our setup. Finally, the results of the reconstructed
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Figure 5-13: The 10 data �elds.

�eld are compared to the ground truth from the known �eld. The sum of squared

error values are shown in the right of Figure 5-12. The dynamic depth adjustment

algorithm outperforms the three manually chosen con�gurations.

Figure 5-13 shows 10 data �elds that were semi-randomly used to test the data

reconstruction (�eld d6 is the �eld used in Figure 5-12). Table 5.2 shows the sum of

squared error statistics for the three manually picked con�gurations and the decen-

tralized algorithm for all ten con�gurations. Note that the decentralized controller

performs better then the other positions in all but three cases. In these cases (d5,

d8, and d9) the midupdown con�guration (sensors placed evenly one quarter of the

way o� the top and bottom) performed best. However, the decentralized controller

performed nearly as well in all of these cases.

123



d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

updown 491 1030 1769 2959 5877 1595 1159 1259 1933 1741

center 855 696 799 1660 6672 692 506 3863 1236 609

midupdown 428 497 444 766 1979 404 384 1021 479 681

ours 382 457 426 748 2100 369 346 1078 484 634

Table 5.2: The sum of the squared error for each node con�guration for recovering
data from con�gurations d1-d10 in Figure 5-13. Bold indicates minimum value for
that con�guration.
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Figure 5-14: At bottom, the posterior error as the experiment progresses.

While midupdown and the decentralized control algorithm perform similarly in

most cases there are a number of important distinctions. The midupdown con�g-

uration is a static con�guration. If conditions change the nodes will not readjust

themselves to improve sensing quality. In addition, if the inter-node spacing is not

equal midupdown does not perform as well as a similarly spaced deployment using

the decentralized controller. Finally, any error in the bottom placement of the nodes

will likely result in a worse data reconstruction as discussed in Section 5.4.3.

5.4.5 Comparison to Other Methods

We compare the decentralized depth adjustment algorithm to posterior error methods

and Matlab's fminsearch.
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Posterior Error

A common metric for de�ning how an area is covered by sensors is to examine the

posterior error of the system [47]. Calculating the posterior error requires that the

system can be modeled as a Gaussian process. This is a fairly general model and

valid in many setups. The posterior error of a point can be calculated as:

σ2
q|P = Cov(q, q)− Σq,P · Σ−1

P,P · ΣP,q (5.3)

The vector Σq,P is the vector of covariances between q and the sensor node positions

P = {p1, ..., pN}. The vector ΣP,q is Σq,P transposed. The matrix ΣP,P is the covari-

ance matrix for the sensor node positions. The values of ΣP,P are Σpi,pj = Cov(pi, pj)

for each entry (i, j).

This computation, however, requires an inversion of the full covariance matrix.

This is impractical on real sensor network hardware that has limited computation

and memory. As such, we cannot calculate the posterior error on the sensor nodes,

but we can calculate it as a metric to evaluate our own objective function and to

compare di�erent sensing con�gurations. As shown in Figure 5-10, the posterior

error and the objective function track each other, showing that our metric has similar

properties to that of the posterior error metric. Figure 5-14 (bottom) shows a plot

of a run of the decentralized depth controller and plots the normalized sum of the

posterior error at all points. Figure 5-14 (top) shows snapshots of the plots of the

posterior error as the algorithm progresses. The algorithm performs well under this

metric as well as the objective function metric.

Distributed Controller Versus �fminsearch�

To analyze the performance of our distributed depth adjustment algorithm we com-

pared it to Matlab's standard unconstrained non-linear minimizer, fminsearch. This

minimizer adjusts the depths of each of the nodes until it minimizes the objective

function. fminsearch is completely centralized and must know the positions of all

nodes. In our simulations we �nd that fminsearch has similar results in terms of
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Figure 5-15: The objective value versus the number of iterations for the decentralized
controller and fminsearch.

optimizing the objective function for a relatively small number of nodes. However, it

has poor runtime and is thus limited to running on systems with a small number of

nodes. Matlab's fminsearch is at a disadvantage as it does not have any information

about the covariance function. Instead, it must rely on trial and error in positioning

to optimize placement.

Figure 5-15 describes how the objective function decreases with each iteration

of fminsearch and each iteration of our distributed controller plotted on a log-log

plot. Both algorithms achieve similar objective function values (fminsearch: 35707,

distributed controller: 33114). However, the distributed controller did so in under 10

iterations requiring 18min computation time, while fminsearch required nearly 200

iterations and 162min.

Figure 5-16(a) shows the �nal objective value achieved for both algorithms for con-

�gurations of 3 to 29 nodes. The distributed controller performed 20 iterations for

all con�gurations. The results show that for under 17 nodes fminsearch and the dis-

tributed controller achieve similar results; above 17 nodes the runtime of fminsearch
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Figure 5-16: The objective value (a) and total search time (b) for the decentralized
controller and fminsearch.

was prohibitive. It is not possible to compute the absolute minimum of the objec-

tive function for a given setup; given that the distributed controller and fminsearch

both �nd similar minimums, we expect that the value found is very near the global

minimum.

Figure 5-16(b) shows the number of minutes required by fminsearch and the

distributed depth adjustment algorithm. The runtime of the centralized non-linear

solver, fminsearch, explodes as the number of nodes in the system increases. The

runtime of our decentralized depth adjustment controller only has a slight linear in-

crease as the number of nodes increases. Further limits on the size of the neighborhood

searched, as discussed in Section 5.4.2, show that this linear increase can be bounded

by only integrating over a local neighborhood. Thus, the decentralized depth ad-

justment algorithm is able to perform well in systems with a very large number of

nodes.

Figure 5-17(a) depicts the number of iterations required by fminsearch and the

decentralized controller necessary to achieve 1.05 times the minimum value of the

objective function. Figure 5-17(b) displays the amount of time required to reach this

minimum value. The distributed gradient controller is �xed at 20 iterations although

averaging 11.6 iterations and a maximum of 15. fminsearch often requires large
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Figure 5-17: The number of iterations (a) and minutes (b) until fminsearch and the
decentralized controller came within 1.05 times the minimum value found.

number of iterations, even though the objective function value does not decrease

signi�cantly with each subsequent iteration (see Figure 5-15). These plots illustrate

how quickly each algorithm reaches a value near the ultimate minimum. Note that

fminsearch only ran on systems with up to 17 nodes due to runtime constraints.

These experiments show that the distributed depth adjustment algorithm out-

performs a standard nonlinear optimizer. The distributed depth controller provides

a much more reasonable linear increase in computation time per node compared to

fminsearch.

5.4.6 Dynamic Covariance Energy Analysis

In Section 4.3 we presented two di�erent algorithms to adapt to changing covariances.

The �rst, updates the covariance periodically�adjusting the depth till convergence,

pausing for a period, updating the covariance and repeating. The second, continu-

ously updates the covariance function and runs the depth controller. Here we analyze

the e�ect on the energy budget, and therefore lifetime, of two di�erent approaches.

There are three main components that use energy in the underwater sensor net-

work system. These are:

• Core sensor and processing board, which uses about 0.5W
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Figure 5-18: The energy used when running the algorithm continuously and once an
hour for 10 minutes.

• Acoustic communication, which uses 0.8W when periodically transmitting

• Adjusting depth, which uses up to 1.6W

In order for the depth adjustment algorithm to run all three of these systems must

be enabled. When the algorithm is not being run the acoustic communication and

depth adjustment system can be disabled. Additionally, the core sensor board can be

turned o� if continuous sensing is not needed (periodic samples, e.g. every minute,

can still be taken with little energy cost).

Figure 5-18 shows the energy remaining over time for three di�erent con�gurations

assuming the batteries start fully charged (60Wh). The lower line shows the charge

remaining if the depth adjustment system runs continuously. In this case it lasts

for 20.69 hours. If instead, the depth adjustment algorithm runs for 10 minutes

every hour and otherwise the acoustic modem and depth adjustment system are

shutdown the middle energy usage line shows that the batteries will last for 66.76

hours. Finally, the top line shows the result if the sensor and processing board is
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also shutdown when the depth adjustment algorithm is not running. In this case,

periodic measurements can still be taken (every minute), but continuous processing

and sensing (every second) cannot be performed. This extends the life of the network

to 124.54 hours or over 5 days. Further reduction in the frequency of the algorithm

runs can further extend the life of the network.

5.5 Hardware Experiments

We performed experiments in the lab, pool, and river using four of the AquaNode

underwater sensor nodes. For all experiments the sensor network ran the decentralized

depth controller. We tested both the base covariance model discussed in Section 4.2.5

and the model-based covariance discussed in Section 5.2. In addition, we explore the

impact of periodically changing the covariance function.

5.5.1 Experimental Setup

We designed the implementation to be �exible and easy to add or update models in

the system. However, we also had to be cautious as the processor has limited memory

and does not have a �oating point unit. To increase speed, wherever possible integer

math is used, only resorting to �oating point operations where needed to maintain

accuracy.

We implemented Algorithm 1 on the system. To maintain maximum �exibility

the only function that needs to be updated to change the covariance model is the

function F(p_i,qx,qy,qz) (line 8). This function takes a sensor located at position

p_i and the point we are interested in sensing qx,qy,qz and returns the covariance

between these two points.

For the implementation of FDz(p_i,qx,qy,qz) (line 10) we use the numerical gra-

dient of F at that position. Using a numerical gradient has the advantage that we do

not need to rederive a gradient for each new covariance function, which is challenging

when using arbitrary models (that are potentially numeric) for the covariance. The

disadvantage of using a numerical gradient is the potential for accuracy and stability

problems. In particular, with numeric gradients, choosing the size of the step to use
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can be challenging. If it is too small �oating point precision issues can occur, if it

is to large, inaccuracies can occur. However, the algorithm only knows the depth of

each node to the millimeter and the function F takes the positions as integers with

mm values. Thus, the algorithm uses an o�set of ±1mm to compute the gradient

numerically. We �nd that this calculation typically corresponds to over eight decimal

places of accuracy as compared to the analytic gradient.

For the base covariance model discussed in Section 4.2.5 we implemented the

function F as:

exp(-(((px-qx)*(px-qx)+(py-qy)*(py-qy))

/(2.0*SIGMA_SURF*SIGMA_SURF)

+((pz-qz)*(pz-qz))/(2.0*SIGMA_DEPTH*SIGMA_DEPTH)));

with SIGMA_DEPTH = 4.0 and SIGMA_SURF = 10.0. Some additional optimizations

were made to limit duplicate computations. For the algorithm the node locations

were scaled to be 15m apart along the x-axis, the neighborhood size was ±20m along

the x-axis, the virtual depth ranged in z from 0 to 30m, and a step size of 1m was

used. These values correspond to values that performed well in the simulations.

For the covariance based on the model data (CDOM covariance) we implemented F

based on the Gaussian basis function. Since we used Matlab's newrb function to com-

pute the basis function, we used their documentation to determine the reconstruction

of F:

val = 0.0;

for(i = 0; i < NUM_BASIS; i++){

val += netLWX[i]

*exp(-pow(((fabs(px-qx)-netIWX[i])*netb1X[i]),2));

val += netLWZ[i]

*exp(-pow(((fabs(px-qx)-netIWZ[i])*netb1Z[i]),2));

}

val += netb2X + netb2Z;

Yme = Yme + net.b{2};
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The value netLW is the amplitude and netIW is the center of the Gaussian as reported

by Matlab. The factor netb1 is the inverse of the variance of the Gaussian. The

actual values of these variables are dependent on the model data. Figure 5-3 shows

the �t of the Gaussian basis function as compared to the actual data for the Neponset

river CDOM covariance data. For this setup, the node locations were scaled to 500m

spacing along the x-axis, the neighborhood size was ±800m, the depth ranged from

0 to 3m, used a step size of 40m along the x-axis, and used a step size of 0.1m in

depth.

