
Co-Diagnosing Configuration Failures in Co-Robotic Systems

Adam Taylor, Sebastian Elbaum, and Carrick Detweiler

Abstract— Robotic systems often have complex configu-
ration spaces that, when poorly set, can cause failures. In
this work we take advantage of the close synergy between
user and robot in co-robotic systems to better diagnose
and overcome configuration failures. We leverage users’
understanding of the system to mark failures they observe
while the system is in operation. A marked failure indicates
that the robot either “did not do something when it should
have” or “did something when it should not have”. The
failure marking is coupled with an automated analysis
approach that identifies code predicates involving config-
uration parameters that may be relevant to each failure
type, ranks the parameters according to their potential to be
associated with the failure, and suggests adjustments based
on the run-time outcome of those predicates. We present the
approach, its implementation, and a preliminary study on a
configurable unmanned air system. The results show how
the approach can successfully help diagnose and adjust
faulty configuration parameters in co-robotic systems.

I. Introduction

The software engineering community has recognized
the difficulties for developers to validate large con-
figuration spaces and for users to select the proper
configurations for their systems to operate as expected.
Wrong configurations options have been identified to
be one of the main causes of failures in a variety of
systems, and a large number of testing, analysis and
diagnosis approaches have been developed to solve the
issues they cause (Xu et al. provide a comprehensive
survey on the area [1]).

Popular robotic systems are not exempt from these
configuration challenges and are amenable to some
of the proposed solutions. Their configuration spaces
can be large and complex, in part, to enable users
to tweak the systems to fit many potential usage
scenarios. Consider for example Baxter, a humanoid
robot that collaborates with workers and has 236 code
locations reading in configuration parameters [2]. Or the
Arducopter Drone with 622 configuration parameters
each containing multiple valid selections or a large range
of selectable values [3]. Or the Robot Operating System
(ROS) [4] whose’s navigation framework [5] includes
over 220 listed parameters that can be used to configure
the framework for a specific robot. These three examples
illustrate the widespread use of large configuration
spaces in robotic systems. For some of these systems,
the solution space is similar to that already explored

University of Nebraska, Lincoln, NE, USA {ataylor, elbaum,
carrick}@cse.unl.edu. This work was supported in part by
NSF-1218265 and NRI-USDA-2013-67021-20947. We thank John-Paul
Ore for his feedback on the manuscript.

by the software engineering community. For example,
practices such as the reduction of the configuration
space or the elimination of hard to set parameters could
help [6]. Similarly, automatic techniques could assist in
exposing the configurations available [7], in providing
scalable testing coverage of the configurations [8], [9],
or in performing root-cause analysis through dynamic
profiling [10], [11].

Our work, however, focuses on co-robotic systems
where robots closely cooperate with people to com-
plete mundane, dangerous, precise or expensive tasks.
These kinds of robots are said to have the greatest
potential to impact society [12], [13], integrating the
operator’s sensing, actuation, and domain expertise
with the robot’s own. In this work we explore how
this symbiosis between humans and robots can be
leveraged to diagnose improperly set configurations
and to collaborate to fix them and optimize them.

We enable users to mark a co-robotic system failures
on the fly as either Type I: the system did not do what it
was supposed to, or as Type II: the system did something
when it should not have. Then, we apply an approach
rooted on program analysis techniques that identifies
code predicates involving configuration parameters that
might be relevant to each failure type. Last, the approach
can help users adjust configuration parameters based
on how the code predicate evaluation changed, and the
type of failure observed.

Our work offers the following contributions:
• The insight that co-robotic systems introduce new

failure diagnosing opportunities to be carried by
users in addition to developers

• A novel approach that integrates user feedback and
automated code analysis techniques to diagnose
potentially problematic configuration parameters
and to recommend how to adjust them

• A preliminary study illustrating the potential of
the approach; it helped users co-diagnose the prob-
lematic configuration parameter in 7 of 8 trials. The
study also identifies the need for more sophisticated
failures types and discriminating analyses.

II. Motivation

Consider the co-robotic aerial water sampler in Figure
1 [14]. The UAV aims to enable water scientists to more
quickly collect routine samples from a body of water
without deploying a boat or a larger, slower robotic
system. This system can autonomously fly to a selected
location, descend to insert the sampling tube into the

Fig. 1: UAV water sampler operating in the lab,
obtaining a water sample from a fish tank.

water, collect water samples, and return the samples
back to the launch location. The system relies on ROS,
a popular middleware for robotic systems, and includes
around 11,000 lines of C++ and Python code.

