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Abstract

Water properties critical to our understanding and managing of freshwater systems that change

rapidly with depth. This work presents an Unmanned Aerial Vehicle (UAV) based method of keep-

ing a submerged, cable-suspended sensor payload at a precise depth, with 95% of sensor readings

within ±8.4 cm of the target depth. We use a depth altimeter attached at the terminus of a 3.5 m

semi-rigid cable as the sole input to a depth controller actuated by the UAV’s motors. First, we sim-

ulate the UAV-cable-payload system with disturbances of wind, water, signal delay, and GPS drift

and then use parameters discovered during simulation to guide implementation. We characterize

the depth altimeter during translation and find that 95% of readings are within ±7 mm of ground

truth, with a steady state error of ±3 mm. In field experiments, we compare the depth precision of

our new method to previous methods that used the UAV’s altitude as a proxy for submerged sensor

depth, specifically: 1) only using the UAV’s air pressure altimeter; and, 2) fusing UAV-mounted

ultrasonic sensors with the air pressure altimeter. Our new method reduces the standard deviation

of depth readings from 16.1 cm to 4.2 cm in winds up to 8.0 ms−1. We show the step response of

the depth-altimeter method when transitioning between target depths. Finally, we explore a longer,

8.0 m cable and show that our depth controller still outperforms air altimeter and ultrasonic methods



Figure 1: UAV-system with a passive cable and sensors for measuring water properties at precise depths.

and allows scientists to increase the spatiotemporal resolution of water property datasets.

1 Introduction

Monitoring shallow surface water systems (<10 m) can be challenging for environmental and water scientists. Hin-

dered by limited boat access, scientists are further constrained because boating and wading mix the water, disturbing

the water properties under investigation. These water properties include temperature, conductivity, dissolved oxygen,

and photosynthetically active radiation—all these vary significantly with small changes in water depth (Fischer et al.,

2013; Chung et al., 2015; Higgins and Detweiler, 2016). These stratified properties are linked to ecosystem health

and can predict imminent toxic algae blooms that threaten drinking water and fisheries and cost billions of dollars

worldwide (Dodds et al., 2009; Anderson et al., 2010; Kudela et al., 2015; Sanseverino et al., 2016).

Currently, water scientists deploy static sensor arrays, often a collection of data-loggers vertically arranged underwater

at a static position, and left for days or weeks. Some sensors used by water scientists require settling times (often >3 s),

and existing water science datasets from static sensors have ≈0.25 m resolution in depth (Fischer et al., 2013). These

static sensors yield datasets with good temporal resolution but are limited by poor spatial resolution because they have

to be installed separately at each location. To increase the spatiotemporal resolution, our prior work presented the first



UAV-based water sampler (Ore et al., 2013), followed subsequently by several efforts (Schwarzbach et al., 2014; Ore

et al., 2015; Rodrigues et al., 2015; Ribeiro et al., 2016; Koparan and Koc, 2016; DeMario et al., 2017; Akamatsu

et al., 2017). In most of these efforts, the UAV flies above water while connected by cable to a sensor payload below

water, as shown in Figure 1. Our follow-on work (Chung et al., 2015) explored a method of in-situ water temperature

sensing at different depths with a UAV-based submerged sensor payload. However, the resolution of the resulting

dataset was limited by poor control of the depth of the submerged sensor that wandered up and down as the UAV’s air

pressure altimeter drifted. The impact on the vertical resolution was compounded by sensor settling time (≈3 s).

To increase the depth resolution of water science datasets, this paper proposes and experimentally evaluates using

a depth altimeter as input to a depth controller that seeks to minimize the target depth error using only the UAV’s

motors. These depth sensors are fast (50 Hz), light (<5 g), precise (±3 mm), and affordable (<$30 USD) and are

already included in many underwater sensor payloads. Controlling depth using a submerged altimeter is challenging

because the semi-rigid cable between the UAV and the submerged depth altimeter exhibits non-linear dynamics when

bending and descending in water, especially in wind. We assume calm waters (‘lentic’, not flowing) and that the

UAV is stationary. We first explore the feasibility of this approach in simulation including wind and water, then use

parameters discovered in simulation to guide implementation, and finally test the implementation of our method in

field experiments.

This work extends the conference version (Ore and Detweiler, 2018) by presenting a new system model, computational

flow dynamics for wind drag, models of sensor noise and drift, detailed simulation results of wind gusts, sensor delay,

sampling rate, and GPS drift, and also conducting new experiments to characterize the precision and accuracy of the

depth altimeter.

Our contributions are:

• A new method of depth control to maintain a precise depth for a submerged sensor payload while passively

connected by cable to a UAV. We use only a lightweight submerged depth altimeter, reducing the standard

deviation of target depth errors from 16.1 cm to 4.2 cm compared with using ultrasonics rangefinders fused

with pressure altimeter, the next best method. This method enables increased spatiotemporal resolution of



water science datasets without additional payload.

• Field tests of depth control, showing statistically significant reductions of depth variance in comparison to

two previous methods: 1) air pressure altimeter alone; and, 2) air pressure fused with ultrasonic rangefinders.

