
Rate Impact Analysis in Robotic Systems

Nishant Sharma, Sebastian Elbaum and Carrick Detweiler

Abstract— Changes to robotic systems as they are updated
or upgraded often affect the flow of control and sensor data.
Developers and users spend a significant amount of time
tracing the impact of these changes that could otherwise have
negative impacts on the robot’s performance and behavior.
Changes to the rates at which data is published from sensors,
controllers, and other parts of the system are particularly
subtle and difficult to detect. These rate changes, even if minor
(e.g. lowering the frame rate of a camera), can propagate
throughout the system and have broad impacts. In this work,
we develop and implement an approach to help identify the
set of components whose rate may be impacted by a system
change. The approach builds on the insight that certain code
patterns render component’s outgoing data rate independent
of the component’s incoming data rate. We use that insight to
reduce the number of components reported as affected by the
change to minimize the number of components that must be
reevaluated by the developer. A study of an implementation of
the approach on three ROS systems shows that it can reduce
the size of the impact set by up to 41% in cases when the
changes have broad data impacts. The analysis is performed at
compile time and only adds a third more to the compilation
time.

I. INTRODUCTION

A robot’s performance and behavior depend in part on
the rate at which data is produced and consumed by its
components. Consider the Care-O-Bot (COB) robot [1] in
Figure 1. In this system, replacing an arm position encoder
with a higher resolution sensor, but with a lower data rate,
may result in a position controller instability. Or updating
a planning algorithm with one that renders faster data rates
may overwrite a buffer potentially leading to skipping certain
actions. Similarly, increasing the camera frame rate could re-
sult in better obstacle avoidance, but might worsen feedback
to a remote operator if WiFi bandwidth is exceeded. Various
approaches for handling this have been proposed including
Paikan et al. [18] who uses run-time channel prioritization
for components that are time-critical and require higher
controlling rate. However, few researchers have addressed
the general problem of analyzing the impact of rate changes.

Clearly, in many robot systems, the rate at which data
is made available to some of these components is often as
important as the data itself. In such cases, we are interested
in understanding whether the rate changes in the system
could affect its performance and lead to incorrect behaviors.
More specifically, we would like to know how rate changes

The authors are with Department of Computer Science and Engi-
neering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
Email:{nsharma, elbaum, carrick}@cse.unl.edu. This work
was partially supported by National Science Foundation under awards
#1526652 and #1638099, and USDA-NIFA #2013-67021-20947.

Fig. 1: Care-O-Bot (COB)
[1], a ROS based mobile
manipulation robot.

propagate through the system
so that those areas that may
be affected are examined and
validated more carefully.

Techniques to understand
the impact of a change fall
under the umbrella of Impact
Analysis (IA) [5]. These tech-
niques generally identify de-
pendencies among code en-
tities and traverse those de-
pendencies starting from a
changed location to determine the set of impacted code
entities. Existing IA techniques have focused exclusively on
data and control dependencies in code.

In this work, we add the rate dimension, which is particu-
larly relevant to robotic systems that explicitly rely on timing
properties or implicitly rely on rate assumptions. We build
on the insight that certain code patterns render component’s
outgoing data rate independent of its incoming data. We use
that insight to reduce the number of components reported as
affected by the change. Our contributions are:

• A novel approach to impact analysis focused on the rate
of incoming and outgoing data, an aspect overlooked by
existing impact analysis approaches. The analysis incor-
porates component’s source code patterns that render
data production rates independent of the incoming data
rates (and hence independent of changes that may affect
those incoming rates).

• A tool implementing the approach, targeting systems
built in C++ using the Robot Operating System (ROS)
middleware. The tool performs a static code and con-
figuration analysis to identify what data flows between
components and recognizes the patterns defined by the
approach to infer rate independence.

• A study assessing the effectiveness and performance of
the proposed approach on three systems (COB [1], PR2
[3], and H2OS [17]). The study shows that the approach
has the potential to reduce the size of the impact set to
half compared with existing IA approaches. The current
automated implementation reduces the impact set size
of three studied systems to 73%, 92%, and 41%. It does
not require code execution and has an analysis overhead
of about one third of compilation time.

II. MOTIVATING EXAMPLE AND APPROACH INTUITION

Figure 1 shows COB [1], a robot designed by Fraunhofer
IPA to be a human assistant in a variety of settings. COB
sits on a movable base, utilizes lasers and cameras to scan

B

A

scan_in

tf

scan_out

Fig. 2: Part of COB’s publish-subscribe dependency graph.
Circles represent nodes (software components) and squares
represent topics. Edges are labeled Dependent (solid) or
Independent (dashed). We assume the node with a star has
changed. The traditional IA approach deems solid circles as
being affected by the changed. Solid circles within the dotted
line area show the impact set produced by the proposed
approach, 50% smaller.

