
Dimensional Inconsistencies in Code and ROS Messages:
a Study of 5.9M Lines of Code

John-Paul Ore, Sebastian Elbaum, and Carrick Detweiler

Abstract— This work presents a study of robot software
using the Robot Operating System (ROS), focusing on detecting
inconsistencies in physical unit manipulation. We discuss how
dimensional analysis, the rules governing how physical quan-
tities are combined, can be used to detect inconsistencies in
robot software that are otherwise difficult to detect. Using a
corpus of ROS software with 5.9M lines of code, we measure
the frequency of these dimensional inconsistencies and find
them in 6% (211 / 3,484) of repositories that use ROS. We
find that the inconsistency type ‘Assigning multiple units to
a variable’ accounts for 75% of inconsistencies in ROS code.
We identify the ROS classes and physical units most likely
to be involved with dimensional inconsistencies, and find that
the ROS Message type geometry msgs::Twist is involved in
over half of all inconsistencies and is used by developers
in ways contrary to Twist’s intent. We further analyze the
frequency of physical units used in ROS programs as a proxy
for assessing how developers use ROS, and discuss the practical
implications of our results including how to detect and avoid
these inconsistencies.

I. INTRODUCTION

The increasing sophistication of the robots we build has
raised the complexity of the software that drives these
robots. Part of that complexity is caused by the required
integration of quantities measured in physical units into
the code. Consider the 3,484 repositories of the Robot
Operating System (ROS) [1] code we study in this work.
These repositories have hundreds of thousands of program
points where variables represent physical quantities including
time, distance, angles, torques, teslas, and others.

These physical units have meanings and rules on how they
can be manipulated in the physical world. Yet those meanings
and rules are not always apparent in the code, leading to
hazards known as dimensional inconsistencies [2].

These inconsistencies can become faults that are not
detected by the compiler or the build tools. For example,
Fig. 1, line 30 incorrectly implements the computation of
a Euclidean distance. Although the compiler will not detect
this fault, dimensional analysis of the physical units reveals
that the units of the squared term err x * err x is
meters-squared (m2) and the units of the addition err y +
err y results in meters (m). Furthermore, this code might
successfully pass tests on the robot because it can be correct
(accidental correctness as per the test input selection) or
almost correct (weaker version of a test oracle), making it

Computer Science and Engineering, University of Nebraska-Lincoln, NE,
68588 USA {jore, elbaum, carrick}@cse.unl.edu

This work partially supported by NSF NRI-1638099, NSF CCF-1718040,
USDA-NIFA 2013-67021-20947 and USDA-NIFA 2017-67021-25924.

difficult to detect the fault until the deployed robot does
something notoriously wrong.

Fig. 1: Addition of inconsistent units at line 30,
err x∗err x is meters-squared, err y+err y is meters.
source: https://git.io/vytcm

Fig. 2: Inconsistent usage of ROS Message Twist, designed
for linear and angular velocities, instead used for positions
in lines 740-746. Comment from source.
source: https://git.io/vytCd

Addressing dimensional inconsistencies has been stud-
ied in software engineering for decades [3], and many
preventative measures have been proposed, such as native
programming language support for units (F# [4]), special-
ized developer annotations [5], or specialized units libraries
(boost::units [6]). Measuring the adoption rate for such
efforts is difficult and beyond the scope of this work, but
we observe that only 18 repositories contain boost::units
and only two contain F# out of the 3,484 repositories. In
part, we argue that the perception of, or the real burden
associated with, the use of these approaches (e.g., annotate
code, migrate code to use specialized libraries) hinders their
adoption.

Instead, the robotic community seems to have taken a
different approach, favoring and adopting frameworks like
ROS1 that standardize data structures and representations of
commonly used physical quantities [7] in order to facilitate
code reuse. For example, the ROS Message type geom-
etry msgs::Wrench.torque.x represents a physical quantity
with units kg m2 s−2.