This system contains a configuration space with
286 parameters that must be set up correctly to run
properly. For example, the system has a parameter that
determines the allowable distance error when flying to
a target waypoint. If the allowable error is too small and
there is an external force, such as wind, the UAV will not
reach the desired location and might appear to be stuck
to a human observer (Type I failure). If the allowable
error is instead too large, the UAV may prematurely
consider that it has reached a waypoint and obtain a
sample at the wrong location (Type II failure). Another
example is the safety parameter to set the minimum
altitude at which the UAV can fly before aborting the
mission. If the value is too small the UAV may crash
into the water. If the value is too large, the UAV may
abort a mission prematurely as it wrongly deemed to
be operating dangerously close to the water, even when
it could continue to operate safely.

When a system presents such failures in the field,
it is extremely difficult for even an expert to diagnose
and adjust such space of parameters to overcome the
problem. As we shall see, the approach we propose
aims to assist in handling such failures, which in
these scenarios would be attributable to the allowable
waypoint error (needs to be higher) and to the minimum
safe altitude over water (needs to be lower), respectively.

Our approach is based on three key assumptions
illustrated through this example. First, we assume that
configuration spaces for co-robots are complex and
users often set them incorrectly. We illustrated some of
these challenges in the configuration of the aerial water
sampler but, as stated in the related work, the problems
are more general and manifest extensively in practice.

Second, humans in co-robotic systems have an in-
trinsic understanding of what to expect from their

robots and can effectively recognize instances of some
failures. For the aerial water sampler, the operator
tends to perform the same flying operations over water
repeatedly and is able to diagnose behaviors that differ
from those typically observed. We argue this is part of
the essence of the synergy in co-robotic systems.

Third, many failures in co-robotic systems are asso-
ciated with uncommon but observable changes in the
system execution that are driven by the choices made
by the human when configuring the robot. Again, in
the case of aerial water sampler, the configuration space
is large enough and subtle enough that can lead to
erroneous behavior, and that behavior can be recognized
by the user as a rare occurrence.

Although simplified, this section illustrates some of
the challenges in diagnosing configuration failures in
co-robotic systems. Some of those failures could be
overcome through alternative designs, methodologies,
and toolsets, but there seem to be an opportunity for an
orthogonal approach that can leverage the users’ abilities
to recognize anomalies and adjust the configuration
parameters. We explore such approach next.

III. Approach

We now describe the approach and some key imple-
mentation details.

A. Overview
Figure 2 provides an overview of the approach which

contains a static analysis phase (that focuses on the
system source code and deployment files structure)
and a runtime analysis phase (that focuses on the
system as it executes). As shown in the figure, the first
phase is responsible for identifying threshold predicates,
that is, predicates in the source code of the target co-
robotic system, S, that compare an expression against a
configured parameter that acts as a threshold.

Consider the code snippet:
. . .
minAlt = get param (. . .) //c o n f i g u r a t i o n c a l l
. . .
i f (UAVcurrAlt > minAlt) then //threshold p r e d i c a t e

. . .
reachSafeAl t . publ ish (. . .) // a c t i o n exposing c a l l

. . .

Using predefined code patterns and program analy-
sis techniques, the approach identifies the configura-
tion parameter minAlt set through the function call
get param(...), the exposing action reachSa f eAlt() that
produces an event that is observable by the user, and the
predicate i f (UAVcurrAlt > minAlt) that evaluates the
configuration parameter minAlt to determine whether
to take the action reachSa f eAlt().

After identification, the approach instruments the
target predicates by inserting additional snippets of code
that expose the values of the predicate expressions dur-
ing the execution of the system. So, for the previous code
snippet, every time the predicate i f (UAVcurrAlt >

	
	

Sta%c	Analysis	

	
	

Run%me	Analysis	

Syntac%c	
Analysis	 Slicing	 Instr.	S	 S’	 Rank	

Weights	Configura%ons	&	Ac%ons	

marks	
Recommend	

Adjusted	configura%on	parameters	

Fig. 2: Overview of Approach

minAlt) is executed, the added instrumentation would
log the values for UAVcurrAlt and the predicate out-
come (True or False). This instrumented version of the
system is S′.