0 10 20 30 40 50
Node Number

0

5

10

15

20

S
iz

e
 o

f
Im

p
a
c
t

S
e
t

Traditional
Proposed Approach

Fig. 3: Impact set reduction across the nodes of COB.

the environment for obstacle detection and navigation, and
employs two robotic arms for manipulation tasks. Like many
other robotic systems, COB is implemented on top of the
Robot Operating System (ROS) [20] and relies heavily on
publishers and subscribers to communicate using ‘topics’
between nodes [14]. A node can publish or subscribe to
multiple topics, and multiple nodes can subscribe or publish
to a single topic, providing flexibility in how the nodes
of the system are connected, but still enabling modularity
as nodes are separated through topics. Many studies have
analyzed the publish-subscribe architecture [8] [10] [15]
[18] [22]. Eugster et al. [10] presented that the publish
subscribe architecture can be decoupled in terms of space,
time, and synchronization. Recently, Rusakov et al. [22]
presented multiple concurrency patterns for common robotics
coordination tasks operating in parallel.

1 publishTransform(){
2 <publisher>.publish(<msg>);
3 }
4 foo(){
5 ros::Rate <rate_var>(getPubRate());
6 while (ros::ok()){
7 publishTransform();
8 <rate_var>.sleep();
9 }

10 }

Code 1: Component A - Independent Publisher due to
fixed rate caused by adaptive sleep.

1 callback(...) {
2 <publisher>.publish(<msg>);
3 }
4 foo() {
5 <publisher> = <nh>.advertise("scan_out",...
6 <sub> = <nh>.subscribe("scan_in", 1, &callback...
7 }

Code 2: Component B - Dependent Publisher.

Figure 2 presents part of the graph representation of
COB’s publish-subscribe architecture. The ROS nodes are
represented by circles and the topics by squares. COB has
66 nodes, and 155 topics (we only show 18 nodes and 9
topics in the figure). We will assume that the node with a
star has changed. Nodes and topics external to the abstracted
system view are depicted in gray.

This graph representing the publish-subscribed architec-
ture of COB also encodes a conservative approximation of
the nodes dependencies. In essence, if there is a path through
the edges from one node to another, then the former can
impact the later. In the case of COB, for example, if the
change occurred in the process handling of the laser scanner
(marked with a star in figure 2), then a traditional impact
analysis would traverse this dependency graph starting from
the star node and propagating the effect along the edges to
all reachable nodes. Using such approach would render all
the nodes in the graph in Figure 2 as potentially impacted by
the change. The impact set contains 19 affected nodes that
a developer will have to check.

When changes are not data-driven but rather rate-driven,
like in the case of updating the rate of the laser scanner, such
an approach is likely overly conservative. In such cases, we
can do better by annotating the dependency graph with labels
that reflect rate-dependencies among the edges.

For example, let’s assume that we have a mechanism (like
the one we proposed in this paper) to tell that the node
marked as A in Figure 2 publishes data to topic tf on a timer.
We can then label such outgoing edge as “rate-Independent”
(or just “Independent” – dashed in Figure 2). For other nodes
like B, we can tell by examining its code that their publishing
rate depends on the rate of the incoming topics because
this node reacts to each inbound message by publishing a
message of its own. With such information, we can prune
the potential set of impacted nodes. The publishing edges
from a node that are “Independent” to the rate of incoming
messages do not propagate the effect of changes in terms
of rate, pruning the space of affected nodes. In fact, for the
example in Figure 2, this process results in the reduction of

the impact set of nodes by 50%. In this work we develop
this impact analysis process focused on rate.

The benefits of the approach will vary based on the system
coupling and the nodes being changed. Figure 3 illustrates
the range of benefits for COB. The x-axis represents the 48
nodes in COB (leaf nodes are excluded since changing them
does not impact any other node), the y-axis represents the
impact set size assuming that the node in the x-axis changed.
The pluses represent the impact set size of traditional impact
analysis, the circles represent the impact set size for the
proposed rate-cognizant approach. The size of the impact
set will vary based on which node changed, ranging from 19
to 1 with an average of 8.3 nodes impacted. The differences
between the pluses and the circles show the potential of the
proposed approach, which is quite dramatic in some cases,
especially for those nodes with longer dependency chains.
Overall, the average reduction is 4.43 nodes and for impact
sets with a size of more than 10, the reduction is 9.82 nodes.