Given these two covariance models and implementations we performed experi-

ments in the lab and in the pool. Both sets of experiments used four underwater

sensor nodes. For the lab experiments we placed the transducers of the acoustic

modem in a bucket of water and allowed the depth adjustment system to operate

freely in air. The lab experiments required the same functionality as the pool exper-

iment while providing improved acoustic communication. For the pool experiments

we placed the four sensor nodes in a line in the deep end of a 3m deep pool.

As the pool and bucket did not allow the node spacing used in the setup, we

manually set the positions of the nodes to have the proper x-axis spacing. We also

scaled each of the node's estimated depth to map the range of depth used in the

covariance model to a 1m depth range in the pool. This was to keep the sensor nodes

near the middle of the column of water as the acoustic modems were not able to

communicate with each other if they were outside of the range.

5.5.2 Results and Convergence

We successfully ran 25 iterations of both covariance models in the bucket and the

pool. For the Gaussian we ran 4 trials in the pool. Each trial converged within 12

minutes with each iteration averaging 14s. For the CDOM covariance we ran 5 pool

trials. Each trial converged within 20 minutes with each iteration averaging 35s.

Figures 5-19(a) and 5-20(a) depict the absolute value of the cost function, ∂H
∂zi

, for

each node in the pool while using the Gaussian covariance. Initially, the gradient of

the objective function was high; however, over the course of the experiment the value

on each node decreased until it reached a stable state.
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Figure 5-19: The value of ∂H
∂zi

(a) and the depths (b) over the course of a three
experimental runs.

Figures 5-19(b) and 5-20(b) show the depths of each of the nodes over the course of

an experiment. Initially, the nodes were started at 20m. All of the nodes approached

the center of the water column after 200s. From here Nodes 1 and 3 continued up

in the water while Nodes 2 and 3 returned to a lower depth. The total time to

convergence in this experiment was approximately 8 minutes.

Table 5.3 shows the start and end con�gurations for 6 of the experiments we

performed using the Gaussian covariance function. In most of the experiments the

controller converged to a con�guration where the nodes were oriented in a zig-zag

con�guration. An exception to this is trial Bucket 3 where the nodes initially started

in a diagonal con�guration. In this case, the nodes converged to a down-up-up-

down con�guration, a local minimum. Section 5.4.3 explores how di�erent start

con�gurations e�ect the �nal positioning of the nodes.

Similarly, Table 5.4 shows the start and end con�gurations for 6 of the pool and

bucket experiments for the river model covariance function. The results here are

similar to that of the previous set of experiments.

5.5.3 Communication Performance

The acoustic channel is a very low bandwidth, high noise environment. Despite

being placed close together in the pool, the communications were similar to what we
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Figure 5-20: The value of ∂H
∂zi

(a) and the depths (b) over the course of a single
experiment.

typically �nd in river experiments in that all nodes hear single-hop neighbors and

some nodes hear further nodes. This is due to the highly re�ective and therefore

challenging acoustic environment in the pool.

In our implementation, each node only used depth information from neighboring

nodes whose last depth message was received within the past two minutes. Fig-

ure 5-21(a) shows the number of neighbors each node used in the calculation of the

decentralized depth controller, ∂H
∂zi

. The nodes were in a line in numerical order. Node

1 typically only heard Node 2; Node 2 heard 1, 3, and 50% of the time heard 4; Node

3 heard 2, 4; and Node 4 heard 3 and 20% of the time heard 2.

Figure 5-21(b) shows the lag in Node 2's estimate of the depths of the other three

nodes. As we use a TDMA communication algorithm, we expect to receive an update

from each node every 16 seconds. However, due to packet loss the updates may arrive

less frequently. Thus, the algorithm may be use somewhat old data to calculate the

controller output, although never older than two minutes. The experiments in this

section show that despite sometimes poor communication, the decentralized controller

still converges and is robust.
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Node0 Node1 Node2 Node3
Bucket 1 Start 10.0m 10.0m 10.0m 10.0m
Bucket 1 Final 10.3m 24.1m 5.9m 19.7m
Bucket 2 Start 20.0m 20.0m 20.0m 20.0m
Bucket 2 End 19.8m 5.9m 23.8m 10.2m
Bucket 3 Start 3.7m 7.8m 12.2m 15.9m
Bucket 3 End 9.5m 22.9m 23.9m 9.6m
Pool 1 Start 10.2m 9.9m 10.1m 9.8m
Pool 1 End 20.6m 6.9m 24.1m 10.2m
Pool 2 Start 20.0m 20.1m 20.3m 20.1m
Pool 2 End 9.5m 23.9m 5.6m 18.8m
Pool 3 Start 20.2m 19.9m 20.3m 20.1m
Pool 3 End 9.6m 24.0m 5.8m 19.7m

Table 5.3: Selected start and end con�gurations for a number of bucket and pool
experiments using the base covariance function.

5.5.4 Updating Covariance

We performed experiments to characterize the performance of the decentralized depth

adjustment algorithm when the covariance function changes periodically. Figure 5-

23(bottom)(a-e) shows the concentration of CDOM along the Neponset River based

on the model described in Section 5.2. Each sub�gure (a-e) plots this for (a) 3.25m,

(b) 3.0m, (c) 2.75m, (d) 2.5m, and (e) 2.25m of average water depth. The changes in

water level are due to tidal e�ects. Figure 5-23(top)(a-e) shows the numeric covariance

for each of these plots normalized to fall between zero and one.

We deployed 4 nodes in the Charles river and simulated updating the covariance

function to determine the e�ect of periodic covariance function updates. Figure 5-22

shows the results. This �gure plots the value of the objective function that each node

computes over time as well which covariance function from Figure 5-23 is currently

in use (step function at top of Figure 5-22).

In this experiment, the nodes initially had very high objective functions. They

then moved, which lowered the objective function. After the nodes stabilized we

changed the covariance function from the 3.25m data to the 3.0m data. Interest-

ingly, the objective function did not change signi�cantly. Similarly, the transition

from 3.0m to 2.75m objective function did not have much impact. When moving to
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Node0 Node1 Node2 Node3
Bucket 1 Start 1.0m 1.0m 1.0m 1.0m
Bucket 1 Final 1.6m 0.7m 0.6m 2.4m
Bucket 2 Start 1.0m 1.0m 1.1m 1.0m
Bucket 2 End 2.5m 1.5m 1.7m 0.5m
Bucket 3 Start 1.0m 2.0m 1.0m 2.0m
Bucket 3 End 0.8m 2.4m 0.6m 2.1m
Pool 1 Start 1.0m 1.0m 1.0m 1.0m
Pool 1 End 2.4m 1.5m 0.5m 2.4m
Pool 2 Start 2.0m 2.0m 2.0m 2.0m
Pool 2 End 0.7m 2.3m 0.7m 2.2m
Pool 3 Start 2.0m 2.1m 2.0m 2.0m
Pool 3 End 0.7m 2.8m 0.8m 2.8m

Table 5.4: Selected start and end con�gurations for a number of bucket and pool
experiments using the river covariance function.

2.5m, however, the objective function increased greatly. This caused the decentral-

ized controller to adjust the depths of the nodes to again reduce the objective value.

A �nal change in the covariance function from 2.5m to 2.25m also resulted in a spike

in the objective function, which the decentralized depth controller quickly minimized

by changing the depths of the nodes.

This experiment veri�es that the decentralized controller handles changes to the

covariance function in a river environment. Interestingly, some changes to the co-

variance function result in very minor changes to the value of the objective function,

however, others cause signi�cant changes.
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Figure 5-21: The number of neighbors used in ∂H
∂zi

calculation (a) and one node's
estimate the other nodes' depths versus the actual depths over time.
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Figure 5-22: Objective value for 4 nodes when changing the depth-based covariance
function.
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Figure 5-23: The di�erent CDOM values (bottom) and covariance functions (top) for
the Neponset River with tidal river level of (a) 3.25m, (b) 3.0m, (c) 2.75m, (d) 2.5m,
and (e) 2.25m
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Figure 5-24: Picture of the Neponset River deployment.

5.5.5 Neponset River Experiment

In addition to performing experiments to verify the algorithm in controlled pool and

river experiments, we also performed a scienti�c data collection experiment in the

Neponset River, which is located just south of Boston, MA. Figure 5-24 shows a map

of the deployment. We deployed four nodes around the Granite Avenue bridge, two

on each side of the bridge.

Figure 5-25 shows a picture of an AquaNode in the water at the surface (left

in image) and the marker buoy. The node was connected directly to an anchor at

the bottom of the river. A length of chain was also attached to the anchor. A rope

went from the chain to the marker buoy. The chain allowed us to o�set the marker

from the location of the anchor and sensor node, reducing the chance of the two lines

entangling.

We started the experiment at high tide during which the depth at the deployment

locations ranged from 3m to 6m. After 7 hours we recovered the nodes at low tide.
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Figure 5-25: Picture of an AquaNode in the Neponset River.

The tidal change was nearly 3m. After 4.25 hours there was a large rain storm that

caused signi�cant runo� into the river.

The nodes were programed to perform column pro�les of the water, going to the

surface for 5 minutes and then returning to the bottom for 10 minutes. In addition,

the nodes communicated and ran the dynamic depth adjustment algorithm. However,

we did not control the depths of the nodes using the algorithm as we wanted a baseline

set of data to use to obtain covariance information.

Sensing and Depth Adjustment

Each node had temperature, pressure, and CDOM sensors. The CDOM sensors were

external to the nodes and we used two di�erent types. The �rst was a miniature

sensor with a diameter of about 2cm and a length of about 10cm. The other sensor

was nearly the same diameter as the sensor node and half the height. We used two of

each sensor. The small sensors were attached to nodes 0 and 2 and the large sensors

were attached to nodes 1 and 3. The small sensors were attached directly to the

AquaNodes, while the larger sensors were made neutrally buoyant and allowed to

�oat in the water. Unfortunately, the larger sensors created too much drag in the

water given the fairly signi�cant water current in the river. This caused the over
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Figure 5-26: Data from Node 2 in the Neponset River.

current software protection to disable the winch. Thus, the two nodes with the large

sensors did not perform the depth transects.

Figure 5-26 shows the data collected from Node 2 during the Neponset River

experiment. The top (red) portion of the �gure shows the depth as measured by the

pressure sensor. This shows the depth transects as the node moved up and down.

The �rst few show that it went up and then down brie�y before going up and down

again. This was most likely caused by poor initial winding on the spool causing the

line to reverse winding. After a few times the spool corrected itself.

The second plot down in Figure 5-26 (green) shows the length of the line (based

on motor encoder data) that was deployed in order to reach the surface. At the start

of the experiment it took 6m of line in order to surface from a depth of approximately

3m. This node was limited to deploying 6m of line. This means that the water current

was dragging the node at an angle of almost 45◦. As the water depth decreased with

the tidal change the amount of line needed stayed nearly the same until the last hour

of the experiment. This is due to the fact that as the tide changed the river current
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Figure 5-27: Data from Node 0 in the Neponset River.

increased, causing an even larger angle in the water. This shows that in rivers with

relatively fast currents additional �otation material should be added to the nodes to

increase their buoyancy and reduce the anchor line angle in the water.

The third and fourth plot down in Figure 5-26 (blue and yellow, respectively),

show the CDOM sensor reading as well as the temperature sensor reading. These

show that at the surface there was a higher CDOM reading as well as a higher

temperature reading. However, after slightly more than 4 hours into the experiment,

there was a signi�cant rain storm. The sensor readings indicate that after this point

the conditions in the water were much more uniform across the depths in the water.

Figure 5-27 shows the data from Node 0. From hour 1 to 3 of this experiment

the node stayed at the bottom of the water column. This was caused by software

over current protection on the winch that disabled motion. Most likely the node was

tangled (perhaps with marker �oat line) or was otherwise impeded. After hour 3 the

node recovered and performed the depth transects.
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Figure 5-28: Data from Node 1 in the Neponset River.

Figures 5-28 and 5-29 show the data from Nodes 1 and 3. These nodes had the

large CDOM sensors. The depth readings show that these nodes stayed continuously

at the bottom of the water column. This was most likely caused by the large drag

from the CDOM sensor. The current caused the sensor to be dragged completely

horizontally in the water and as such it was resting on the bottom. This triggered

the software current limit on the winch, which disabled motion for the majority of

the experiment. Further experiments need to be performed to determine the proper

amount of buoyancy and the proper current limit for the nodes under these conditions.