1ROS has +3100 citations, monthly downloads of 8M packages and 1M
web pageviews. Source: http://wiki.ros.org/Metrics



Unfortunately, the availability of messages with unit types
does not guarantee their correct usage, even when the code
compiles and builds. Such physical unit inconsistencies hin-
der interoperability and maintainability. The importance
of standard message formats for interoperability in robot
software is emphasized by Walck et al. [8] and Jung et
al. [9]. For example, Fig. 2 shows a code snippet using a ROS
Message of type geometry msgs::Twist, which is defined
to contain linear and angular velocities in 3-D space. The
developer, however, uses this structure to carry two points in
3-D space (x, y, z positions) because the shape of two x, y, z
points is conveniently the same shape as Twist. Note the
developer’s code comment in Fig. 2 acknowledging the need
for additional software maintenance. This hinders portability,
a goal of ROS.

In spite of the importance of such inconsistencies, as a
community we do not yet have a good sense of how often
and in what contexts such inconsistencies occur. In this work,
we aim to provide initial answers to these questions, which
requires at least two elements: an accessible robot code
corpus that serves as a meaningful population for analysis,
and an automated mechanism to detect dimensional inconsis-
tencies that can scale to analyze such a large population. The
recent upswing of popularity of robot programming and the
widespread adoption of ROS, together with the availability
of open source software has enabled us to construct a
corpus of ROS code, the largest ROS corpus to date to
our knowledge and the first study of these inconsistencies at
scale. We have also recently developed a software analysis
tool PhrikyUnits [10] for ROS C++ to find dimensional
inconsistencies without code annotations or migration, which
allows us to provide large-scale empirical evidence that the
misuse of physical units exists in at least 6% of repositories
we studied. PhrikyUnits is written in Python, open-source,
and available for download at https://github.com/
unl-nimbus-lab/phriky-units. In particular, we
investigate the following research questions:

• RQ1: How frequently do dimensional inconsistencies
occur in programs that use ROS?

• RQ2: What units are used in ROS, and what does this
tell us about how ROS is used?

• RQ3: What ROS Message classes are most commonly
used with incorrect units?

The contributions of this work are:

• A study of the units and dimensional inconsistencies
found in a large-scale corpus of ROS software in
3,484 repositories, with 5.9M lines of code in files that
contains ROS Messages.

• An analysis of the 357 inconsistencies found, including
units and unit groups most frequently associated with
inconsistencies.

• A case study of the Twist ROS Message type motivated
by its frequent involvement in inconsistencies.

• A discussion of the practical implications of our find-
ings, including how to detect and avoid these inconsis-
tencies.

Fig. 3: Overview of how ROS programs are analyzed with
the tool PhrikyUnits.

II. BACKGROUND

In this section, we provide background on dimensional
analysis and our software tool, PhrikyUnits2, used to detect
dimensional inconsistencies.

A. Dimensional Inconsistencies

The mathematical interaction of quantities representing
physical phenomenon are governed by the rules of dimen-
sional analysis [2]. Dimensions are measured in ROS using
SI units [11]. Adding quantities with different dimensions
results in a dimensional inconsistency, while multiplying
combines the units of both quantities. We perform dimen-
sional analysis but instantiate it within the framework and
language of units, to use terms like ‘force kg m s−2’ and
‘torque kg m2 s−2’ that are easier for robot developers to
understand rather than referring to force by it’s dimensions:
‘MASS * DISTANCE / (TIME * TIME)’.

Some quantities regularly used in robotics, such as radi-
ans, quaternions, and degrees, are unitless ‘coherent units
of measure’ [12]. They interact as unitless scalars during
multiplication but during addition they can only be added to
quantities of the same type. This helps detect inconsistencies
that add, for instance, radians with quaternions.

B. Detecting Inconsistencies with ‘PhrikyUnits’

For this study, we used version 1.0 of our software analysis
tool ‘PhrikyUnits’ for ROS C++, and the details of how
PhrikyUnits works can be found in our previous work [10],
[13]. PhrikyUnits is a completely automated static analysis
tool that requires no developer annotations to detect incon-
sistencies. It is command-line driven and can be scripted and
parallelized to analyze multiple files.

PhrikyUnits detects three different kinds of dimensional
inconsistencies: 1) multiple units assigned to a variable
(Fig. 2); 2) comparison of inconsistent units; and, 3) addition
of inconsistent units (Fig. 1).