Crucial to the cost-effectiveness of this approach is the
analysis of nodes to identify whether their publishing edges
are independent. Through this work we identify a common
set of code patterns that are highly likely to render a publisher
independent. For a node like A, a sample code pattern
is shown in Code 1, where the publishing rate is fixed
as the semantics of the <rate var>.sleep()(line 8)
call enforce a wait period before the next iteration through
the loop to publish again. For a dependent node, like B,
a sample code pattern is shown in Code 2. In this ex-
ample, the call to <publisher>.publish(<msg>)
(line 2) occurs within a subscription callback function
so the publishing rate of this node will depend on the
rate of received messages. The identification of these code
patterns followed an iterative process, starting with a pool
of candidate patterns based on our development experience
and recommended practices, followed by several refinement
steps as we searched for those patterns in other code bases.
We have also built a tool that automatically recognizes
these patterns and labels the publish-subscribe graph. Further
details about the approach and the implemented tool are
provided in the next section.

III. APPROACH AND IMPLEMENTATION

Figure 4 shows the high-level architecture of the proposed
approach. It is divided into two phases: Dependency Analysis
(DA) and Impact Analysis (IA). DA takes as input the
system code and its launch file (a file to configure the
system deployment through parameters and node and topic
remappings). DA outputs a dependency graph where edges
from a publisher to a topic are labeled as either ‘dependent
on’ or ‘independent of’ the rate of incoming messages. IA
takes this rate dependency graph and the list of changed
component(s) as input. It then performs a depth-first traversal
of the graph, starting from those changed components and
stopping when a leaf node or a rate-independent publisher is
found. IA reports the reachable set of nodes that constitutes
the Impact Set for the changed component(s).

Fig. 4: High-Level Architecture of the proposed approach.

1 callback(...){
2 <publisher>.publish(<msg>);
3 }
4 foo(...){
5 <timer_var> = <nh>.createTimer(...,&callback,...
6 }

Code 3: Pseudocode from cob obstacle distance moveit
package exhibiting the Timer based pattern.

A. Dependency Analysis (DA)

The first step of DA is to generate the system dependency
graph where the vertices are the nodes or topics, and
the directed edges link the publishers and subscribers
with their topics. DA analyzes every function in the
system to produce a function summary containing a list
of every publisher or subscription used by the analyzed
function. The summary is produced by generating and
traversing the function control flow graph while searching
for function calls in a predefined set that depends on
the API and middleware being used. For ROS, this set
includes calls like advertise, advertiseCamera,

subscribe, subscribeCamera, sendTransform,

lookupTransform, RealTimePublisher and the
object of the predefined type (e.g., ros::NodeHandle,

image transport, tf::TransformerListener,

TransformerBroadcaster, message filter. Figure
5 presents a sample summary for the code of Node B in
Code 2. For subscribers, it contains the topic name and
the callback function name. For publishers, it has the topic
name and the variable name.

To generate the dependency graph of published and sub-
scribed messages, the approach first performs a union of all
the summaries of the functions in a node. Then, the approach
adds a vertex for each node, an edge from the node to a topic
for each publisher, and an edge from a topic to the node for
each subscriber. At this point, we have a graph on which to
run impact analysis. We now discuss the additional analysis
performed to label certain edges as rate-independent, which
will help to reduce the size of the impact set.

Once the approach has generated the graph, it further
examines the source code, analyzing every path leading to a
publisher’s publish call to identify certain code patterns that
render those edges as rate-independent. We now introduce
three initial patterns (others are mentioned in Section VII)

Summary : Node B
S u b s c r i b e r : s c a n i n : c a l l b a c k
P u b l i s h e r : s c a n o u t : <p u b l i s h e r>

Fig. 5: Summary for Source Code 2.