The sensors on Node 3 failed to record for some unknown reason. Tests before the

experiment showed that the sensors were working, further tests need to be performed

to determine the reason for failure.

Communication and Depth Adjustment Algorithm

Figure 5-30 shows the communication success rate between the nodes during the

experiment. The distance from Node 0 to 1 was 35m, 1 to 2 was 64m, and 2 to 3
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Figure 5-29: Data from Node 3 in the Neponset River.

Node0 Node1 Node2 Node3
Node 0 - 8.3 8.1 200.7
Node 1 4.6 - 6.6 238.7
Node 2 39.0 59.0 - 46.1
Node 3 248.6 248.6 51.2 -

Table 5.5: Average time, in minutes, between communication during the Neponset
River experiment.

was 93m. Table 5.5 summarizes the average time between hearing a messages. This

shows, that the nodes were able to hear their single hop neighbors and occasionally

a two hop neighbors. Figure 5-30 also shows that some periods of time had better

communication than others. For instance in (a) and (b) between hours 2 and 4 of the

experiment the communication success rate was much better than other times. The

communication statistics show that it is possible to communicate in a shallow river

environment at ranges of over 100m.

Figure 5-31 shows the value of the decentralized depth adjustment controller out-

put over the course of the deployment. During the experiment the gain on the con-

troller output was set low so that it converged slowly. In addition a deadband of 20
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Figure 5-30: Communication data for the AquaNodes in the Neponset River.

was placed on the controller, meaning the nodes would not move if the value of HDz

was less than 20. This explains the reason why the controller output does not go to

zero.

Neponset River Summary

In this experiment we demonstrated the performance of the depth adjustment system

and the decentralized gradient controller in a real setting. We collected pressure,

temperature, and CDOM measurements for over 7 hours from high to low tide. We

learned that properly adjusting the buoyancy of the nodes and minimizing the drag

of external sensors is critical to enable proper depth adjustment.
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Figure 5-31: The controller output HDz during the Neponset River experiment.
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Chapter 6

Underwater Robot Localization:

Algorithm

6.1 Introduction

In Chapters 4 and 5 we presented algorithms and experiments to adjust the depth

of the underwater sensor nodes to optimize sensing, while assuming known positions.

In this chapter we develop and describe algorithms for localizing static and dynamic

nodes in a 3D underwater sensor network where nodes can exchange and/or estimate

ranges. In particular, we develop an acoustic underwater localization algorithm that

allows the underwater robot, Amour, to act as a mobile sensor in the underwater

sensor network and to �ll in any gaps left by the AquaNodes.

Sensors need to associate sensed values with the locations of these values. In some

applications it is advantageous to introduce a mobile networked robot in the system.

In case the sensors detect an interesting event, the robot can travel to that location to

collect data using more powerful sensors. For instance, if the AquaNodes detect an

increase in pollution in an area of coral reef, Amour can be sent out to photograph

the coral to detect any early onset of bleaching. In addition, the robot acts as a mobile

data-mule. It travels to each AquaNode and downloads their data by hovering over

them and using the optical modem [103]. Both of these require accurate positioning of
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the robot as it moves through the network to add location information to the sensed

data and to �nd the static sensor nodes.

While at the surface, Amour uses GPS to obtain position information. Once

underwater, however, GPS is unavailable due to the absorption of radio frequencies

by the water. In this chapter we develop an underwater localization algorithm for

underwater robots that �nds the provably optimal location for the robot given range

information to the static sensor nodes. The algorithm is geometrically inspired and

only requires an upper bound on the robot speed. In addition to optimally local-

izing the robot, the algorithm is e�cient, as in practice it only requires constant

computation per location update.

There are a number of challenges associated with localizing a robot underwater

when GPS is unavailable. The �rst is that the mobile robot only receives ranges to the

static nodes periodically and asynchronously. The second is the lack of good dead-

reckoning in inexpensive underwater vehicles. On land, robots use wheel encoders to

estimate their motion and position over time. This type of simple and inexpensive

dead-reckoning is unavailable underwater.

The �rst challenge, only receiving asynchronous and periodic range measurements,

implies that the robot will move signi�cantly between range measurements, thereby

eliminating straight-forward tri- or multi-lateration approaches. The range measure-

ments are obtained by measuring the round-trip transmission time of an acoustic

message between the robot and sensor nodes. Due to the narrow and slow acous-

tic communication channel, the robot only obtains range measurements every 1 to 4

seconds. During this time between ranges Amour may move over �ve meters.

An additional challenge with inexpensive underwater robots is the lack of precise

dead-reckoning systems.1 To reduce costs, Amour only uses a basic inertial mea-

surement unit (IMU). The IMU provides accurate orientation information but poor

estimates of translational motion. In part, the poor translational motion calculation

1For example, a Doppler velocity logger (DVL) provides a very good estimate of the absolute
motion of an underwater vehicle by measuring the Doppler shift of an acoustic signal re�ected o� of
the �oor of the ocean. For Amour and other inexpensive AUVs, a DVL is cost prohibitive, costing
tens of thousands of dollars, many times the cost of Amour, which costs less than $10k.
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is due to currents in the water that cause the absolute translational motion to vary

greatly from the computed motion based on IMU and thruster data. Thus, the local-

ization algorithm cannot rely on dead-reckoning and only uses a maximum bound on

the speed of the robot.

Fortunately, it is very easy to measure the depth of the robot underwater using an

inexpensive pressure sensor. These sensors measure the pressure of the water and can

accurately estimate the depth based on water pressure. This reduces the localization

problem from a 3D problem to a 2.5D problem since the depth of the robot is known.

The work described in this chapter covers and extends the previous work �rst

described in our Master's thesis [31], and is included here for completeness. This

chapter starts by formulating the localization problem in Section 6.2. We then for-

mally present and analyze the algorithm in Section 6.3, showing that it �nds the

optimal localization regions. Chapter 7 details results of the localization algorithm

simulations and a new experimental implementation and results.

6.2 Problem Formulation and Intuition

While at the surface the robot is able to use GPS, however, once it is underwater

GPS is not available. Instead, the robot relies on acoustic range information obtained

periodically from the static underwater sensor nodes. The main challenge is that the

ranges from static nodes are received over time, not consecutively. This means that

the robot will have moved signi�cantly between range measurements. In our system

we obtain ranges every 1 to 4 seconds. In this time the robot can move on the order

of meters. In addition, the robot does not have dead-reckoning capabilities, so we

must rely only on an upper bound on robot speed.

In this section we formalize the problem setup. First, however, we discuss the

assumptions that the algorithm makes.
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6.2.1 Assumptions

The underwater mobile robot localization algorithm makes a very minimal set of

assumptions. Namely:

• The locations of the static nodes are known;

• Periodic ranges are obtained to the static nodes;

• An upper bound on the mobile node speed is known;

• The vehicle does not have dead-reckoning capabilities.

Determining the locations if the static nodes is discussed in Section 6.2.2. The

mobile node is able to obtain period range measurements to the static nodes by using

the acoustic modem. The details of obtaining ranges with the acoustic modem is

discussed in Section 7.6.2. Determining the upper bound on maximum water speed

of the mobile node is easily measured by driving the vehicle at full thrust. In practice,

there are some other considerations that must be included in this calculation. For

instance, in the presence of strong currents the vehicle ground speed may be much

larger than the actual water speed. Thus, the speed must be increased to account for

any potential currents.

Finally, we assume that the vehicle does not have expensive dead-reckoning ca-

pabilities. If it does, then this information can be incorporated into the algorithm,

however, there are a large set of cases where this information is unavailable. In large

part the main constraint is cost. The systems needed to obtain good dead-reckoning

capabilities, such as a Doppler velocity logger (DVL), cost tens of thousands of dol-

lars. Our underwater vehicle costs less than $10k. Including a DVL would drastically

increase the price. In addition, in some environments, such as in deep water, a DVL

does not work. Other instruments can be used, such as inertial measurement units

and compasses, however, these too can fail in some setups. For instance, near ship

hulls or oil pipelines the compass will have erroneous readings, causing problems for

the dead-reckoning systems. Thus, it is realistic to assume that dead-reckoning in-

formation is not always available and that algorithms must be developed to handle

cases where it is unavailable.
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6.2.2 Localizing Static Nodes

In order for the mobile robot localization algorithm to work, the robot must know

the locations of the static nodes from which it is receiving ranges. We utilize two

approaches for localizing static nodes in the network. The �rst, which we have imple-

mented and tested on our physical system, is an extension from 2D to 3D of a robust

localization algorithm by Moore et al. [71]. This algorithm requires the exchange of all

range information throughout the network (O(N2) communication overhead). Each

node can then robustly compute the locations of all nodes in the network. This algo-

rithm takes care to prevent �ip ambiguities2 which can lead to large positional errors

based on small errors in range measurements. In typical deployments it takes approx-

imately 30 minutes to obtain su�cient range information for the static localization

algorithm.

The static localization algorithm does not, however, give absolute geographic co-

ordinates. Rather, it computes a local coordinate system, which all nodes can agree

on. The process of transforming this local coordinate system into a real geographic

coordinate system can be done by obtaining three GPS positions with the correlating

local coordinate. This enables solving for the rotation, translation, and �ip ambiguity

parameters between the systems.

The second approach to localize the static nodes is to make use of the depth ad-

justment system. By going to the surface the sensor nodes can obtain GPS positions.

This is useful to �gure out the transform between the coordinate systems of the self

computed positions, but can also be used to compute the locations of all sensor nodes

if they are all equipped with the winch hardware. The �nal depth of the nodes can be

measured using an inexpensive pressure sensor that measures the water pressure to

estimate depth. These sensors are also used in the static and mobile robot localization

algorithm.

2A �ip ambiguity is when a node can have multiple locations based on the available, noisy range
information.
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6.2.3 De�nitions

We now de�ne a generic formulation for the localization problem. This setup can be

used to evaluate range-only, angle-only, and other localization problems, however, we

will focus on the range-only localization problem. This material is based on [31]. For

details on other formulations see the Master's Thesis [31].

We start by de�ning a localization region.

De�nition 1. A localization region at some time t is the set of points in which a

node is assumed to be at time t.

We will often refer to a localization region simply as a region. It is useful to

formulate the localization problem in terms of regions as the problem is typically

under-constrained, so exact solutions are not possible. Probabilistic regions can also

be used, however, we use a discrete formulation. In this framework the localization

problem can be stated in terms of �nding optimal localization regions.

De�nition 2. A localization region is optimal with respect to a set of measurements

at time t if at that time it is the smallest region that must contain the true location

of the mobile node, given the measurements and the known velocity bound. A region

is individually optimal if it is optimal with respect to a single measurement.

For example, for a range measurement the individually optimal region is an arc

or annulus. Another way to phrase optimality is if a region is optimal at some time

t, then the region contains the true location of the mobile node and all points in the

region are reachable by the mobile node.

6.2.4 Intuition

Suppose that from time 1 · · · t we are given regions A1 · · ·At each of which is indi-

vidually optimal. The times need not be uniformly distributed, however, we assume

that they are in sorted order. By de�nition, at time k region Ak must contain the

true location of the mobile node and furthermore, if this is the only information we
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have about the mobile node, it is the smallest region that must contain the true loca-

tion. We now want to form regions, I1 · · · It, which are optimal given all the regions

A1 · · ·At and an upper bound on the speed of the mobile node which we will call s.

We refer to these regions as intersection regions as they will be formed by intersecting

regions.
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Figure 6-1: Example of the range-only localization algorithm.

Figure 6-1 shows the critical steps in the range-only localization of mobile Node

m. Node m is moving through a �eld of localized static nodes (Nodes a, b, c) along

the trajectory indicated by the dotted line.