The high-level flow of PhrikyUnits is shown in Fig. 3.
As shown in the figure, PhrikyUnits takes a ROS program
as input, performs static analysis to assign physical units
to variables based on their ROS Message type,3 propa-
gates unit information through the code across mathematical
transformations, and detects dimensional inconsistencies. In
the code example in Fig. 1, the variables X and Y had
previously been assigned meters (not shown). The variable X

2https://github.com/unl-nimbus-lab/phriky-units
3PhrikyUnits uses a built-in map from message types to physical units

based on the documentation of the ROS Message types, which explicitly
specify units.



was assigned a value from pose.position.x of ROS Message
type geometry msgs::Pose and therefore has the units meters,
likewise Y. During the subtraction on lines 28-29, meters is
propagated to err x and err y by assignment. Then in
line 30, err x and err y are added in a dimensionally
inconsistent way, since err x is squared while err y is not.
PhrikyUnits then reports the inconsistency type (‘Addition
of inconsistent units’), line number (30), and units involved
(m2 and m). PhrikyUnits can detect this dimensional incon-
sistency because ROS Messages provide unit information.

In terms of detection rate, we recently showed that
PhrikyUnits has an 87% true positive rate [13]. Since not all
variables containing physical units use ROS Messages (they
can use types defined by the developer), and PhrikyUnits
only recognizes those using ROS Messages, it will always
underestimate the number of dimensional inconsistencies.
Furthermore, by design, PhrikyUnits will only report incon-
sistencies when it can infer them with a high degree of
certainty (all variables involved in the inconsistency must
have an associated physical unit). For example, constants
do not have an associated physical unit, so multiplying by
a constant or unknown scalar reduces PhrikyUnits’ degree
of certainty, and PhrikyUnits will only report high-certainty
inconsistencies by default. Therefore our results are an under
approximation of the true number of dimensional inconsis-
tencies in the corpus.

III. RELATED WORK

There are several approaches to detecting or avoiding
dimensional inconsistencies in software, including tools like
Osprey [5] and UniFi [14], languages like F# [4], and
libraries like boost::units [6]. Unfortunately, both Osprey and
boost::units require annotations and Osprey only works on
Java programs. In our corpus we find boost::units in only
0.5% (18 / 3,484) of repositories, and F# is only found
in 2 repositories. UniFi works without annotations but uses
the source code itself to infer inconsistencies and therefore
requires both a correct and incorrect example within the
same file, limiting generality. Therefore for dimensional
inconsistency detection we rely on our own automatic tool
PhrikyUnits. For more information on how software analysis
is applied to robot software, see Cortesi et al. [15].

Santos et al. [16] analyzed a corpus of 50 ROS software
repositories to assess code quality based on a variety of
traditional software quality metrics. Likewise we seek to
analyze software issues within the ROS community. Unlike
their work, we analyze a much larger dataset of 3,484 repos-
itories and focus on dimensional inconsistencies because
robot software is threatened by this fault.

Ray et al. [17] studied a large-scale software corpus to
assess the frequency of particular software faults across
different programming languages. Like their work we use
GitHub as the source of our corpus, mine software reposi-
tories, and make general conclusions about software usage.
Unlike their work, we only look at C++, target ROS software,
and focus on dimensional inconsistencies.

IV. STUDY DESIGN

To address the research questions identified in Section I,
we designed a study to apply our dimensional inconsistency
and physical unit detection tool, PhrikyUnits, to a large-scale
software corpus. In this section, we describe the methodology
used to create the software corpus, and give technical details
about how PhrikyUnits counts units and inconsistencies.

A. Software Corpus

We sought to build a corpus of ROS code with physical
units specified by standard ROS message types, because
ROS messages have attributes defined to have units, and
because detecting dimensional inconsistencies requires units.
GitHub is one of the largest collections of open-source code
available and has been used as the basis of other large-scale
software studies [17]. To find ROS code with units, we used
the GitHub code search API to submit keyword queries for
each ROS message type defined at http://wiki.ros.
org/common_msgs, and extracted the repository names
from the results. In total we found 4,736 repositories that
contained search hits on ROS-related terms. Of this, 73% or
3,484 repositories contain compilable C++ code that uses the
ROS messages defined to have physical units. Within these
3,484 repositories, we found a total of 20, 843 files with
units containing 5, 950, 839 lines of C++ code as measured
using the tool CLOC (http://cloc.sourceforge.
net). To our knowledge, this is the largest scale analysis
of ROS source code to date. We provide a complete list of
repositories used in this study at our GitHub repository.