Algorithm 1: Labeling publishers in a node.
1 Function LabelPublishers(publisher[])
33 foreach pub ∈ publisher[] do
55 pub.label = Independent
77 foreach path2pub ∈ callGraphSearch(pub) do
99 if not findPatterns(path2pub) then

1111 pub.label = Dependent
1313 break foreach

with their particular instantiation in ROS.
1. No Subscribers. If a node does not subscribe to any
topics, then the outgoing edges of that node are labeled
Independent. This pattern is common for sensing nodes that
capture environmental data and publish it. In Figure 2, the
node shown as a star belongs to this class.
2. Timer. Robotic middleware often provides support for
a function to be invoked at fixed intervals. In ROS, such
a function can be registered as a callback function against
ros::Timer or ros::WallTimer. The registered call-
back function is invoked every time the given duration
equivalent to the ros::Timer has passed, executing the
callback function at fixed intervals. Code 3, shows an ex-
ample of such a pattern. Since the callback function will
be invoked at fixed time intervals, the publisher’s publish
call will also be invoked at fixed intervals making the path
from the timer callback to the publisher’s publish call an
independent publisher path. To detect this pattern, we locate
a call to function createTimer and then we extract the
argument which gives the callback function name which will
be invoked at a fixed rate.
3. Adaptive Sleep. Robotic middleware like ROS often
provides adaptive sleep functions which take execution time
of a cycle into account and sleep for the leftover time of
the initialized duration, ensuring that the loop is executed
at a fixed rate. In ROS, this can be done by initializing an
ros::Rate object which specifies the rate at which the
loop should be executed. Then, inside a loop, ros::Rate
object’s sleep function is called to sleep until the next
execution should start. For example, in Code 1, the function
publishTransform is called at a fixed rate as the loop
will be executed at a fixed rate because of the adaptive
ros::Rate based sleep call. To detect this pattern, we
locate a ros::Rate object followed by a loop and a
ros::Rate based sleep call. Then we label any function
call or publish call independent within the loop body.

In the second step of DA, for each node, for each publisher
to a topic, the approach gathers all loop-free paths from
each publishing location to each root node (either a callback
function or the main function in the node). It then analyzes
each path, searching for one of the three defined patterns. If a
path conforms to a pattern, then it is labeled as such. If it does
not, then that path is deemed as dependent, and consequently
the edge is labeled as Dependent. In the case that all paths
to a publisher are labeled to have the Independent pattern,
then the publisher is labeled as Independent. This process is
succinctly described in Algorithm 1.

Algorithm 2: Impact Analysis. ISG represents the
impact set considering all changes, IS represents the
impact set of a changed node.

1 Function ImpactAnalysis(changed components[], G)
33 ISG = IS = φ

// Reset outgoing edges of changed component as dependent
4 foreach c ∈ changed components[] do
66 foreach edge e ∈ getOutgoingEdges(G, c) do
88 e.dependent = True

1010 foreach vertex v ∈ G do
1212 v.visited = False
1414 foreach c ∈ changed components[] do
1616 IS = DFSV isit(c, IS)
1818 ISG = ISG ∪ IS
2020 return ISG

21 Function DFSVisit(c, IS)
2323 c.visited = True
2525 foreach v ∈ adjacent[c] do
2727 if v.visited is False then

// Exand impact set only over Dependent edges
28 if edge(c, v).dependent is True then
3030 IS = IS ∪ v
3232 DFSV isit(v, IS)
3434 return IS

B. Impact Analysis (IA)

As shown in Algorithm 2, IA takes a list of changed
components and the system dependency graph as input. Since
changed components may impact the publishing rates, we
re-label their outgoing edges as dependent (lines 4-8). Next
we set all the nodes as not visited yet (lines 10-12) to then
initiate a depth first graph traversal rooted at each changed
component (lines 14-18). A global impact set, ISG, contains
the union of all impact sets IS of every changed component.
IS is computed for each changed node in the function DFS-
VISIT (line 21-34). Nodes adjacent to a changed node are
visited, extending the traversal and impact set over dependent
edges (lines 28-32).

C. Implementation

Our approach implementation builds heavily on the source
code analysis tool Clang [2], which works as a compiler
front-end for C++. We use Clang to help us detect the
subscribing and publishing channels and identify the patterns
associated with independent publishing edges. More specif-
ically, we use AnalysisDeclContext to generate the code’s
Control Flow Graph (CFG), the CFG object for code traver-
sal, CXXMemberCallExpr for detecting member function
calls, getArg to retrieve the required argument values, Call-
Expr to identify regular function calls, CXXCtorInitializer to
identify the base or member initializer for ROS objects, and
DeclStmt to retrieve variable names. We utilize the YAML-
CPP library [6] to store and parse the summaries as YAML
files, and PUGI XML [12] for parsing and extracting partial
information from ROS launch configuration files. Finally,
we use Graphviz DOT [9] to generate visual depictions of
the dependency graphs to facilite their interpretation and
debugging of the tool. Our tool RSIA (Rate based Static

Impact Analysis) is available for download from http:
//nimbus.unl.edu/tools/

IV. STUDY SETUP

To assess the tool that implements the proposed approach,
we performed a study on three robotic systems. The study
evaluates the tool’s precision and recall when compared
with a traditional impact analysis approach, and the ideal
implementation of the proposed approach (obtained through
a combination of manual and automated analysis).