At time t Node m obtains a range to Node a. This allows Node m to localize

itself to the circle indicated in Figure 6-1(a). At time t+ 1 Node m has moved along

the trajectory as shown in Figure 6-1(b). It expands its localization estimation to

the annulus in Figure 6-1(b). The size of the annulus is determined by the known

maximum speed of the robot. Node m then enters the communication range of Node

b and obtains a ranging to Node b (see Figure 6-1(c)). Next, Node m intersects the

circle and annulus to obtain a localization region for time t + 1 as indicated by the
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Algorithm 3 Localization Algorithm

1: procedure Localize(A1 · · ·At)
2: s← max speed
3: I1 = A1 . Initialize the �rst intersection region
4: for k = 2 to t do
5: 4t← k − (k − 1)
6: Ik =Grow(Ik−1, s4t) ∩ Ak . Create the new intersection region
7: for j = k − 1 to 1 do . Propagate measurements back
8: 4t← j − (j − 1)
9: Ij =Grow(Ij+1, s4t) ∩ Aj
10: end for
11: end for
12: end procedure

bold red arcs in Figure 6-1(d). This is the localization region. This region depends

on the maximum speed of the robot and the speci�c ranges it hears.

The range taken at time t+ 1 can be used to improve tracking at time t as shown

in Figure 6-1(e). The arcs from time t + 1 are expanded to account for all locations

the mobile node could have come from. This is intersected with the range taken at

time t to obtain the re�ned location region illustrated by the bold blue arcs. Figure

6-1(f) shows the �nal result. Note that for times t and t + 1 there are two possible

location regions. This is because two range measurements do not provide su�cient

information to fully constrain the system. Range measurements from other nodes will

quickly eliminate this.

6.3 Localization Algorithm

The localization algorithm follows the same idea as in Section 6.2. Each new region

computed will be intersected with the grown version of the previous region and the

information gained from the new region will be propagated backwards. Algorithm 3

shows the details.

Algorithm 3 can be run online by omitting the outer loop (lines 4-6 and 11) and

executing the inner loop whenever a new region/measurement is obtained.

The �rst step in Algorithm 3 (line 3), is to initialize the �rst intersection region

to be the �rst region. Then we iterate through each successive region.
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The new region is intersected with the previous intersection region grown to ac-

count for any motion (line 6). Finally, the information gained from the new region

is propagated back by successively intersecting each optimal region grown backwards

with the previous region, as shown in line 9.

6.3.1 Algorithm Details

Two key operations in the algorithm, which we will now examine in detail, are

Grow and Intersect. Grow accounts for the motion of the mobile node over time.

Intersect produces a region that contains only those points found in both localiza-

tion regions being intersected.

Figure 6-2: Growing a region by s. Acute angles, when grown, turn into circles as
illustrated. Obtuse angles, on the other hand, are eventually consumed by the growth
of the surroundings.

Figure 6-2 illustrates how a region grows. Let the region bounded by the black

lines contain the mobile node at time t. To determine the smallest possible region

that must contain the mobile node at time t+1 we Grow the region by s, where s is the

maximum speed of the mobile node. The Grow operation is the Minkowski sum [34]

(frequently used in motion planning) of the region and a circle with diameter s.

Notice that obtuse corners become circle arcs when grown, while everything else

�expands.� If a region is convex, it will remain convex. Let the complexity of a region

be the number of simple geometric features (lines and circles) needed to describe it.

Growing convex regions will never increase the complexity of a region by more than
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a constant factor. This is true as everything just expands except for obtuse angles

which are turned into circles and there are never more than a linear number of obtuse

angles. Thus, growing can be done in time proportional to the complexity of the

region.

A simple algorithm for Intersect is to check each feature of one region for inter-

section with all features of the other region. This can be done in time proportional to

the product of the complexities of the two regions. While better algorithms exist for

this, for our purposes this is su�cient as we will always ensure that one of the regions

we are intersecting has constant complexity as shown in Section 6.3.3. Additionally,

if both regions are convex, the intersection will also be convex.

Next we prove the correctness and optimality of Algorithm 3. We show that

the algorithm �nds the location region of the node, and that this computed location

region is the smallest region that can be determined using only maximum speed. We

assume that the individual regions given as input are optimal, which is trivially true

for the range-based localization.

6.3.2 Algorithm Correctness

Theorem 2. Given the maximum speed of a mobile node and t individually optimal

regions, A1 · · ·At, Algorithm 3 will produce optimal intersection regions I1 · · · It.

Without loss of generality assume that A1 · · ·At are in time order. We will prove

this theorem inductively on the number of range measurements for the online version

of the localization algorithm. The base case is when there is only a single range

measurement. Line 3 implies I1 = A1 and we already know A1 is optimal.

Now inductively assume that intersection regions I1 · · · It−1 are optimal. We must

now show that when we add region At, It is optimal and the update of I1 · · · It−1

maintains optimality given this new information. Call these updated intersection

regions I ′1 · · · I ′t−1.
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First we will show that the new intersection region, I ′t, is optimal. Line 6 of the

localization algorithm is

I ′t = Grow(It−1, s4t) ∩ At. (6.1)

The region Grow(It−1) contains all possible locations of the mobile node at time t

ignoring the measurement At. The intersection region I ′t must contain all possible

locations of the mobile node as it is the intersection of two regions that constrain the

location of the mobile node. If this were not the case, then there would be some point

p which was not in the intersection. This would imply that p was neither in It−1 nor

At, a contradiction as this would mean p was not reachable. Additionally, all points

in I ′t are reachable as it is the intersection of a reachable region with another region.

Therefore, I ′t is optimal.

Finally we will show that the propagation backwards, line 9, produces optimal

regions. The propagation is given by

I ′j = Grow(I ′j+1, s4t) ∩ Aj (6.2)

for all 1 ≤ j ≤ t − 1. The algorithm starts with j = t − 1. We just showed that

I ′t is optimal, so using the same argument as above It−1 is optimal. Applying this

recursively, all It−2 · · · I1 are optimal. Q.E.D.

6.3.3 Computational Complexity

Algorithm 3 has both an inner and outer loop over all regions which suggests an O(n2)

runtime, where n is the number of input regions. However, Grow and Intersect also

take O(n) time as proven later by Theorem 3. Thus, overall, we have an algorithm

which runs in O(n3) time. We show, however, that we expect the cost of Grow and

Intersect will be O(1), which suggests O(n2) runtime overall.

The runtime can be further improved by noting that the correlation of the cur-

rent measurement with the past will typically decrease rapidly as time increases. In
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Section 7.4.1 we show in simulation that only a �xed number of steps are needed,

eliminating the inner loop of Algorithm 3. Thus, we can reduce the complexity of the

algorithm to O(n).

The range-only instantiation of Algorithm 3 is obtained by taking range measure-

ments to the nodes in the sensor �elds. Let A1 · · ·An be the circular regions formed

by n range measurements. A1 · · ·An are individually optimal and as such can be

used as input to Algorithm 3. We now prove the complexity of localization regions is

worst case O(n). Experimentally we �nd they are actually O(1) leading to an O(n2)

runtime.

Theorem 3. The complexity of the regions formed by the range-only version of the

localization algorithm is O(n), where n is the number of regions.

The algorithm intersects a grown intersection region with a regular region. This

will be the intersection of some grown segments of an annulus with a circle (as shown

in the Figure 6-3). Let regions that contain multiple disjoint sub-regions be called

compound regions. Since one of the regions is always composed of simple arcs, the

result of an intersection will be a collection of circle segments. We will show that each

intersection can at most increase the number of circle segments by two, implying linear

complexity in the worst case.

Consider Figure 6-3. At most the circular region can cross the inner circle of the

annulus that contains the compound region twice. Similarly, the circle can cross the

outer circle of the annulus at most twice. The only way the number of sub-regions

formed can increase is if the circle enters a sub-region, exits that sub-region, and

then reenters it as illustrated in the �gure. If any of the entering or exiting involves

crossing the inner or outer circles of the annulus, then it must cross at least twice.

This means that at most two regions could be split using this method, implying a

maximum increase in the number of regions of at most two.

If the circle does not cut the interior or exterior of the annulus within a sub-region

then it must enter and exit though the ends of the sub-region. But notice that the

ends of the sub-regions are grown such that they are circular, so the circle being
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Figure 6-3: An example compound intersection region (in blue) and some new range
measurement in red. With each iteration it is possible to increase the number of
regions in the compound intersection region by at most two.

intersected can only cross each end twice. Furthermore, the only way to split the

subregion is to cross both ends. To do this the annulus must be entered and exited

on each end, implying all of the crosses of the annulus have been used up. Therefore,

the number of regions can only be increased by two with each intersection proving

Theorem 3.

In practice it is unlikely that the regions will have linear complexity. As seen in

Figure 6-3 the circle which is intersecting the compound region must be very precisely

aligned to increase the number of regions (note that the bottom circle does not increase

the number of regions). In the experiments described in Chapter 7 we found some

regions divided in two or three (e.g. when there are only two range measurements,

recall Figure 6-1). However, there were none with more than three sub-regions. Thus,

in practice the complexity of the regions is constant leading to O(n2) runtime.
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Chapter 7

Underwater Robot Localization:

Simulations and Experiments

7.1 Introduction

Chapter 6 introduced the underwater mobile robot localization algorithm. This algo-

rithm is a minimalist, geometrically-inspired algorithm that only relies on knowledge

of an upper bound on the mobile robot speed and periodic, asynchronous range

measurements to static nodes. This chapter analyzes the algorithm in extensive sim-

ulations, considers extensions of the algorithm that enable an implementation on

AquaNodes and Amour, and presents the results of experiments in lakes, rivers,

and oceans.

The simulator gives visual and numeric feedback on the performance of the un-

derwater mobile robot localization algorithm. We use the simulator to verify the

algorithm developed in Chapter 6. In particular, we validate the intuition discussed

in Section 6.3.3 that each new measurement requires only O(1) time to localize the

robot. This is because measurements only need to be propagated back a �xed amount

of time, and the complexity of the localization regions is constant. In addition, we

use the simulator to examine the e�ect of changing the speed bound and number of

static nodes. Finally, we explore the impact of measurement noise and the rate the

mobile node obtains ranges.
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Theory Practice
Ranges are exact Ranges have noise (non-Gaussian)
Range measurements are precise Speed of sound variations cause scaling in ranges
Static nodes are exactly localized Static node positions have errors
Ranges received from random nodes Often only get ranges from nearby nodes

Table 7.1: Comparison of assumptions from the theory and those found in practice.

We also implemented the underwater localization algorithm on the acoustic mo-

dem that is used in the AquaNodes and on our underwater robot, Amour. This

implementation is di�erent from the simulator in that it is a discretized, grid-based

implementation. This implementation is compiled both on a computer for testing

and post-processing data and on the acoustic modem to run in real-time on the sys-

tem. We have performed numerous experiments using our sensor network system and

underwater robot to verify the localization algorithm on real datasets and in-situ.

This chapter starts by discussing what it takes to go from algorithmic theory

to a practical implementation in Section 7.2. We then implement the simulation in

Section 7.3. This is followed by a detailed parametric analysis in Section 7.4. Next,

we describe the implementation of the underwater mobile robot localization algorithm

on our hardware platform in Section 7.6. Finally, we present results of experiments

in lakes, rivers, and oceans in Section 7.7.

7.2 From Theory to Practice

Moving from theory to practice required the development of di�erent algorithms to

match the di�erent assumptions that hold true in simulations versus in the physi-

cal world. We implemented two di�erent versions of the theoretical Algorithm 11

described in Chapter 6. The �rst is a region-based algorithm that we use as a sim-

ulator and to post-process collected data. This algorithm was developed as part of

our Master's thesis [31]. The second is a grid-based implementation that runs on the

underwater robot, which was developed for this thesis.

Table 7.1 compares some of the assumptions of the theory with the challenges that

the real-world implementations must handle. The theory assumes that the ranges
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from the static nodes are exact and that the locations of the static nodes are known.

In practice, the range measurements will have non-Gaussian noise. In addition, the

speed of sound in water depends on the salinity, pressure, and temperature of the

water. As such, it may vary during or between experiments, causing a systemic

scaling error in range information. Finally, we determine the locations of the static

nodes by implementing another algorithm that uses range information or alternatively

by surfacing to use GPS. Both of these methods have errors that e�ect the mobile

robot localization algorithm.