The corpus contains duplicate code (approximately 30%)
that we decided to leave in the corpus because we wanted to
assess the frequency of units in code that is re-used across
ROS developers.

B. Counting Units and ROS Class Usage

For this study, we modified PhrikyUnits to output the
units of every variable it could identify, at every point
these variables were read or written. We further modified
PhrikyUnits to track the ROS Message classes involved with
dimensional inconsistencies.

With this corpus and a tool to automatically detect dimen-
sional inconsistencies, we ran PhrikyUnits on these 20,843
files and collated the results.

V. RESULTS

In this section we begin by provide results and examining
how frequently dimensional inconsistencies are found in the
corpus. Next we examine and discuss the most frequently
used units in ROS. Finally, we examine what ROS Message
types are involved in these inconsistencies.

A. Frequency of Inconsistencies

Dimensional inconsistencies in software appear in several
forms, and the most common in ROS is the ‘Multiple units
assigned to the same variable’ type, as shown in Table I. This
inconsistency represents 75% (267/357) of all inconsistencies
found by our tool, and is mostly likely to occur with meters



INCONSISTENCY
TYPE

COUNT UNITS MOST FREQUENT
UNITS COUNTS

Multiple units
assigned to the same
variable

267

m 204
m s−1 171

s−1 71
quaternion 30

m2 27
radian 15

kg m s−2 4

Addition of
inconsistent units 61

m s−1 34
m 32

s−1 14
quaternion 10

m2 6
radian 5

m2 s−2 1

Comparison of
inconsistent units 29

m s−1 21
s−1 6
m 6

m2 4
m2 s−1 2

s 1

TABLE I: Dimensional Inconsistencies by Type with the
most frequently involved units. Note that multiple units can
be involved with one inconsistency.

and meters-per-second, as shown in the table. The meters-
squared associated with ‘Addition of incompatible units’ are
usually caused by improperly formed distance metrics (Eu-
clidean distances), like that shown in Fig. 1. These distance
metrics are either typos or combinations of dissimilar units,
which can behave correctly because of implicit constraints
on the values that effectively normalize the values. However,
these implicit assumptions hinder portability and might intro-
duce faults when these assumptions change. The comparison
of inconsistent units happens for a variety of reasons, but
most often involve velocities and inconsistent interactions
with time.

All inconsistency types were more likely to be caused by
interactions between simple units, such as seconds, meters,
meters-per-second, and quaternions. The more sophisticated
units (combination of three or more base units) like torque
are used less frequently in the corpus and account for an
even smaller percentage of inconsistencies, suggesting that
either the developers who work with sophisticated units are
more careful not to cause dimensional inconsistencies, or
the space for inconsistencies across those units is smaller.
Further, many inconsistencies are caused when developers
use ROS Message types contrary to their specification. This
might not manifest as incorrect behavior if these misused
data structures are used consistently, but causes confusion
when sharing or maintaining code.

Overall, these inconsistencies were detected in 211 of the
3, 484 repositories, or 6%. This 6% answers RQ1, and this
result shows that even with our underestimate, these kinds
of problems lurk in a significant number of repositories.

B. Units Used and Frequencies

Table II shows the frequency of physical units used in
ROS code. By ‘Unit Usage by ROS Msg Definition’ we

mean the number of program points where a variable has
units because it is a ROS Message attribute or the result
of a known math operator, like atan2. By ‘Unit inferred
usage by assignment‘ we mean the number of program points
where a variable has units not based on a ROS Message
definition but instead inferred by the context of the program
as the result of assignment statements and mathematical
operations. This distinction is important because it tends
to separate the units used externally in ROS Messages to
communicate between nodes from those used internally in a
ROS node during computation.