The analyzed systems are Care-O-Bot [1], PR2 [3], and
an autonomous aerial water sampler (H2OS) [17]. PR2 is
a mobile manipulation platform developed by Clearpath
Robotics. H2OS is a drone-based water sampling solution
[17] from our own NIMBUS Lab1. Both PR2 and COB
systems are open-sourced, and the three systems are written
almost entirely in C++ using ROS extensively.

We assess the proposed approach in three phases. First,
we evaluate the precision and recall of the tool at generating
the dependency graph. To do this, we manually generated
a ground truth dependency graph. Generating the graph
entailed the inspection of each system (source code, launch
files, and also runtime publish-subscribe graphs) through a
mixed process of automated and manual analysis, intermin-
gled with sessions where all authors reviewed code samples
and hard-to-determine dependencies. This process resulted
in a dependency graph, with edges labeled as dependent or
independent, that we deemed to be correct and treated as the
ground truth for the study. First part of the study compared
this ground truth graph versus the one constructed by the
tool. We also break down the evaluation among publishers
and subscribers that were detected and named.

Second, to compare the impact sets, we implemented the
traditional IA approach by performing a DFS from a changed
node on the ground truth dependency graph of each system.
We used the same ground truth graph to assess the ideal
implementation of our approach. To evaluate the IA portion
of the tool, we used the tool’s generated graph with user input
to complete the names of those topics that the tool recognized
but could not name unequivocally (because the names were
defined in configuration files or used code constructs or API
calls not yet supported by the tool implementation).

Third, to assess the runtime performance, we measured
the duration of the tool implementing the approach and
compared it against the time to compile the systems.

We recognize that the study presents several threats that
will limit the validity of the results. From an external validity
perspective, we only studied three systems using ROS. The
selected systems and ROS, however, are quite popular and
large, covering a range of similar systems. Furthermore, we
note that the cost of studying more systems and middleware
is non-trivial. It requires extensive and careful manual anal-
ysis to determine the ground truth that took months for the
studied systems. From an internal perspective, we recognize
that analyses involving a manual process are susceptible to

1nimbus.unl.edu, but programmed by another researcher

TABLE I: A-Tool Edge Detection for Subscribers

System Total Detected and Mapped Detected Undetected

PR2 23 20 2 1
COB 40 26 13 1
H2OS 36 32 4 0

TABLE II: A-Tool Edge Detection for Publishers

System Total Detected and Mapped Detected Undetected

PR2 53 50 1 2
COB 58 45 8 5
H2OS 35 30 5 0

bias. We attempted to control that bias by having multiple
participants examining sample code. For cases that were hard
to interpret, we compared the manual and automated results
to address any potential incompleteness in the manually
computed graph. Similarly, the code may exhibit other de-
pendencies that we failed to identify either manually or with
the provided tool. We provide a link to the analyzed code
to enable the reproduction and assessment of the results. We
acknowledge that the performance of the approach may not
be indicative of what happens in practice as the engineer’s
familiarity with the code may introduce more variability into
the IA process. With these limitations in mind, we proceed
to share and analyze the study results.

V. STUDY RESULTS

We present the results in three stages. First, we present the
tool’s capability to detect system component dependencies.
Second, we perform a three-way comparison of the generated
impact sets by traditional impact analysis using the ground
truth dependency graph (Trad) generated manually, the pro-
posed approach using the ground truth dependency graph
(A-GT) generated manually, and the automated version of
the proposed approach as implemented in the tool (A-Tool)
which generates the dependency graph through code analysis.
Third, we compute the overhead of the automated approach.

A. Dependency Graph

We break down these results for publishers and sub-
scribers. For subscribers, we are interested in determining
whether we can correctly detect the topics involved. For
publishers, we care about topic detection as well as the
label assignment. Given this differentiation, we assess them
separately. A-Tool, the automated approach, has 96% recall,
that is, it identifies almost all publish and subscribe edges.
However, some edges are identified, but their names are not
mapped because of certain limitations in the tool that we will
discuss next. We examine this more closely by classifying
edges into three groups: Detected and Mapped to the right
topic, Detected but without a mapping, or Undetected.
Subscribers. Table I presents the subscription edge detec-
tion information. A-Tool detected and mapped 87% of the
subscribers with their right mappings for PR2. Topic names
for two detected subscribers remained unmapped because
their names were provided through a launch file variable