We implemented two di�erent versions of Algorithm 11: a region-based and a grid-

based version. The region-based implementation is nearly a direct implementation

of the algorithm in Java. It has a user interface and is able to simulate range data

from a network of static nodes. In addition, the region-based simulator has inputs to

replay real data collected on the robot and underwater sensor network. The second

version is a grid-based version of the algorithm implemented in C. The grid-based

implementation runs on a PC to replay collected data. In addition, the grid-based

version runs on the acoustic modem on the underwater robot, enabling real-time

operation of the localization algorithm.

Table 7.2 summarizes the characteristics of the theory and the two di�erent algo-

rithms. The preferable characteristics are highlighted in bold. The actual runtimes of

the implementations are less than that dictated by theory due to limited measurement

propagation windows and the constant complexity of the localization regions in prac-

tice. The grid-based algorithm requires extra memory to store the grid. The size of

the grid then limits the overall area that the algorithm can be cover. In addition, the

grid limits the localization resolution of the algorithm. In practice, a few megabytes

of memory su�ces for high resolution localization using the grid-based algorithm.

The grid-based algorithm has a number of advantages over the region-based imple-

mentation. First, it is extremely easy to implement arbitrary regions in the grid-based

algorithm. Implementing a new region in the grid-based implementation only requires

implementing a �drawing� method for the new type of region. This method also needs

to have the ability to grow the region to account for the motion of the mobile node.
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Characteristic Theory Region-Based Alg. Grid-Based Alg.
Simulate networks N/A Yes No
Replay collected data N/A Yes Yes
Run on robot (real-time) N/A No Yes
Runtime for new range O(n2) O(1) O(1)
Memory requirements O(n) O(n) O(grid size + n)
Cover large area Unlimited Unlimited Memory-limited
Localization Resolution High High Grid-limited
Di�erent regions Easy Hard Easy
Initialization Easy Easy Easy
Outlier rejection None Pre-�lter Implicit
Bad data recovery Never Hard Easy
Adding dead-reckoning Hard Hard Easy
Code portability N/A PCs PCs + Embedded

Table 7.2: Summary of the di�erences between the theory and the practical implemen-
tations of the algorithm. The region-based implementation is used in the simulator
and the grid-based implementation is used on the robot. The value n is the number
of ranges. Preferred characteristics are bold.

The region-based implementation requires these, but it also needs a method to inter-

sect the new region with all other region types. To not impact runtime, care has to

be taken to avoid intersection methods that cause the complexity of the regions to

grow quickly.

In addition, it is easy to initialize localization, it rejects outliers implicitly, and it

easily recovers if a long sequence of bad data puts it in a bad state. The theory does

not handle outliers and the region-based algorithm must �lter range measurements

before using them. A bad state may not be detected for some time with the region-

based implementation and the only course of action is to reinitialize the algorithm.

In the grid-based algorithm allows easy addition of dead-reckoning information,

whereas adding dead-reckoning information to the region-based algorithm adds sig-

ni�cant code complexity. Finally, the grid-based algorithm is written in POSIX C

and as such is portable to most all operating systems and most embedded systems

(such as those found on Amour). The region-based algorithm is portable to various

PCs as it is written in Java, however, few embedded systems contain full Java Virtual

Machines.
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7.3 Simulation Implementation

We have implemented the localization algorithm in a simulator we designed. In this

section we will discuss the design of the simulator and illustrate it in action. In the

next section we study the e�ect of various parameters on the algorithm.

Figure 7-1: The simulator. A mobile node can be selected and its path drawn using
a mouse. The plots at right show the probability distribution of the received ranges.

The simulator is a Java application designed to give visual and numerical feedback

on the performance of the localization algorithm. Figure 7-1 shows the simulator in

action. A mobile node is selected by clicking on it. By dragging the mouse the desired

path for the selected mobile node is drawn on the screen.

The received range measurements can be customized to have particular error char-

acteristics. The graphs on the right hand side record the error in the measurement

being fed into the algorithm. The buttons and slider on the bottom allow the simula-

tion to be paused, started, rewound, or saved. Additionally, there is a button which

enables the recording of the sequence to a video.
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On the right hand side there are also a number of check boxes that allow the

user to display the recovered localization regions, an estimate of the path, a Kalman

�ltered version of the path, or an extended Kalman �ltered path.

The simulator region-based implementation and is implemented in such a way that

makes it easy to try di�erent types of inputs into the algorithm. The only methods

that needs to be implemented for di�erent inputs are intersect and grow methods,

which tells the simulator how to perform the growing and intersecting needed for the

localization algorithm. We implemented range-only and angle-only versions, although

we will only discuss the range-only setup.

The localization algorithm that we use in the simulator is almost a direct imple-

mentation of Algorithm 11 discussed in Chapter 6. The main di�erence is that we

do not propagate information from a new measurement all the way back. Instead,

we only propagate it back a �xed number of steps. This, combined with the constant

complexity of the regions, allows the algorithm to run in constant time per update.

The main loop of the localization algorithm is shown below:

private void updateLR(LocalizationRegion l){

int nt = l.getTime();

//Forward propagation

LocalizationRegion reg = lr.getPrevious(l);

l.intersect(reg,

getMaxSpeed(reg.getTime(),nt)

*(nt-reg.getTime()));

//Back propagation

for(LocalizationRegion reg : lr){

/* only use it if it is a fairly recent measurement */

if(nt - reg.getTime() <= pastTimeToProcess){

reg.intersect(l,

getMaxSpeed(reg.getTime(),nt)

*(nt-reg.getTime()));

}

}

}
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(a) (b)

Figure 7-2: Multiple mobile nodes drawing MIT. At left, the raw regions. Right, the
recovered path using the center of each region.

Figure 7-2 shows the results of a simulation with multiple nodes moving through

the �eld of static nodes. This example uses a variety of mobile node speeds ranging

between .3m/s to .6m/s. The upper bound on the speeds of the mobile nodes was

set fairly high to nearly 2.0m/s. Random measurement errors of up to 4% were used.

Notice that all of the regions are fairly simple regions. We never found a region

with a complexity greater than three in all of our simulations. A full analysis of the

range-only system is presented in Section 7.4.

7.4 Simulation Analysis

In this section we explore the e�ect of various parameters on the performance of the

range-only implementation of the mobile robot localization algorithm. We measured

the performance by looking at the average di�erence in the actual location of the

mobile node to that of raw recovered path. Unless otherwise noted we use the exact

range measurements and did not introduce any noise. Each of the data points was

obtained by averaging together the results of multiple (typically 8) trials, each with a

di�erent pseudo-random path. In all cases the paths stayed nearly within the convex-

hull of the static nodes. The static nodes were randomly distributed over a 300 meter

by 300 meter area.
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Figure 7-3: E�ect of the back propagation time on localization error with two di�erent
speed bounds. This data shows that increasing the back propagation time to more
than 75 seconds has little bene�t.

7.4.1 Back Propagation

In this study we examine the e�ect of changing the amount of back propagation time.

The results can be seen in Figure 7-3. In this experiment one mobile node traveled

at .3m/s using an upper bound on the speed of .3m/s (solid line) and .6m/s (dotted

line). There were twenty static nodes and a range was taken to a random static node

every 8 seconds.

The results shown in Figure 7-3 show that the back propagation helps signi�cantly

up to the point where the error levels o�, however, not more after that point. The

results are similar for a mobile node traveling at its maximum speed and for one

traveling at half speed except that there is a large constant o�set. From this plot

it can be determined that a back propagation of 75 seconds is more than su�cient

as after this point the localization error does not decrease. For nodes not moving at

their maximum speed a back propagation of 25 seconds works well. This experiment

shows that a constant number of back propagation steps can be used, and therefore

the algorithm has a constant runtime per each new measurement.
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Figure 7-4: The e�ect of the upper bound on the speed of a mobile node moving at
.3m/s using back propagation (solid) and not (dotted). The error increase is nearly
linear, but when no back propagation is used there is a large initial o�set.

Figure 7-4 shows a comparison of using back propagation (solid line) and using

no back propagation (dotted line) while varying the upper bound on the speed. This

shows that the error is more than 2 meters higher when not using the information

gained from back propagation.

7.4.2 Speed Bound

Figure 7-4 shows how changing the upper bound of the mobile node speed e�ects

the localization. Two lines are shown, one with and one without back propagation.

For both, the real speed was .3m/s and the upper bound on the speed was adjusted.

A range measurement was taken every 8 seconds to a random node of the 20 static

nodes. The back propagation time used was 25 seconds.

As the upper bound on the speed increases, the error also increases. From the

data collected this appears to be a fairly linear relationship implying that the errors

will not be too bad even if the mobile node is not traveling at its maximum speed.

The back propagation, however, is critical. With an upper bound on speed seven
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Figure 7-5: Adjustment of the number of randomly placed static nodes. Having fewer
than six leads to larger error.

times larger than the actual speed we still achieve results comparable to that of the

algorithm that does not use back propagation but knows the exact speed of the mobile

node.

7.4.3 Number of Static Nodes

Figure 7-5 shows how the number of static nodes e�ects the localization error. For

this experiment the mobile node was moving at its upper bound speed of .3 m/s. A

range measurement was taken every 8 seconds and the measurements were propagated

back 80 seconds. In this experiment any regions which contained disjoint arcs were

not used in computing the error. This means that the error was actually much worse

when there were few nodes than is reported in the �gure.

The main con�guration that leads to large errors is the singular con�guration

where the nodes were nearly collinear. The probability of having more than six nodes

randomly deployed in a line is small. Another source of error is when ranges were

only obtained from a single pair of nodes (which happens with higher probability with

few nodes), then there would be an ambiguity, which leads to a large error. To avoid
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Figure 7-6: Experiment showing the e�ect of changing the frequency of the ranging.
The relationship is linear and indicates that decreasing the ranging frequency is always
preferable.

this situation a large back propagation time of 80 seconds was used. This was chosen

to be larger than the maximum back propagation we found useful in Section 7.4.1.

As can be seen in the �gure six or more static nodes produced good results. Thus,

unless the static nodes can be carefully deployed, it is important to have at least six

static nodes.

7.4.4 Ranging Frequencies

Figure 7-6 shows the e�ect of changing the frequency of ranging. Experiments were

conducted in which the ranging frequency was varied between ranging every second to

ranging every ten seconds. Each time a range was obtained from a randomly selected

node. A speed of .3m/s and a bound of .6m/s were used for the mobile node in this

experiment. There were 20 static nodes and the measurements were propagated back

to the four previous measurements.

The �gure shows that the relationship is very linear. As the ranging frequency

increases, the error decreases. Thus, it is always desirable to get as high a rate of

measurements as possible.
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Figure 7-7: The e�ect of Gaussian noise in the measurements. The localization error
is approximately one plus the Gaussian error over this range.

7.4.5 Gaussian Error

Figure 7-7 shows the e�ect of Gaussian error in the measurements on the localization.

In practice, the error is not Gaussian, however, this serves as a reference to compare

the impact of Gaussian noise on the algorithm. The mobile node had a speed of .3m/s

and an upper bound speed of .6m/s. It was moving through a �eld of 20 static nodes

with range measurements taken every 8 seconds. The measurements were propagated

back over 30 seconds.

Even with the error in the measurements the algorithm performs well. The local-

ization error scales linearly with the measurement error. With three meter average

measurement error, the localization error is four meters. As the error is one meter

when there is no Gaussian error we can say that the error, Err, will be approximately

Err = ErrG + 1 meters,

where ErrG is the Gaussian error in the measurement.
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(a) (b) (c)

Figure 7-8: (a) Raw recovered path. (b) Kalman �ltered raw path. (c) EKF path.

7.4.6 Post Filters

There are a number of methods to compare the results of the algorithm to the true

path of the mobile node. The �rst is to just determine if the true path is within

the found region. This is useful, although for navigation purposes it is often useful

to report a single point as the current location. To do this we implemented three

di�erent methods for recovering the path.