At a high level, Table II shows that simpler units are used
more frequently, in more repos and files, and used more
frequently during computations. There are some exceptions
to this overall trend, including for meters-squared, force,
torque, and radians, as we now discuss.

The radian unit, as shown in Table II, is the most common
way to represent an angle, but notice that it is used more
times as an inferred unit (21,557) than as a ROS Message
definition (159). This suggests that robot software developers
make extensive use of this representation of an angle, but that
ROS does not have a standard way to represent it within ROS
nodes. The radian’s inferred usage comes mostly from the
result of math operators such as atan2, acos or asin.

Force (kg m s−2) is only found in 4% of reposito-
ries (154/3484), but is used 2,395 times. Likewise torque
(kg m2 s−2) is found in 7% of repositories (257/3484) and
used 2,391 times. This means most ROS projects do not
measure, compute, or communicate about forces and torques,
or that many users are not using standard message types
for force and torque. However, repositories that use force
and torque perform several calculations and manipulations
on these quantities. This might suggest that < 10% of ROS
projects involve systems like robot arms, where force and
torque measurements are more common.

Meters-squared (area or pose covariance) is used by def-
inition 333 times and inferred 770 times. The inferred uses
are usually Euclidean distance metrics, while the use by defi-
nition is position covariance. Although these quantities have
the same units, they represent different kinds of quantities
and should not be combined or compared, but in this case
dimensional analysis would not detect this, because they have
the same units.

These results address RQ2, and indicate that the more
sophisticated units (like force and torque) are used in less
than 10% of repositories, and that most ROS code achieves
its goals using a combination of less complex units.

C. ROS Message Classes Most Likely to be Used with the
Wrong Units.

PhrikyUnits detects when ROS Messages are used with
units contrary to their specification, often the result of inter-
actions between two conflicting sources of unit information.
In our case, this interaction occurs because of a mismatch
between the units specified by the ROS Message type, and
the units actually assigned to the variables of the ROS
Message.



UNIT NAME SI UNIT REPO COUNT FILE COUNT UNIT USAGE by ROS MSG
DEFINITION

UNIT INFERRED USAGE
by ASSIGNMENT

meter m 2,669 9,930 112,538 19,525
second s 2,433 9,939 85,299 9,573
quaternion (rotation) (dimensionless) 2,078 6,169 49,449 2,749
angular velocity s−1 1,790 4,313 17,645 1,363
velocity m s−1 1,598 3,961 21,885 2,078
radian (angle) (dimensionless) 1,106 3,133 159 21,557
acceleration m s−2 355 456 1,580 171
torque kg m2 s−2 257 403 2,373 18
area or pose covariance m2 187 314 333 770
degree 360 (angle) (dimensionless) 172 232 844 68
angular acceleration s−2 168 199 544 3
acceleration covariance m2 s−4 156 183 495 0
Newton (force) kg m s−2 154 606 2,366 29
Tesla (magnetic induction) kg s−2 A−1 46 52 151 10
Celsius (temperature) C◦ 37 40 42 2
Pascal (pressure) kg m−1 s−2 17 21 23 2
lux lx 12 12 12 0
Pascal covariance kg2 m−2 s−4 3 3 3 0

TABLE II: Most common physical units used in 20,843 files across 3,484 open-source repositories in 5.9M lines of code,
based on units from both ROS Messages and units inferred in the code by PhrikyUnits.

Fig. 4: Pairs of ROS Message classes involved with dimensional inconsistencies. Edges between ROS Message classes
indicate an instance of inconsistent usage involving these two classes. Numbers preceding the ROS Message class indicate
the number of inconsistencies. Stamped and unstamped messages were combined.



To help identify the ROS classes most likely to be
used together inconsistently, we plotted the pairs of ROS
Message classes involved in inconsistencies in Fig. 4. Note
that this figure would not show dimensional inconsisten-
cies such as those from Fig. 1 because that inconsistency
only involved units that originated from one ROS Mes-
sage class, geometry msgs::Pose. This figure shows an edge
drawn between classes to indicate a pairwise inconsistent
interaction. For example, the inconsistent usage shown in
Fig. 2 results in a edge between geometry msgs::Twist and
geometry msgs::Pose. Some ROS Messages types have two
subtypes, stamped and unstamped, which are identical other
than a timestamp attribute. Fig. 4 combines stamped and
unstamped messages for simplicity.