TABLE III: Edge Classification for the ground truth instance
of the approach (A-GT) by the instance of the approach
implemented tool (A-Tool)

(a) PR2 - 51 Published Edges Detected

A-Tool
Independent Dependent

A-GT Independent 17 11
Dependent 0 23

(b) COB - 53 Published Edges Detected

A-Tool
Independent Dependent

A-GT Independent 13 1
Dependent 1 38

(c) H2OS - 35 Published Edges Detected

A-Tool
Independent Dependent

A-GT Independent 3 6
Dependent 0 26

within a data structure not supported by the current tool
implementation. A-Tool missed a subscriber edge because
the tool did not have the relevant API call information to
retrieve it. For COB, A-Tool detected and mapped 65% of
the subscribers. 33% subscriber edges were not mapped as
their names were defined in launch files. One edge went
undetected. For H2OS, the tool detected all edges and
mapped 89% of them. The rest had names defined in launch
files.
Publishers. Table II presents the publisher edge detection
performance. A-Tool detected and mapped 94% publisher
edges for PR2. A-Tool missed two publishing edges (4%)
again because of a missing API call implementation not
registered with Clang. The remaining edge was detected,
but the tool was not able to map the right edge name. For
COB, the detection and mapping percentage was 69% mainly
because of the use of dynamic configuration options and the
use of C++ constructs like pointers to functions that the
current tool implementation cannot handle. 23% of COB
publishers were detected but unmapped. The last 9% (5)
undetected topics were caused by included files that the tool
failed to reach. For H2OS, A-Tool detected all edges and 86%
(30) were detected and mapped. The remaining 14.3% of the
edges had names defined as part of launch file parameters.

Table III presents confusion matrices for all the analyzed
systems, comparing the label assignments for the detected
edges of the publishers2 between A-Tool and the ones as-
signed by A-GT. For PR2 (Table IIIa), all 23 dependent labels
are recognized as such by A-Tool. However, A-Tool is overly
conservative and marks 11 independent edges as dependent.
This will end up reducing the benefits of the approach, but it
was the result of a conscious trade-off between the tool being

2Recall that this is only done for publishers as they are the only ones to
rate-dependency labels.

COB PR2 H2OS

R
ed

u
ce

d
 T

o
 %

0

20

40

60

80

100
Trad
A-GT
A-Tool

Fig. 6: Impact set reduction ratio of A-GT and A-Tool over
Trad.

more precise versus less accurate in the implementation
of the edge marking scheme. Table IIIb presents the label
matching results for the COB system. Out of 39 dependent
edges, A-Tool mismarked one as independent, and out of
14 dependent edges, it marked one as independent. The
mismarked of a dependent edge as an independent edge was
caused by a dynamically loaded library that was beyond
the scope of the tool’s analysis, and we further assess its
impact in the next section. For one component, subscribers
were defined in the dynamically loaded library that went
undetected. Therefore, the publisher that was defined in the
analyzed component got labeled as Independent since there
were no detected subscribers for the node (conforming to the
first pattern). For H2OS (Table IIIc), all 26 dependent labels
are recognized correctly. However, A-Tool conservatively
marked six (6) independent edges as dependent.

B. Impact Analysis Sets

Figure 6 summarizes the impact set reduction for all three
systems. In this figure, the size of the impact set returned
by Trad is the baseline (100%). To compute the data in this
graph summary, we executed each approach as many times as
nodes in a system, assuming that one distinct node changed
each time. We compute the ratio between the accumulated
size of the impact sets of A-GT and A-Tool over Trad.

For COB, the impact set was reduced to 45% by A-GT,
and to 75% by A-Tool. The single false-positive in COB
(edge was declared as independent when it was not) did not
have an impact on recall because there were no subscribers to
that topic. For PR2, the impact set is barely reduced by either
version of our approach as most independent edges belong to
components that are not coupled to many other components.
H2OS shows the highest impact set reduction. This is in
part because Trad struggles to provide any reduction as
the system data-flow is highly coupled. A-GT and A-Tool
can de-couple some central communication components by
defining some edges as independent, reducing the impact to
approximately 40% of the Trad set.