The �rst we call the �raw path.� This is the path formed by connecting the

midpoints of the arcs formed by the localization algorithm. The second is using a

Kalman �lter as a �lter on the raw path. This works, although it is not ideal as the

range measurements introduce a non-linearity into the system. To better account for

this we also implemented an extended Kalman �lter which takes as input the regions

found.

Figure 7-8 show a comparison of these three. Having a post-�lter certainly

smoothes the path, however, these �lters require tuning for each particular setup

depending on factors such as the speed, acceleration, measurement certainty, etc. We

found the tuning of these to be rather sensitive and di�cult to optimize for even a

single run. For instance, in order to get a smooth path while the mobile node was

going straight required reducing the acceleration to the point where when the mobile

node turned the �lter would take too much time to compensate, leading to overshoots.

This e�ect can be seen in Figure 7-8. Due to these e�ects it is di�cult to use these

�lters on real-world systems where tuning online can be di�cult or impossible.
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Figure 7-9: The errors of di�erent post �lters when changing the upper bound of
the mobile node speed. The mobile node traveled at .3m/s. The Kalman �lter is
typically better than the raw data. The EKF performs best when the upper bound
on the speed is more than twice the real speed

Figure 7-9 shows the results of using the three di�erent post �lters. The mobile

node had a speed of .3m/s and the upper bound on the speed was varied. The mobile

node was moving through a �eld of 20 static nodes and ranges were taken every 8

seconds. The measurements were propagated back over 30 seconds. The �lters were

tuned by hand to produce good results when the upper bound on the speed was

1.2m/s.

The �gure shows that when the upper bound equals the real speed the raw re-

covered path has the lowest error, while the EKF produces the worst results. The

error produced by the EKF, however, tends to remain fairly constant throughout as

indicated by the near horizontal line. The regular Kalman �lter performs a little bit

better than the raw data, but not signi�cantly. The EKF outperforms the regular

Kalman �lter due to the fact that it is able to take into account the non-linearities of

the errors. The regions found are arcs, which are directly inputed into the EKF. The

Kalman �lter must make use of the point produced by the raw path �lter with some

linear variance which does not properly represent the information from the algorithm.
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Figure 7-10: Localization algorithm and GPS track (a) and the di�erence between
them (b).

7.5 Extended Kalman Filter and Particle Filter

In this section we implement an extended Kalman �lter (EKF) and a particle �lter

(PF) using the same set of assumptions that the localization algorithm uses. These

assumptions are that the locations of the static nodes are known, periodic ranges are

obtained to the static nodes, and we only know an upper bound on the speed of the

mobile node. We then compare the localization algorithm, EKF, and PF using data

collected in the Moorea experiment detailed in Section 7.7.2.

The Kalman �lter (KF) is a provably optimal recursive state estimator when the

processes being measured and estimated are linear with Gaussian noise characteristics.

Non-linear systems are handled by extending the KF with an extended Kalman �lter.

The EKF is not provably optimal, however, it often performs well. See the paper by

Welch and Bishop [106] for a nice introduction and details on the KF and EKF.

The EKF we implement assumes that the position of the node stays constant,
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Figure 7-11: EKF algorithm and GPS track (a) and the di�erence between them (b).

but the variance in the position grows based on the maximum possible speed of the

mobile node. In other words, the state projection has no control input, it just takes

the previous state as the next state or xk = xk−1. The position estimate is updated

every time a range measurement is received by de�ning the measurement, zk, as

the distance from xk to the beacon. Other EKFs can be de�ned that incorporate

information on the mobile node's velocity or acceleration, however, this would make

use of information beyond the maximum speed assumption we use.

The particle �lter, also known as a Monte Carlo method works by de�ning a set of

�particles.� Each particle has a location and a probability of being at that location.

With each new measurement the probabilities are updated to incorporate the new

information and only the best particles are kept. New particles are then derived from

these particles to take into account the probable motion of the node.

The PF we implement is fairly straight forward. For each range measurement, the

top 50 particles that are nearest to the measured range are kept. From each of these
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Figure 7-12: Particle Filter and GPS track (a) and the di�erence between them (b).

particles 50 new particles are created. Each new particle is randomly distributed

within a circle with a radius around the original particle de�ned by the maximum

distance the node could travel given its maximum speed. The centroid of all particles

is then used as the estimated position.

Figure 7-10, 7-11, and 7-12 show the results versus GPS ground truth for the

localization algorithm, EKF, and PF, respectively. The lower plot shows the error

over the run. For the localization algorithm the average error was 1.97m with a

maximum of 4.52m. The EKF average error was 2.30m with a maximum of 4.89m.

And the PF had an average error of 2.21m and a maximum error of 8.43m.

All of the errors are relatively comparable. However, there are a number of chal-

lenges associated with the EKF and PF. One problem with the EKF is initialization.

In this implementation we used the �rst point obtained by our localization algorithm

to seed the EKF. However, this type of information may not always be available. In

addition, bad measurements (with non-Gaussian noise) can cause the EKF to diverge.
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Detecting a divergent EKF can be challenging and if it is detected a new position

must be obtained to reinitialize the �lter. Tuning the parameters of the EKF can

also be challenging. The actual variance of the process and measurements are often

not known accurately. Thus, it must be tuned to �nd the proper set of parameters.

Initializing the PF is easier than the EKF. The initial set of particles for the PF

is particles laying on the circle de�ned by the �rst range measurement. However,

picking which particle to use as the current state estimate is challenging. In this

implementation we use the centroid of all particles, but this may bias the position

improperly. Consider, for example, when there are particles over a half-circle, the

centroid will be inside the circle, while all particles and most likely the true position

will be on the circle. In addition, the PF can be thrown o� by bad measurements by

eliminating all particles near the true position of the node.

The comparison of the errors shows that our localization algorithm outperforms

the EKF and PF in terms of average and maximum error for this dataset. In general,

all of these methods have similar errors. Our localization algorithm, however, does

not su�er from initialization and parameter tuning problems and tends to be more

robust to bad measurements than the basic PF.

7.6 Hardware Implementation

We implemented the localization algorithm on the acoustic modem inside the robot.

Alternatively, the algorithm could have been implemented on a mini PC or on the

main AquaNode processor. We choose to implement the localization algorithm

on the acoustic modem for a number of reasons. First, the algorithm requires ranges

obtained by the acoustic modem. Implementing the algorithm on the acoustic modem

eliminates the need to have other systems present to run the algorithm. Second,

the acoustic modem has enough processing power and memory capacity to run the

algorithm in under a second, allowing real-time, on-line operation. Using a PC would

have been overkill and the AquaNode processor would not have been fast enough

to allow real-time operation.
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We typically house the acoustic modem within an AquaNode. The AquaNode

provides logging of the raw communication, ranges, and location information from

the acoustic modem as the acoustic modem lacks this capability. In addition, an

AquaNode is easily attached to the side of an underwater robot to provide local-

ization capabilities. The AquaNode logs and forwards location information to the

underwater robot and provides an interface for the robot to communicate over the

acoustic link.

In this section, we detail the implementation and operation of the underwater

localization algorithm on the acoustic modem. The implementation is a discretized,

grid-based implementation of the acoustic mobile robot localization algorithm. We

then describe the user interface that allows quick and easy setup and testing of the

algorithm.

7.6.1 Implementation Details

We implemented the acoustic localization algorithm on the acoustic modem using a

discretized, grid-based method. We divide the region of operation into a grid. Each

cell represents the likelihood that the robot is at that location. Keeping this repre-

sentation in memory could be problematic for large regions or depths. Fortunately,

however, the algorithm can be implemented in 2D since the robot has a pressure

sensor that is used to precisely determine its depth. The range measurements are

projected onto a plain at the depth of the robot to account for the foreshortening

caused by the node and robot being at di�erent depths.

The grid-based implementation of the algorithm has some advantages and disad-

vantages as compared to the region-based implementation used in the simulator. The

grid-based algorithm has the following characteristics and advantages:

• Allows di�erent region models to be easily implemented;

• Can integrate inertial or other navigation information;

• Better inherent outlier rejection;

• Implementation is in POSIX C for portability and microcontroller execution
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Algorithm 4 Grid-based Localization Algorithm

1: procedure Localize(R1 · · ·Rt)
2: clearGrid()

3: drawOldPositionIfAvailable()

4: for i = 1 to t do
5: drawCircle(Grow(Ri,curretTime-timei,maxspeed))
6: end for
7: location ← findCentroid(findMaxRegion())

8: return location
9: end procedure

The region-based algorithm implemented in the simulator has the following char-

acteristics and advantages:

• Does not require memory allocation for grid;

• Closer to theoretical algorithm

We choose the grid-based implementation mainly due to its ability to easily inte-

grate inertial or other navigation information available from the robot.

The details of the grid-based algorithm are similar to the region-based algorithm.

As each range is obtained, an annulus is overlaid on the grid, incrementing each bin in

the grid by one. Areas with multiple, overlapping annuli have a larger value. The al-

gorithm searches to �nd the bin with the largest value. This area indicates the current

location of the underwater robot. As in the region-based simulation implementation,

to account for robot motion, the algorithm grows older annuli based on the maximum

possible speed. In addition, if estimates of previous positions are important, the algo-

rithm propagates new measurements back to re�ne previous position estimates. This

method is related to other Markov-based localization methods [23, 48, 61].

Algorithm 4 shows the pseudo-code for the grid-based localization algorithm. The

localization algorithm takes as parameters ranges R1 · · ·Rt. These are the t ranges

received over the past time window. In practice, we use ranges from approximately

the last 60 seconds (as this was determined in Section 7.4.1 to be the proper back

propagation time). The next step in the algorithm is to clear the grid (setting each bin

to zero). After clearing the grid, the algorithm �draws� the previous location estimate

on the grid. This is the region found the last time the algorithm ran, grown to account
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Figure 7-13: Snapshot from the localization algorithm. Note that a range from one
of the nodes was far o�. Green is the estimated position.

for motion of the robot. If the algorithm knows information on the direction of travel

of the robot, it can incorporate this information into the growing of the previous

location region.

Next, the algorithm loops over all of the received ranges and draws each annulus

on the grid. Each annulus is grown to account for motion of the robot since that

range was received. When drawing a region on the grid, each point is incremented by

one. Finally, the algorithm searches the grid for the bins with the maximum value.

This region is stored for use in the next iteration of the algorithm. The algorithm

returns the centroid of the region as the point estimate of the robot location.

Figure 7-13 is a snapshot of an image taken from the algorithm. The blue regions

are the annuli drawn based on the grown ranges. Note that some are brighter than

others. These are multiple annuli drawn on top of each other. The green, highlighted

region is the current location estimate. In the bottom right, there are two ranges

from a node that do not intersect with the green region. These are bad range mea-

surements, which the algorithm easily handles as there are more good measurements

that intersect at the true location of the robot.
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The algorithm automatically rejects poor range measurements as long as there

are a su�cient number of good ranges. In addition, by placing the grown previous

location estimate on the grid, the algorithm can handle long periods of only receiving

a few range measurements. Figure 7-14 shows a snapshot when only ranges to two

nodes are available. By carrying forward the previous location estimate, the algorithm

disambiguates the two regions of intersection and selects the proper location.

Notice that Algorithm 4 clears the grids and redraws all of the grown regions

each time. An alternate approach is to grow the regions based on those previously

drawn on the grid. One way to implement this is to use a mask to process the grid.

For instance, each bin would be the sum of all neighboring bins in the next step

(depending on the robot speed). This can save some computation time needed to

redraw each of the annuli. This works for a while; however, after many time steps the

discretization introduces aliasing e�ects (grown circles start to look like diamonds).

In practice it is more accurate to redraw each of the grown annuli each time.

The grid-based implementation varies somewhat from the version of the algorithm

discussed in Chapter 6 and region-based simulation implementation. The grid-based

method requires a large �xed array of memory for the grid storage. This may be

problematic when large areas must be covered with high resolution. The grid method,

however, intrinsically rejects outliers without additional �ltering needed by the simu-

lation implementation. Finally, the grid-based method can easily incorporate further

information about the direction and speed of the robot if that information is available.