At runtime, a user observing the system can indicate
when it is behaving unexpectedly as per Type I or Type
II. The runtime analysis then calculates a score for
each threshold based on factors such as the predicate
temporal proximity to the marking, whether their
evaluation changed, and the frequency of those changes.
The thresholds are then ranked by their scores, which
constitute proxies for the likelihood of a threshold
to contribute to the failure. So, let’s suppose a water
scientist using the aerial water sampler notices that the
vehicle “stopped the water sampling process prema-
turely” and marks it as a Type II failure. There are more
than 15 configuration parameters directly associated
with the sampling stage that could be adjusted in the
configuration files. Our approach will first identify the
configuration parameters that were part of an executed
instrumented predicate (the ones that were not executed
could not have led to the failure). Then, for a Type
II failure, the approach will rank minAlt as the top
culprit, as it was the parameter involved in a predicate
evaluation change (predicate UAVcurrAlt > minAlt
flipped from True to False) just before the user marking,
and because such switch is a rare one (most of the times
UAVcurrAlt was greater than minAlt).

If possible, the approach also makes recommen-
dations for parameters adjustments. For our sample
scenario, given the failure type, the approach would
recommend decreasing the value of the configuration
parameter minAlt to stop the predicate from flipping
(ensuring the call indicating that a safe altitude was
reached is made) since that led to the inaction deemed
as a failure. The expectation is then for the human
operator to incrementally change the value of minAlt
in S′, working with the system to explore and test the
effect of the changes.

B. Static Analysis for Identifying Threshold Predicates

This initial phase analyzes system code and produces
an instrumented version of the system that can collect
information on the threshold predicates (those that
operate on configuration parameters).1 It relies on three

1An implementation of this analysis for ROS is available online at
https://github.com/aktaylor08/thresholdanalysis.

basic analysis techniques.
First, a syntactic search identifies two types of function

calls: configuration and action exposing. Configuration
calls are the ones that retrieve configuration parameters.
These calls are often standardized in robotic systems as
they employ common middleware to retrieve configura-
tion parameters. In the case of ROS, for example, these
calls take the form of [RosCoreType].get param(. . .).
Similarly, exposing calls are those that externalize the
behavior of a component. In ROS (python), a common
form of externalization occurs through message publish-
ing or service calls (e.g., [PublisherType].publish(. . .)).
This phase of the approach can be extended to include
call patterns that encode other configurations and
actions (such of those used by other robotic middlewares
and libraries).

Second, an interprocedural backward code slice is
computed from every exposing action call to every
predicate reachable in the compilation unit. The code
slice then contains all statements, potentially spanning
across multiple functions, that could affect each ex-
posing action. The code predicates included in each
slice and the slice size (distance to the exposing action
statement) are saved for later usage.

Third, every code predicate in each slice that has a
data dependency to a configuration variable (variables
assigned a value by a configuration call) is instrumented.
The instrumentation allows the runtime capture of
several pieces of information such as the values of the
variables in a predicate and its outcome, which are
consumed by the runtime analysis.

C. Runtime Analysis to Rank Culprits and Recommend Fixes

The runtime analysis portion of the approach con-
sumes the threshold predicate data produced by the
instrumented system (generated by the previous phase)
and, when the user marks a failure, it triggers the
computation of scores on each threshold predicate, their
prioritization, and a recommendation.2

When the user perceives that the system is mis-
behaving, she marks a failure by clicking on one of
two interface Action buttons labeled as Type I and
Type II. The marking type and time is recorded, and
it triggers the scoring process which assigns blame
to each predicate threshold based on the collected

2The runtime implementation in Python is also available at https:
//github.com/aktaylor08/thresholdanalysis.

evidence. The evidence includes whether the predicate
has flipped recently (its current evaluation changed from
its previous evaluation), its flipping rate (how often does
it change), and its temporal or spatial distance 3 to the
exposing action statement (smaller distance is likely to
have a greater influence on the predicate). As defined,
lower scores mean higher likelihood of being associated
with a marked failure, but their computation varies
slightly between failure types.