We now look at those results in more detail, checking
the range of impact set sizes as different components in a

0 10 20 30 40
Node Number

0

5

10

15

20
S

iz
e
 o

f
Im

p
a
c
t

S
e
t

Trad
A-GT
A-Tool

(a) COB

0 10 20 30 40 50
Node Number

0

5

10

15

S
iz

e
 o

f
Im

p
a
c
t

S
e
t

Trad
A-GT
A-Tool

(b) PR2

0 5 10 15 20 25 30
Node Number

0

5

10

15

20

25

S
iz

e
 o

f
Im

p
a
c
t

S
e
t

Trad
A-GT
A-Tool

(c) H2OS

Fig. 7: Impact set size reduction when applying an approach
assuming the component in the x-axis changed.

system change. Figure 7a presents the results for COB, with
the components on the x-axis, and the impact set size on the
y-axis. Components are arranged in the decreasing order of

Trad A-GT A-Tool

T
im

e
(i

n
 M

in
s)

0

5

10

15

20

25
Compilation
DA+IA

Fig. 8: Overhead Analysis.

their impacted depth in the dependency graph. Leaf nodes
in the dependency graph have no impact when changed, so
they are not shown. Pluses represent the impact set produced
by Trad, circles represent the impact set produced by A-
GT, and the crosses represent the size of the impact set
generated by A-Tool. Five (5) of COB’s 46 nodes, all with
large impact sets under Trad, are noticeably reduced by the
proposed approach. A-Tool, however, could not improve on
Trad when the reported sets had a handful of components.
In Figure 7b, for PR2, we note that the reduction achieved
by A-Tool over Trad is limited. A-GT does not provide any
reductions either as the code patterns are not observed as
frequently. The exceptions (i.e., node 1 presents a reduction
from 14 to 10 nodes) occur mostly when sensing nodes
in the periphery of the system are changed. Figure 7c, for
H2OS, illustrates yet a different scenario with major gains
in reduction independent of what component was changed.
The architecture of H2O is such that most nodes are highly
data-coupled but not always rate-coupled, which means that
A-Tool can provide on average impact sets of less than 8
nodes while Trad delivers sets of 19 nodes on average.

C. Overhead Analysis

We measure the tool’s runtime performance regarding the
analysis overhead when compared against that of compiling
the system (without our analysis). Figure 8 shows, for each
system, the time to compile the system and to analyze it.
The time to analyze a system was computed as the average
of the analysis times where each component was assumed to
be changed. Out tool took approximately 30% longer than
compilation, ranging from three to eight extra minutes when
ran on a laptop with Intel i7-2670QM processor (8 cores,
2.20 GHz) running Ubuntu 16.04 with 12 GB RAM.

VI. RELATED WORK

Section I and II provide an overview of the relevance of
communication rate in robotic systems. In this section, we
discuss work related to impact analysis and provide details
on the novelty of the proposed approach.

Arnold and Bohner [5] defined Impact Analysis (IA) as
the approach for identifying what to modify to accomplish
a change or the potential consequences of a change. In this
work, we focused on the latter. Impact Analysis techniques
can be classified as static, dynamic, or hybrid. Static im-
pact analysis techniques analyze the code to generate data
or control flow representations. They mimic some of the
parsing and analysis performed by a compiler, and traverse
that representation based on the changes made to a code
base. Because static techniques ignore system input, they
tend to overestimate the impact sets by considering every
potential input. They can vary in the type and granularity
of dependency captured. For example, Imp [4] uses static
program slicing with impact analysis to analyze larger code-
base. While Chianti [21] captures atomic changes in source
code and uses the system call graph to report the impact
sets. Within the realm of distributed system analysis, others
have performed static analysis that can generate alternative
and more detail representations of publish and subscribe
systems (e.g., [11], [19]). Incorporating such a more detailed
representation is part of our future work.

Dynamic impact analysis techniques rely on the execution
of the code, rendering results that depend on particular
inputs used to drive the execution. They typically consume
execution trace data, where trace can be, for example,
executed functions [13]. Given such traces, these techniques
analyze the temporal relations of the elements in the trace
(e.g., always before, always after) to derive their potential
dependencies. In the context of distributed systems, Cai
and Thain [7] recently introduced a dynamic IA targeting
communication channels. Our work is different in that we
focus on publish and subscribe constructs, and in particular
their rates. From the perspective of the proposed approach,
we recognize the potential of dynamic impact analysis to
help us observe the publish and subscribe channels linked
to launch configuration files. Incorporating such information
into our tool would result in a hybrid impact analysis
approach, conceptually similar to others like SD-Impala [16]
but still unique in its focus on the rates of publish and
subscribe channels.