As shown in Fig. 4, usage of geometry msgs::Twist ac-
counts for 41% (148/357) of all inconsistent ROS Message
usage, and is used most frequently in combination with
tf:Pose and tf::Vector3. Also note the inconsistencies between
tf::Vector3 and nav msgs::Odometry, that often happen with
the velocity portion of Odometry, much in the same way as
happens with Twist.

D. Limitations

Note that the reported frequencies of inconsistencies is a
conservative underestimate, because not all variables have
units associated to them by ROS Message types or by
assignment, and further because of the limitations of this kind
of software analysis technique, as discussed in Section IV.

PhrikyUnits runs in < 3 seconds on most files but we
observed slower performance on very large auto-generated
inverse kinematics files (> 50MB). Since these files contain
almost no unit information from ROS Messages, to accelerate
the analysis, we skipped them.

VI. PRACTICAL IMPLICATIONS

Use standardized ROS units. Our study found that stan-
dardized ROS units are used in 70% (3,484/4,736) of the
accessed repositories, with units related to position, time,
and velocity making the bulk of the units we identified
(they are 2.4 times more common than the rest of the
units combined). As mentioned, the usage estimate is an
under-approximation, as many declared variables containing
physical units do not employ the standardized ROS units.
For example, we found that variables named ‘time’ and
‘duration’ are defined with type ros::Time or ros::Duration
in 39% (4,123/10,530) of the instances those variable names
are used, otherwise they do not have standardized ROS units
that could be leveraged by our dimensional analysis. Not
using standardized units negatively impacts reuse, making
code comprehension more difficult, and undermining the
application of tools like PhrikyUnits that can help to detect
dimensional inconsistencies.
Run an automated checker to detect physical unit in-
consistencies in code. Even a lightweight inconsistency
detection tool like PhrikyUnits, which requires no additional
effort for code annotation or migration, can detect certain
physical unit inconsistencies with high confidence. On a

MacBook Pro (‘Early 2015’) 2.9 GHz Intel i5 with 16GB
of memory, it can analyze approximately 150 lines of code
per second, its operation is trivially parallelizable, and it can
be easily integrated as part of standard building processes.
So, even for practitioners that have been hesitant to invest in
code annotations or specialized libraries usage, there is little
reason not to run a tool like PhrikyUnits.
Avoid common anti-patterns. Since geometry msgs::Twist
is the most misused ROS Message type, we performed an
additional analysis of how Twist is used by ROS developers.

We modified PhrikyUnits to track assignments made to
variables of type Twist. Twist has 6 attributes: 3 linear veloc-
ity components x, y, z and three angular velocity components
x, y, z. For every Twist message in the corpus, we tracked
which of these 6 attributes were written during programs,
and the results are shown in Table III.

twist.linear. twist.angular.
USAGE TOTAL COUNT x y z x y z

2-D
2,591

1,172 X X
1,101 X X X

planar 201 X
117 X

3-D 1,534
1213 X X X X X X
169 X X X X
152 X X X

TABLE III: Usage of geometry msgs::Twist showing major-
ity of 2D planar usage of a 3D structure. A ‘X‘ indicates an
attribute was written, and a blank means the attribute was
never written. Table does not show read-only instances.

As shown in Table III, Twist is mostly used for 2-D planar
robots (2-D in this case means that the program never writes
to attribute linear.z). This usage is not inconsistent in itself,
since Twist is intentionally overloaded to mean either 2-D
or 3-D velocities (Euclidean dimensions). However, many of
these instances also use angular.z to store the heading, not
angular velocity as intended. Further, we have observed Twist
being often used not as a velocity but as a kind of ‘delta’, as
shown in Figure 5. As shown in the figure, developers add
the content of Twist directly to Pose. PhrikyUnits detects this
dimensional inconsistency because the units do not match.
Overall, Table III shows that Twist is used in many different
and sometimes inconsistent ways, making it difficult for
others consuming such messages to correctly interpret what
Twist means. This might indicate the need to revisit the
overload of the structure of this message.