Type I failures are caused when a robot fails to make
progress, and can often be attributed to a configuration
parameter that acts as a threshold being set too high
or low. For scoring, we favor the predicates that are
the closest to flipping but have not yet done so. We
are interested in the gap from the current values to the
required values to flip a predicate. We normalize the
flipping gaps to values between 0 and 1 (dividing by
their min/max values found at runtime) to make them
comparable across predicates that operate at different
scales. Then we compute the score = gapα ∗ nβ ∗ dγ,
where α, β, and γ are weights that can be set externally
to tune the scoring based on the importance of the gap
size, the number n of previous flips, and the importance
of the distance d to the exposing statement. We use
values of α = 1.0, β = 1.0, and γ = 0.0. These values
were chosen through trial and error, and produced
good results on the experimental data. We chose to
exclude the distance (γ = 0) because the system includes
C++ and Python code where distance in the code
means different things even when dealing with similar
predicate evaluations.

For Type II failures in which the system did some-
thing when it should not, we favor blaming threshold
predicates that flipped recently, that is, predicates
whose outcome changed leading to the execution of
an exposing action statement. More specifically we use
score = tα ∗ nβ ∗ dγ where t is the time since the flipping
occurred. In the studies we conducted we use values of
α = 1.0, β = 1.0, and γ = 0.0 for these parameters.

The approach also generates recommendations for
predicates performing inequality comparisons on order-
sets (int and float types), according to the type of failure
as shown in Algorithm 1. For Type I failures, if flipping
has not occurred, that is, the predicate outcome has not
changed, and the value compared against the threshold
was higher, then the recommendation is to “raise” the
configuration parameter to facilitate the flipping in
the future. If the threshold was higher than the value,
then the recommendation is to “lower” the threshold
to facilitate the flipping. Similarly, for Type II failure
marking, if the outcome of the predicate was flipped,
then we want to “raise” the threshold to make the
flipping harder in the future and maybe lead to a
restoration of the system state before the flip occurred.

We prototyped an interface with two views to convey

3Measured by the number of edges in the dataflow graph.

Algorithm 1 Algorithm to assign blame and make
recommendation on a threshold predicate
1: procedure blameRecommend(type, flip, gap, t, n, d, cmpVal, threshold)
2: if type == I then . Type I: Failed to perform an action
3: score = gapα ∗ nβ ∗ dγ

4: if ! flip then
5: adjust(threshold, cmpVal)
6: else . Type II: Performed action when it should not
7: score = tα ∗ nβ ∗ dγ

8: if flip then
9: adjust(threshold, cmpVal)

10: procedure adjust(threshold, cmpVal)
11: if cmpVal > threshold then
12: raise(threshold)
13: else
14: lower(threshold)

Failure		
Marking	

Configura0on	
Parameter	

Poten0al	
Culprits	

Values	Compared	
Against	Threshold	

Mark	

Fig. 3: User interface. View after failure marking.

the collected data. The first view contains current
information on all thresholds in the system and is
meant to be consulted under normal conditions. The
second view, shown in Figure 3, is triggered when
a marking occurs. In the lower right area it contains
the potential culprit parameters. When one is clicked,
a graph showing the configuration parameter value
(horizontal line), the value against which it is being
compared (the curved blue line), and the time of the
failure (dashed vertical line) marking is shown in the
upper-right area, together a recommendation (in this
case to ”Lower” the parameter value).

IV. Preliminary Assessment of Approach

In this section we explore the performance of the
proposed approach to diagnose and overcome failures
that arise from misconfigured parameters.

A. Setup

We studied the autonomous water sampling UAV
shown earlier in Figure 1. While in operation, the sys-
tem deploys 31 execution processes, that communicate
through 37 ROS topics and 18 ROS services. The nodes
control the position of the UAV, track the UAV, run the
water sampling sub components, manage the mission,
and ensure safety. We designed a study with a single

mission, two treatments (each containing a configuration
fault), and five participants that could mark Type I or
Type II failures. The mission took about 45 seconds,
began on the ground with motors off, then the motors
turn on and the UAV begins flight, ascending to an
altitude of 2 m. Next, the UAV flies over a fish tank
at an altitude of 2.0 m. Then it descends to 1.2 m to
insert the sampling mechanism into the water, turns on
the pump, and fills a vial with water. Last, the UAV
ascends to 2.0 m and returns to the takeoff location.