7.6.2 Operation Details

Before the underwater localization algorithm is run, the robot must know the loca-

tions of the static nodes. In our system, we �rst run a static localization algorithm

to determine the locations of the static nodes as discussed in Section 6.2.2. We ex-

tended an algorithm by Moore et al. [71] for use in the underwater environment. This

algorithm requires as many of the inter-node ranges as possible to accurately localize

the static nodes. In this algorithm, if there are N nodes, approximately N2 messages

containing ranges are transmitted to share all the ranges. First, however, the nodes

182



Figure 7-14: Snapshot from the localization algorithm when only two ranges are
available. The algorithm is able to carry the previous location estimate to maintain
a position estimate.

must obtain the pair-wise ranges. This also requires order N2 messages as ranges are

obtained by measuring round-trip communication time.

Using the acoustic modem's TDMA communication scheme, a message is trans-

mitted at most every 4 seconds. For a network with 8 nodes this requires a minimum

of 8 × 8 × 4 = 256 seconds (or 4.26 minutes) to obtain ranges and also to transmit

all ranges. This means that at a minimum the static localization algorithm requires

about 9 minutes to initialize. However, on average, our acoustic modems have a

packet success rate of about 50%. Thus, in the best case the algorithm needs 18 min-

utes of communication to initialize. In practice, due to asymmetric communication,

a deployment time of over 30 minutes is needed before a network of 8 nodes can run

the static localization algorithm.

Once the static nodes have been localized, the mobile localization algorithm can

run. The algorithm, which is implemented in C code, runs on the acoustic modem

processor. In addition, we can compile the same code as a stand-alone application on

a computer. This allows running the same set of code on recorded measurements to

test di�erent algorithm parameters. In addition, the stand-alone application allows
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saving of the grid as an image (Figures 7-13 and 7-14). This makes the algorithm

much easier to debug and test.

The acoustic modem is implemented on a 600MHz processor with 32MB of ram.

At the physical layer, the modem operates at 300b/s with a packet length of 128

bits. Packets are transmitted and received in well under a second, but requires guard

times (to reduce the impact of previous re�ected packets) of over a second. During

this time the acoustic modem is largely idle. We take advantage of this idle time to

run the localization algorithm.

Using a grid of 80m by 80m with a resolution of 0.1m with each bin represented

by 8 bits requires 800× 800× 8 = 5120000 bits of storage, less then 1MB. This easily

�ts within the memory of the processor and the localization algorithm (Algorithm 4)

typically takes less than a second to execute with this con�guration.

7.6.3 User Interface

Figure 7-15 shows the user interface (UI) for the static and mobile localization code.

The Java application runs on a computer connected to the AquaNode on the robot

using a RS232, RS485, bluetooth, or 900MHz radio. In addition, when the robot is

tethered with an Ethernet cable the UI runs by forwarding a serial port over Ethernet.

The UI graphically displays the locations of all the nodes in the network as well as

ranges to the currently selected node from other nodes. The user can rotate and scale

the network picture to easily match the visual feedback to the physical layout. This

enables quick development and debugging of the system.

In addition, the UI shows the current table of ranges and locations. A user can

manually update the tables on the UI and the changes can be sent to the acoustic

modem. This allows the user to experiment and run the algorithm with di�erent

con�gurations and setups, without having to have the system in the water. Finally,

the UI allows the current con�guration to be saved to a �le and later reloaded.

184



Figure 7-15: The localization user interface.

7.7 Experimental Results

We performed numerous experiments in rivers, lakes, and oceans. These experiments

verify the performance and accuracy of the acoustic mobile robot localization algo-

rithm. We tested the algorithm by running the underwater robot at the surface so

that the results can be compared to GPS ground-truth. We tested the algorithm

in the simulator using real data and the grid-based implementation on the acoustic

modem.

For the simulator, we collected range information as the robot drove through a

network of sensors. We input this data into the simulator and veri�ed the results. This

shows that the algorithm works with real-world data. We also used collected data to
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test the grid-based implementation on a computer. These post processed tests verify

that the grid-based algorithm performs as well as the simulator implementation. This

is the same implementation that runs on the acoustic modem in real-time. Finally,

we ran the algorithm online on the acoustic modem as the robot drove through a �eld

of AquaNodes in numerous locations.

We have conducted robot tracking and localization experiments using Amour

and up to six underwater sensor nodes at four di�erent locations: (1) in an open bay

in Moorea where the water had an average depth of 5m; (2) o� a dock in Singapore

where the water depth had an average depth of 5m; (3) in a Lake Otsego in upstate

New York where the water had an average depth of 20m; (4) and in the Charles

River in Cambridge, MA. In each case the robot traveled on the surface of the water

in order to collect GPS position information, which we use as ground truth when

comparing to the position information computed by the underwater sensor network.

Each node was anchored in water at a depth of approximately 1 to 2m. The node was

deployed by manually throwing it overboard at the approximate desired location. The

exact location of the node was established by the underwater sensor network using

the underwater static location algorithm. In each experiment, the robot traveled in

the area covered by the sensor network, along di�erent trajectories. In this section we

present subsets of localization data collected for approximately 2 hours in Moorea, 7

hours in Singapore, 1.5 hour in Lake Otsego, and 2 hours in the Charles River. We

have performed other similar experiments at these locations.

This section presents a selection of these results. We start with the results of

the simulator using real data. We then show the results of the grid-based algorithm

running on collected data. Finally, we present the results of the algorithm run online

on the robot.

7.7.1 Real Data Region-Based Algorithm

We logged ranges and GPS data while moving the underwater robot at the surface

through the �eld of static sensor nodes. This data was post-processed by the region-

based simulator to recover the path of the robot traveling through the network and
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Figure 7-16: The GPS data (red) and acoustic localization path (blue) in Moorea.

compare it to the GPS path. The simulator uses a direct implementation of the

localization algorithm discussed in Chapter 6

Figure 7-16 shows the results of an experiment performed in the ocean o� the

island of Moorea, French Polynesia for 2 weeks in June, 2006. In this experiment six

nodes were placed and statically localized during the �rst 30 minutes of the exper-

iment. The nodes were located in a region approximately 40m by 40m. The nodes

were in 3m deep water located about 1m below the surface. The robot moved on the

surface collecting GPS data and range information. The two tracks in the �gure show

10 minutes of the path recorded by the GPS and the path computed by the acoustic

localization algorithm. The average error was 0.2m with a maximum error of 2.75m.

The average percent error based on the maximum range is 0.5%.1

Figure 7-17 shows the results of a similar experiment performed at Lake Otsego

in New York State for a week in July, 2006. Four AquaNodes were deployed in

a 70m by 80m region of water with an average depth of 20m. The nodes �oated

1This is computed 0.2m/40m*100%, based on a maximum range of approximately 40m in the
experiment.

187



0 20 40 60 80

−10

0

10

20

30

40

50

Meters

M
et

er
s

 

 

GPS
Localization algorithm
Node Locations

(a)

40 50 60 70 80
−20

−15

−10

−5

0

5

Meters

M
et

er
s

 

 

GPS
Localization algorithm
Node Locations
GPS/Loc Correspondences

(b)

Figure 7-17: Localization algorithm and GPS track left from an experiment in Lake
Otsego in New York. On right, zoomed in section showing the point correlations
between the GPS and localization algorithm.
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Figure 7-18: Plot of the error between the GPS and localization algorithm over time
for the experiment in Lake Otsego.

between 3 and 5 meters below the water surface. The nodes were statically localized

using the static localization algorithm during the �rst 30 minutes of the experiment.

After static localization completed, the robot drove in the network for 1.5 hours. Ten

minutes of results are shown in the �gure. Figure 7-17(a) shows the GPS track and

the results of the localization algorithm. Figure 7-17(b) shows a zoomed-in section

illustrating the corresponding points from the localization algorithm and the GPS

track. Figure 7-18 shows the error between the two over the experiment. The average

error in this experiment was 2.74m with a maximum of 6.46m. The average percent

error based on a maximum range of 80m is 3.4%. Note that this error is well within

the expected GPS location noise.
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Figure 7-19: Results of the tracking algorithm in Singapore. (a) The localization
algorithm track and GPS readings and (b) includes the lines indicating corresponding
points between the two for a smaller section of the experiment.
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Figure 7-20: Error between the localization algorithm and GPS for the Singapore
experiment.

7.7.2 Real Data Grid-Based Algorithm

In these experiments, the robot moved on the surface collecting both range measure-

ment information and GPS location information. We ran the grid-based localization

algorithm on the collected data to determine the location of the robot. This is the

same code that can run online on the robot, but it was compiled to run on a PC.

These experiments verify the correctness of the grid-based localization algorithm.

Figure 7-19 shows a data segment from the localization and tracking experiment

conducted in Singapore in May 2009. In this experiment, we deployed six AquaN-

odes in static locations o� a dock. The static sensor nodes self localized in an area of

approximately 30 by 30 meters. The self-localization took approximately 30 minutes.
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Figure 7-21: Results from an experiment in Moorea. (a) The localization algorithm
and GPS tracks and (b) the same �gure with lines drawn to indicate the correspon-
dence between the two methods.
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Figure 7-22: The error between the GPS and localization algorithm for the Moorea
experiment.

The system requires this time to obtain enough range information to statically locate

the static nodes and establish a system of coordinates.

The robot moved through the �eld of static nodes collecting range information

received from the sensor nodes. Figure 7-19(a) shows a comparison of the GPS

readings obtained at the surface and the acoustic tracking algorithm over a segment

of the mission when the robot was at the surface. Figure 7-19(b) shows the same

tracks with red lines drawn to indicate the correspondence between the points in

the localization algorithm and the GPS readings. Figure 7-20 shows the di�erence

between the GPS and tracking algorithm over time. The maximum error is about

3.15m with an average error of 1.67m. The average percent error based on a maximum

range of 40m is 7.9%.
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Figure 7-21 shows sample results of two weeks of experiments with localization

and tracking performed in August 2008 at the UC Berkeley Gump Marine Research

Station in Moorea, French Polynesia. This experiment was conducted with the robot

at the surface, so it was able to obtain GPS positions as well as tracking data from the

acoustic network. The �rst thirty minutes of the experiment were used for the sensor

nodes to perform self-localization. The nodes for this experiment were deployed in

a 20 by 30 meter area. The robot then moved through the �eld collecting ranges to

the sensor nodes. Figure 7-21(a) shows the GPS and localization algorithm tracks

and (b) adds the lines of correspondence between the two methods. Figure 7-22

shows the error between the localization algorithm and the GPS over the course of

the experiment. The mean error in this experiment was 1.94m and the maximum

was 4.31m, which is well within the GPS error. The average percent error based on

a maximum range of 30m is 6.5%.

7.7.3 Running Algorithm Online
We also performed experiments running the grid-based algorithm in real-time on

the system as it moved through a network of static nodes. In these experiments a

boat was used to move an AquaNode running the localization algorithm through

the water as Amour was not available. These experiments use the same code-base

as the post-processed grid-based algorithm discussed in the previous section. These

experiments verify that the algorithm performs as expected on the acoustic modem

and that it can run in real-time.

In this section we discuss two di�erent experiments performed in the Charles

River. In the �rst, the node moved at the surface to obtain GPS ground-truth data.

In the second experiment, GPS was unavailable. The Charles River has a depth of

approximately 3m. We found that the acoustic modem performed relatively poorly

in this environment. This is typical of acoustic modems, as the shallow environment

introduces many re�ections that interfere with the acoustic signal.

Figure 7-23 shows an experiment performed in the Charles River. In this experi-

ment 5 static nodes were deployed for over one hour to collect static range information.