VII. CONCLUSION & FUTURE WORK

We presented an approach to support developers of robotic
systems in understanding the subtle impacts of code changes
that affect the rate at which data is produced or consumed.
The approach is more precise than existing impact analysis
approaches. We have shown its potential through a manual
examination and an automated tool for ROS. In the three
case studies, the tool reduced the impact set that developers
must process by up to 41% of alternative approaches.

The approach and tool, however, are still at an early
development stage. The approach could incorporate a richer
set of patterns, including those that attempt to synchronize
different communication channels, concurrency publishing
patterns, and special real-time publishing patterns. The tool
could also be improved by adding support for dynamic
library detection and by performing a more precise code

analysis. We are also interested in extending the approach
to analyze the effect of changes on the system performance,
as well as exploring the potential of incorporating dynamic
analysis to improve the effectiveness of the approach. We
will be exploring such improvements and further applying
the tool to a larger number of systems.

REFERENCES

[1] Care-o-bot robot. http://www.ros.org/wiki/Robots/Care-O-bot.
[2] “clang”: a C language family frontend for LLVM.

http://clang.llvm.org/.
[3] Pr2 robot. http://www.ros.org/wiki/Robots/PR2.
[4] M. Acharya and B. Robinson. Practical Change Impact Analysis

Based on Static Program Slicing for Industrial Software Systems.
In Proceedings of the 33rd International Conference on Software
Engineering, pages 746–755.

[5] R. Arnold and S. Bohner. Impact analysis-Towards a framework for
comparison. In , Conference on Software Maintenance, Proceedings,
pages 292–301, Sept. 1993.

[6] J. Beder. yaml-cpp, a yaml parser and emitter for c++.
https://github.com/jbeder/yaml-cpp.

[7] H. Cai and D. Thain. Distia: A cost-effective dynamic impact analysis
for distributed programs. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, pages
344–355, 2016.

[8] D. T. Coleman, I. A. Sucan, S. Chitta, and N. Correll. Reducing the
barrier to entry of complex robotic software: a moveit! case study.
Journal of Software Engineering for Robotics, 5(1):3–16, 2014.

[9] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz—open source graph drawing tools. In International Sympo-
sium on Graph Drawing, pages 483–484. Springer, 2001.

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 2003.

[11] J. Garcia, D. Popescu, G. Safi, W. G. Halfond, and N. Medvidovic.
Identifying message flow in distributed event-based systems. In
Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering, pages 367–377, 2013.

[12] A. Kapoulkine. pugixml: Light-weight, simple and fast xml parser for
c++ with xpath support. https://github.com/zeux/pugixml.

[13] J. Law and G. Rothermel. Incremental dynamic impact analysis
for evolving software systems. In 14th International Symposium on
Software Reliability Engineering, pages 430–441, Nov. 2003.

[14] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A
cyber-physical systems approach. http://LeeSeshia.org, 2015. ISBN:
978-1-312-42740-2.

[15] I. Lütkebohle, R. Philippsen, V. Pradeep, E. Marder-Eppstein, and
S. Wachsmuth. Generic middleware support for coordinating robot
software components: The task-state-pattern. Journal of Software
Engineering for Robotics, 2(1):20–39, 2011.

[16] M. C. O. Maia, R. A. Bittencourt, J. C. A. d. Figueiredo, and
D. D. S. Guerrero. The Hybrid Technique for Object-Oriented
Software Change Impact Analysis. In 14th European Conference on
Software Maintenance and Reengineering, pages 252–255, Mar. 2010.

[17] J.-P. Ore, S. Elbaum, A. Burgin, and C. Detweiler. Autonomous aerial
water sampling. Journal of Field Robotics, 32(8):1095–1113, 2015.

[18] A. Paikan, U. Pattacini, D. Domenichelli, M. Randazzo, G. Metta, and
L. Natale. A best-effort approach for run-time channel prioritization
in real-time robotic application. In Intelligent Robots and Systems
(IROS), pages 1799–1805, Sept 2015.

[19] R. Purandare, J. Darsie, S. Elbaum, and M. Dwyer. Extracting
conditional component dependence for distributed robotic systems. In
Intelligent Robots and Systems (IROS), pages 1533–1540, Oct 2012.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5, 2009.

[21] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip. Chianti: A Change
Impact Analysis Tool for Java Programs. In Proceedings of the 27th
International Conference on Software Engineering, pages 664–665,
2005.

[22] A. Rusakov, J. Shin, and B. Meyer. Concurrency patterns for easier
robotic coordination. In Intelligent Robots and Systems (IROS), pages

3500–3505, Sept 2015.