The study participants belong to the lab where the
system was developed. They had seen the system in
operation, but they had not operated it nor were they
familiar with its implementation. Each participant was
first given a high-level written description of the system
and the planned mission, and shown the mission three
times so get them further familiarized with the system
and provide a common baseline for the study. They
were instructed to pay special attention to the sequence
and timing of events, and the failure types and marking
procedures were explained.

Treatment 1. Lower error xy which is the configurable
margin of error to determine if the UAV has reached
a target waypoint. This parameter is configured in the
system’s main launch file. As a result of this change
the UAV will not continue on to the sampling portion
of the mission because the target waypoint is not
reached, causing a Type I failure. Treatment 2. Raise the
configuration parameter altitude abort level which sets
the minimal UAV altitude threshold before the mission
is aborted. When the UAV aborts, it stops the current
operation and returns to a specified altitude and hovers
until receiving further commands. As a result of this
fault, the UAV will be deemed “too low” during normal
operation and abort the sampling before filling the vial
raising to a new altitude, leading to a Type II failure.

We conducted 16 trials across the treatments, with
participants taking each treatment once or twice. During
each trial we recorded: 1) a system execution trace of all
ROS messages, 2) values and result of each threshold
predicate, 3) time and type failure marked by the user,
and 4) a video of the robot system synchronized with
the other three data sources.

B. Results
The first phase of our analysis identified 58 threshold

predicates in the system, spread across 15 files, involving
41 unique configuration parameters (libraries were not
included). This static analysis required slightly more
than twice the time to compile and link the system.

The instrumented code logged over 400K predicate
executions4. Out of the 58 instrumented predicates,
only 24 (41%) were executed, accounting for 17 out
of the 41 (42%) configuration parameters. Flips were

4Although the impact of the instrumentation on the system’s
performance was not obvious to the subjects, the additional code
generated over 13% of additional monitoring messages.

TABLE I: Average Rank of the Faulty Configuration
Parameter After the Marked Failures.

Treatment Trial Time from Failure Rank
(Failure Type) to 1st Mark (secs.)

1 1 20.6 0.91
1 2 19.5 0.95
1 3 11.6 0.95
1 4 8.7 0.96
2 1 12.4 1.00
2 2 11.0 1.00
2 3 2.3 0.47

2 4 1.6 1.00

also rare, present in only 0.041% of the threshold
predicate executions. Furthermore, only 6 (35%) of the
17 configuration parameters were used in predicates
that have both true and false results. This shows that
few predicates change their outcome, so any predicate
that flips contains information, and if the outcome of
the predicate does change, one outcome is produced
at a much higher rate. Hence, there is a strong signal
in the execution of the instrumented predicates on
thresholds, and in those flipping their outcome.

Table I displays the ranking of the faulty configura-
tion parameters across all trials and treatments. These
rankings are averaged across the execution of the trial
after each failure is marked by the user, and can range
between 0 and 1. Our proposed approach identified
the problematic configuration threshold as the top
culprit on average in 7 out of 8 trials.

Figure 4 shows what such ranks mean in the context
of a Treatment 1 trial. User marks are indicated using
vertical lines with ’X’ marks on them, where lighter
green lines represent marks of Type I failures and darker
blue marks represent marks of Type II failures. Figure 4-
bottom shows the aerial water sampler reaching the fish
tank area (at -2.1m) x-position after 80 seconds. Within
10 seconds the operator starts repeatedly marking a
Type I failure because the vehicle keeps hovering, failing
to start the sampling process. The top graph shows
the ranked configuration parameters, one per colored
line, with the red ’x’ line representing the threshold
that was modified as part of the trial treatment. The
approach was able to confine the problem to just seven
configurable parameters, and the faulty configuration
parameter, after being ranked at the bottom until the
failure is about to occur, ranks among the top three
culprits in the proximity of the markings, and it is
identified as a main culprit as per its average ranking
after the markings started.

Figure 5 illustrates another trial but for Treatment
2, with the vehicle reaching the fish tank area at a
2.0m altitude after approximately 35 seconds. At 50

seconds it descends to 1.2m to start the water sampling
process but it dips below the erroneously configured
threshold, canceling the sampling process, going up
to 2m, hovering a bit over the fish tank. The users
marked two Type II failures about 10 seconds after the
sampling process was canceled. The graph on the top

Fig. 4: Ranking of configured threshold (red x line)
across Trial 1 under Treatment 1 (Type I Failure)

Fig. 5: Ranking of configured threshold (red x line)
across Trial 1 under Treatment 2 (Type II Failure)

of Figure 5 shows that the approach identified the
problematic threshold soon after the sampling was
canceled and remained as the top culprit until the
end of the mission.