The nodes were deployed in an area of approximately 20 by 30 meters. After this time
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Figure 7-23: An experiment performed in the Charles River. (a) The GPS data
compared to the path recovered by the acoustic localization algorithm and (b) their
correspondences.
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Figure 7-24: Error between the GPS and localization algorithm for the Charles River
experiment.

only four of the nodes were able to statically localize themselves due to very poor

acoustic communications in the river environment. We then moved a node through

the water at the surface for approximately one hour. The node ran the localization

algorithm online as it moved in the water. Each iteration of the algorithm took ap-

proximately a second to compute. The node also collected GPS to use for ground

truth. Figure 7-23(a) shows three minutes of the track computed by the localization

algorithm compared to the GPS path. Figure 7-23(b) shows the same data but adds

lines to indicate the correspondence between the two tracks. Figure 7-24 plots the

errors between the two over time. On average the error was 2.13m and at most was

3.94m. The average percent error based on a maximum range of 30m is 7.1%.
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Figure 7-25: Part of the path computed by the acoustic localization algorithm in the
Charles River.

Figure 7-25 shows the results of a di�erent experiment performed in the Charles

River. In this test four static nodes were deployed. Instead of running the static

localization algorithm, which has poor results in the river environment, the nodes

were placed and localized manually. The nodes were placed using a rope of known

length to measure their locations. A node was then moved through the network,

however, GPS was unavailable on the mobile node used for this experiment. The

node computed its location online as it moved in the network.

Figure 7-25 shows seven minutes of data from the hour-long experiment. In most

cases the locations were computed regularly along the path. However, there are some

segments (e.g. around 5m,10m) where there were no locations computed for a rather

large interval. In this area of the network the acoustic communication was extremely

poor (despite being centrally located). Thus, the algorithm did not receive ranges for

an extended period of time.

We have tested the localization algorithm in a variety of di�erent water conditions.

We found the most di�cult environment to be the shallow river basin due to the poor

acoustic communications in this environment. However, when we were able to obtain
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regular ranges from the acoustic modem we have shown that we can compute the

location of the robot to within a few meters of the GPS ground truth. This error is

well within the error of the GPS receiver.
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Chapter 8

Conclusions

Current underwater sensor systems lack the spacial and temporal resolution scientists

need to improve their understanding of the underwater ecosystem. Data collection

is often performed with sensors that are not networked and exhibit large lag times

between the time the sensors collect the data and when scientists retrieve the data.

Most sensors are �xed at a particular depth, often on the surface. To fully understand

the dynamics of the ocean, scientists must know the details of the sub-sea processes

at all depths over time.

In this thesis, we developed an underwater sensor network with the ability to

dynamically adjust its depth. We use this capability to develop a decentralized algo-

rithm that dynamically adjusts the depths of the nodes. By adjusting their depths

the nodes improve their placement for collecting data for 3D sensory �eld reconstruc-

tion. We also developed an acoustic underwater localization algorithm, with minimal

assumptions, that enables underwater robots to navigate within the network. This

capability allows the underwater robot to act as a mobile sensor node in the network

and lets the robot locate the sensor nodes to retrieve data from them.

For the sensor network system and both algorithms we performed extensive ex-

periments to verify the systems. These experiments took place in a diverse set of

locations: two di�erent pools at MIT; the Charles River in Cambridge, MA; Lake

Otsego in upstate New York; Roatán, Honduras in the Caribbean Basin; the UC
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Berkeley Gump Marine research station in Moorea, French Polynesia; and the Sin-

gapore Harbor. Through many dozens of experiments, we developed the system and

algorithms under realistic conditions.

8.1 Thesis Contributions

This thesis makes a number of theoretical contributions, including:

• A decentralized depth adjustment algorithm for improving the positioning of
sensor nodes for sensing. The algorithm is provably convergent and stable;

• Underwater mobile robot localization algorithm with minimal assumptions and
requirements;

• Analysis of energy trade-o�s between the three communication methods (acous-
tic, radio, and optical).

This thesis also contributes to the �eld from a system development and experiment

perspective:

• Development of a generic sensor network hardware platform that is used for
AquaNodes and in a variety of other projects;

• Development of a �exible sensor network operating system;

• Implementation of a sensor network operating system that is easily customizable
for a variety of projects;

• A novel underwater sensor network platform, called AquaNodes;

• A novel winch-based depth adjustment system for the AquaNodes;

• Simulations verifying the depth adjustment algorithm;

• Experiments and implementation of the decentralized depth adjustment algo-
rithm on the AquaNode platform. These experiments verify the algorithm
under real-world communication, motion, and sensing;

• Simulations verifying the localization algorithm;

• Experiments and implementation of the localization algorithm showing its per-
formance on embedded hardware in-situ.
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8.2 Lessons Learned

In the course of developing and testing the algorithms and system we learned a

number of lessons. In this section we discuss some of these lessons and discuss how

their implications.

Importance of Fault-Tolerant Algorithms

First, we learned the importance of developing fault-tolerant, distributed and

decentralized algorithms. In real-world deployments nodes will fail. Algorithms that

rely on data from all nodes or have a communication bottleneck are likely to fail.

The two algorithms we developed in this thesis are robust and handle the removal

or addition of nodes at any time during experiments. The decentralized depth ad-

justment algorithm only relies on hearing messages, when they are available, from

neighbors. The mobile robot localization algorithm uses as many or as few range

measurements as it hears. Algorithms that do not have some sort of method for cop-

ing with these types of problems will not work, especially as network sizes increase

to dozens and hundreds of nodes.

Carrick's Rule of 2

The necessity for fault-tolerant algorithms led to an additional lesson, which is

more of an observation, and has taken on the name �Carrick's Rule of 2.� This rule

states that for any experiment, 2 of the systems deployed will fail for all deployments

of less than 30 nodes. We identi�ed this rule after observing numerous experiments,

including those with systems unrelated to ours. Fortunately, this is a rule and not

a law. In most cases, the latest version of the AquaNodes are reliable enough to

deploy systems, and we expect 100% of the sensors to work as expected. One of

the lessons learned from this rule is that �eld deployments have to be approached

conservatively. If you need 10 sensors to cover an area, you should prepare at least

12 (if not more). The nodes themselves may be designed to be fully robust, but it is

extremely di�cult to predict the conditions of �eld experiments.

For instance, in an unrelated experiment we deployed 5 sensors for virtual fenc-

ing on cows [35]. These boxes were designed to handle large amounts of abuse (as
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we witnessed the cows head butting each other with them in earlier deployments).

However, 2 of the cows still managed to break the connection to the external battery

during a critical experiment, despite the fact that all the nodes were working on all

5 animals for many days prior.

Developing New Software and Hardware Platforms

Another lesson we learned is that there are advantages and disadvantages to de-

veloping custom software and software systems. We spent a signi�cant amount of

time developing the hardware and software systems for the AquaNodes. On the

hardware side we had little choice but to develop our own system, as existing systems

did not meet our needs. No commercial underwater sensor network system exists to

this day. The closest systems are acoustic modems that have some networking and

sensing capabilities. However, these tend to be closed source and di�cult to modify

in order to test new algorithms and capabilities.

On the software side, the main alternative was to use TinyOS. Deciding to design

our own operating system from the ground up was a di�cult decision. We decided to

do this for a number of reasons. First, we were developing a new hardware platform

and as such would have had to write nearly all of the low-level drivers for TinyOS.

This is one of the most time consuming aspects in developing an operating system

for an embedded system.

Second, we designed our system to make it easy for computer scientists to program

complex behaviors and algorithms. TinyOS, on the other hand, was designed to be

easily programmable by environmental scientists. It is our opinion, however, that it

did not achieve this goal. It still requires someone with a large depth of knowledge

to program. Unfortunately, in designing TinyOS to be accessible to scientists, it

obscures much of the functionality a computer scientists wants. As such, TinyOS can

be di�cult for both environmental and computer scientists.

The drawbacks of not using TinyOS are twofold. First, many of the libraries

available on TinyOS need to be ported for use on our system. On our system, for

instance, we have an interface to support a variety of multi-hop routing algorithms.

As we did not explicitly need this capability, we did not port the routing algorithms
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to our system. Had we used TinyOS, we could have plugged them in more easily, if

only for demonstration purposes. Thus, in designing our operating system we lost

some of the available libraries, although most are fairly easy to port to our system.

The second drawback of developing our own hardware and operating system is that

it is more di�cult to compare to the gold standard in the sensor network community

of a Mote with TinyOS.

If we were to start over and reconsider using TinyOS we still would choose to

develop our own system. This is not a decision that should be taken lightly. The

development of a hardware and operating system platform took a large amount of

time. In the end we are better o� for having complete control and understanding of

our system, but it was a steep learning/development curve.

Use of Platform in Many Projects

Another lesson learned is that using a system across multiple, diverse projects has

both advantages and disadvantages. The core hardware and software of the AquaN-

ode is used in a number of di�erent projects. One advantage is that di�erent people

tested both the hardware and software under di�erent sets of assumptions. This en-

abled broader testing of the system and the discovery of unintended consequences of

design decisions. In addition to improving reliability, using the system across multiple

projects sped development as more people were working on the platform and less code

was duplicated as it could be shared. In our system over 80% of the base software

system for all projects are shared and used amongst the projects.

Another advantage of using a common platform is the ability to quickly connect

diverse systems. Since the systems use the same communication and processing struc-

ture, it would be easy to connect, for instance, the river �ooding sensor network with

the underwater sensor network. This combined system could monitor the e�ect of

river �oods on the water quality of coastal waters.

However, to satisfy the needs of all the projects, some software and hardware

compromises had to be made. For instance, the base board in the AquaNode has a

charger for a single cell Li-Ion battery as this is the type of battery used by most of the

other projects. But, the acoustic modem requires a 3 cell battery. As such, we added
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extra power management and charging circuitry to the midlayer board to address the

needs of the acoustic modem and we did not use the single cell power systems. The

cost of the system could have been reduced if the hardware was designed only for

the AquaNode. The bene�t of shared code and hardware testing and development,

however, tends to outweigh the added cost.

8.3 Future Work

There are a number of directions to take the research started in this thesis in the

future. The decentralized depth adjustment algorithm discussed in Chapters 4 and 5

changes the depths of the nodes to optimize placement for sensing. This algorithm can

be extended to include the case where some or all nodes have more degrees of freedom.

For instance, extending the algorithm to include mobile robots could greatly enhance

the sensor coverage by allowing the robots to �ll in gaps that cannot be covered by

the nodes that can only change depth.

From an engineering perspective, the core AquaNode hardware is a mature and

stable platform; the depth adjustment system, however, is a prototype. It worked

well in our experiments, but further work has to be done to make the system robust

for long-term deployments. A tensioning system should be added to prevent winding

issues that arise from waves and currents. In addition, experiments need to be per-

formed to determine the maximum deployment time before biofouling starts to e�ect

the operation of the depth adjustment system. Additional screens and �lters may

be necessary to reduce the amount of bio-growth on the system. These changes and

experiments will enable long-term deployments of the AquaNodes with the depth

adjustment system.

Another interesting direction for future work, upon which we only touched on

brie�y, is the ability to send messages in a power-e�cient manner using the multi-

modal communication capabilities of the AquaNodes. In particular, depending on

the type and amount of data that needs to be sent, the nodes should intelligently

select to: send acoustically, surface with the depth adjustment system to send over
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the radio, or call the robot and download the data optically. Looking at maximizing

communication while minimizing energy usage within this network with 3 diverse

communication systems is an interesting problem. For a pair of nodes it is fairly

straight forward and Section 3.4.4 discusses this. However, for a network with many

nodes and many messages, this is an open problem with many potential solutions.

Finally, the acoustic communication channel is an extremely challenging medium.

We presented preliminary results showing that changing the depths of the sensor

network nodes in the water can improve acoustic communication. In the future we

plan to continue this avenue of investigation to develop decentralized algorithms to

improve network communication by adjusting the depths of the nodes in the network.

The goal of this thesis has been to develop a platform and supporting algorithms to

enhance data collection underwater. Furthermore, we hope that the systems and al-

gorithms presented in this thesis will motivate future research in underwater robotics

and sensor networks. We still know relatively little about the underwater environ-

ment, and as one of our most precious natural resources, it is critical that we develop

and improve the systems that will allow us to better understand the world's water

resources.
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