VII. CONCLUSION

In this work we provided a characterization of the usage
of physical units and the manipulations that are deemed
dimensionally inconsistent in the code of robotic systems.
We collected a corpus of 5.9M lines of ROS C++ code
that uses ROS Messages representing physical quantities
and we tailored a fully automated software analysis tool,
PhrikyUnits, to assist in the unit recognition and in the
detection of dimensional inconsistencies related to the unit
usage.



Fig. 5: Twist used incorrectly as a ‘delta’. Variable cmd vel is of type Twist.
source: https://git.io/v7eMj

We found that physical units represented by standard ROS
message types are present in 73% of the repositories we
studied, but most variables containing physical units do not
employ the standard types. We also found that dimensional
inconsistencies occur at least in 6% of the repositories
we analyzed, including some highly recognized ones, and
explained how this is a significant under approximation.
Our investigation also revealed the most likely culprits, with
geometry msgs::Twist being at the top of the list in terms of
being used inconsistently, contrary to its specification.

Our findings point to the need for more extensive use of
standardized units to facilitate not just reuse but also dimen-
sional inconsistency detection, for the use of cost-effective
checkers like the one shown, and for further awareness about
the risks of using certain standardized types that can be easily
but erroneously overloaded.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3.2. Kobe,
Japan, 2009, p. 5.

[2] P. W. Bridgman, Dimensional Analysis. Yale University Press, 1922.
[3] M. Karr and D. B. Loveman III, “Incorporation of units into pro-

gramming languages,” Communications of the ACM, vol. 21, no. 5,
pp. 385–391, 1978.

[4] A. Kennedy, “Types for units-of-measure: Theory and Practice,” in
Central European Functional Programming School. Springer, 2010,
pp. 268–305.

[5] L. Jiang and Z. Su, “Osprey: a practical type system for validating
dimensional unit correctness of c programs,” in Proceedings of the
28th international conference on Software engineering. ACM, 2006,
pp. 262–271.

[6] M. C. Schabel and S. Watanabe, “Boost,” Units, vol. 1, no. 0, pp.
2003–2010, 2008.

[7] Open Source Robotics Foundation, ROS Enhancement Proposal
103, July 2010 (accessed 25 Feb 2017). [Online]. Available:
http://www.ros.org/reps/rep-0103.html

[8] G. Walck, U. Cupcic, T. O. Duran, and V. Perdereau, “A case study
of ROS software re-usability for dexterous in-hand manipulation,”
Journal of Software Engineering for Robotics, vol. 5, no. 1, 2014.

[9] M. Y. Jung, M. Balicki, A. Deguet, R. H. Taylor, and P. Kazanzides,
“Lessons learned from the development of component-based medical
robot systems,” Journal of Software Engineering for Robotics, vol. 5,
no. 2, pp. 25–41, 2014.

[10] J. P. Ore, C. Detweiler, and S. Elbaum, “Phriky-Units: a lightweight,
annotation-free physical unit inconsistency detection tool,” in Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 2017, pp. 352–355.

[11] I. Bureau of Weights, Measures, B. N. Taylor, and A. Thompson, “The
International System Of Units (SI),” 2001.

[12] P. J. Mohr and W. D. Phillips, “Dimensionless units in the SI,”
Metrologia, vol. 52, no. 1, p. 40, 2014.

[13] J. P. Ore, C. Detweiler, and S. Elbaum, “Lightweight detection of
physical unit inconsistencies without program annotations,” in Pro-
ceedings of the 2017 International Symposium on Software Testing
and Analysis. ACM, 2017, accepted, to Appear.

[14] S. Hangal and M. S. Lam, “Automatic dimension inference and
checking for object-oriented programs,” in Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 155–165.

[15] A. Cortesi, P. Ferrara, and N. Chaki, “Static analysis techniques
for robotics software verification,” in Robotics (ISR), 2013 44th
International Symposium on. IEEE, 2013, pp. 1–6.

[16] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework
for quality assessment of ROS repositories,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 4491–4496.

[17] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in GitHub,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM, 2014, pp. 155–165.