Marking Type I failures took more time than Type II
failures, a median of 20s and 12s respectively, as users
had to wait before confirming that the system was not
making any progress for the Type I failures. The only
misdiagnosed case was under Treatment 2 Trial 3, in
part because the user also marked failures of Type I. As
we observed in Figure 5, there are instances of users
marking Type I failures (instead of just Type II) when an
unexpected action is followed by a pause as the system
gets ready for the next action. Interestingly, we did not
find instances where Type I failures were marked as Type
II. Further studies with more users and systems would
be needed to understand how to curb this source of
noise, whether the failure types need to be revised, and
how user experience may reduce affect the markings
quality and timeliness.

V. Conclusions

Robotic systems can have complex configuration
spaces that, when poorly set, can cause systems to
fail. Although significant effort has been dedicated
to supporting component developers of such systems,
our work is orthogonal and novel in that it takes
advantage of the synergy between users and robots in co-
robots to better diagnose and solve such configuration
problem. We enable users to timely mark system failures.
Coupled with an automated analysis to identify how
the configuration parameters influenced the underlying
code execution flow at the time of the failure, our
approach is able to identify culprits, the problematic
parameters, and suggest adjustments.

This paper illustrates the potential of the approach,
but the study is still preliminary and there is much to
explore. We plan to perform more sophisticated and
robust failures marking schemes, automatically identify
observable external actions, analyze confounding con-
figuration parameters and fault types, and assess our
approach more extensively.

References

[1] T. Xu and Y. Zhou, “Systems approaches to tackling configuration
errors: A survey,” ACM Computing Surveys, vol. 47, no. 4, p. 70,
2015.

[2] R. Robotics, “Baxter Robot Source Repository,” https://github.
com/RethinkRobotics, 2015, [Online; accessed 10-July-2015].

[3] Dronecode, “Arducopter Configuration Parameters,”
http://copter.ardupilot.com/wiki/configuration/
arducopter-parameters/, 2015, [Online; accessed 10-July-
2015].

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote et al., “Ros:
an open-source robot operating system,” in Workshop on open
source software, vol. 3, no. 3.2, 2009, p. 5.

[5] “ROS Navigation Stack,” http://wiki.ros.org/navigation, 2015,
[Online; accessed 10-July-2015].

[6] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: understanding and
dealing with over-designed configuration in system software,”
in Foundations of Software Engineering. ACM, 2015, pp. 307–319.

[7] A. Rabkin and R. Katz, “Static extraction of program configura-
tion options,” in International Conference on Software Engineering.
IEEE, 2011, pp. 131–140.

[8] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for
assessing resilience to human configuration errors,” in Dependable
Systems and Networks. International Conference on. IEEE, 2008,
pp. 157–166.

[9] C. Yilmaz, M. B. Cohen, A. Porter et al., “Covering arrays for
efficient fault characterization in complex configuration spaces,”
IEEE Transactions on Software Engineering, vol. 32, no. 1, pp. 20–34,
2006.

[10] S. Zhang and M. Ernst, “Automated diagnosis of software
configuration errors,” in International Conference on Software
Engineering. IEEE Press, 2013, pp. 312–321.

[11] M. Attariyan and J. Flinn, “Automating configuration trou-
bleshooting with dynamic information flow analysis.” in OSDI,
2010, pp. 237–250.

[12] G. Bekey, R. Ambrose, V. Kumar, A. Sanderson, B. Wilcox, and
Y. Zheng, “Wtec panel report on international assessment of
research and development in robotics,” A roadmap for US Robotics
From Internet to Robotics 2013 Edition, 2013.

[13] E. Guizzo and T. Deyle, “Robotics trends for 2012,” IEEE Robotics
& Automation Magazine, vol. 19, no. 1, pp. 119–123, 2012.

[14] J.-P. Ore, S. Elbaum, A. Burgin, and C. Detweiler, “Autonomous
aerial water sampling,” Journal of Field Robotics, 2015.