We compare these approaches using a 3.5 m cable for water depths down to 2.5 m.

• An initial exploration of using depth control with an 8.0 m cable, showing sufficient precision for sensing at

greater depths.

This work presents an Unmanned Aerial Vehicle (UAV) based method of keeping a submerged, cable-suspended

sensor payload at a precise depth, with 95% of sensor readings within ±8.4 cm of the target depth (σ =4.2 cm),

using only a lightweight submerged depth altimeter. The paper is organized as follows: Section 2 shows connections

between this work and previous environmental monitoring with autonomous systems and also describes some related

water science techniques; Section 2 describes our approach to the problem and includes simulation results for common

environmental disturbances like wind and GPS drift; Section 4 examines our system architecture and shows results

from characterizing the depth altimeter; Section 5 details the results of three field experiments, including a comparison

of depth precision between flight modes and an initial exploration of an 8.0 m cable; Section 6 discusses how the

simulations compare to results in the field and identifies lessons learned; Section 7 indicates possible future directions

of this research; and Section 8 summarizes the work.

2 Related Work

Previous efforts relate to our current work in several ways: either water scientists measure surface water properties, or

a UAV is used to measure water properties, or autonomous surface / underwater vehicles (ASVs and AUVs) are used

to measure water properties, or a UAV makes a pose and altitude estimation in unknown environments, or a UAV has

a cable-suspended load.

Water scientists often measure water properties by leaving data-loggers at field locations for days or weeks a

time (Dodds, 2002; Fischer et al., 2013). Often these sensors are arranged vertically in the water column at fixed

intervals along a rope (Chung et al., 2015), with the rope pulled down by an anchor and pulled up by a buoy. These



sensors are used to measure water phenomenon that varies sensitively by depth (MacIntyre et al., 2002), such as

temperature, conductivity, dissolved oxygen, and photosynthetically active radiation. In keeping with existing water

science method, and for compatibility with existing datasets, our method takes measurements vertically at a single

location and does not attempt to translate laterally with our submerged sensor payload. Our previous work (Chung

et al., 2015) shows that moving the sensor payload up and down in the water column does not cause significant mixing

that could bias the measurements.

Several efforts seek to use UAVs to monitor water properties using cable-based sensor payloads (Schwarzbach et al.,

2014; Ore et al., 2015; Koparan and Koc, 2016; DeMario et al., 2017; Akamatsu et al., 2017; Song et al., 2017).

These systems use air pressure altimeters to estimate altitude, and like these efforts, we seek to sense subsurface water

properties with a cable-connected payload, but unlike these works, we focus on precise depth control. Systems like

the fixed-wing Flying Fish (Eubank et al., 2009) maintain persistent observation of surface properties, but cannot

detect subsurface properties. Some efforts propose amphibious UAVs (Rodrigues et al., 2015; Bershadsky et al., 2016;

Ribeiro et al., 2016), and like this work we are interested in the advantages offered by UAVs to water monitoring, but

unlike this work we seek to minimize water column mixing, that can take hours to settle. Our previous work presents

evidence that sensing by a small, submerged sensor payload (≈ 2 cm diameter sensor, 0.7 cm cable) does not cause a

mixing disturbance that impacts water temperature measurements (Chung et al., 2015).

In environmental monitoring, (Dunbabin, 2016) uses multiple ASVs to sample greenhouse gasses, while underwater

the MARES AUV system samples water quality for a long duration at depths up to 100 m (Cruz and Matos, 2008).

Garneau et al. (Garneau et al., 2013) used an ASV to monitor cyanobacteria. (Zhang et al., 2015) explore water

columns with a gliding, fish-like robot, and the WaterBug (Higgins and Detweiler, 2016) descends passively in a

water column to collect a single water sample at a target depth. Unlike these systems, we want to quickly deploy and

redeploy to disconnected or difficult to reach water bodies.

Several efforts (Hollinger and Sukhatme, 2014; Yoo et al., 2015; Das et al., 2015; Ma et al., 2017; Lawrance et al.,

2017; Alam et al., 2018) use an information quality metric (e.g. information gain or variance reduction) along with

system constraints (e.g. battery) to plan motion during environmental monitoring in aqueous environments, mostly

with AUVs and ASVs. These works plan a path and choose a waypoint (or depth) based on a data-driven metric,



whereas our work assumes the target depth has already been chosen. Our proposed method is compatible with and

could benefit from selecting target depths based on adaptive sampling.

Several approaches seek to estimate altitude for micro UAVs in unstructured outdoor environments, including et

al. (Jain et al., 2015), who autonomously explored rivers and estimated altitude using specular laser returns to es-

timate the plane of the river surface. Unlike this work, we seek a method that minimizes the payload devoted to

non-water-property sensing. (Burri et al., 2015) use a stereo camera and IMU to map and estimate a pose in a pre-

viously unknown environment, but these methods have not been demonstrated over water, to our knowledge. Our

previous work (Ore et al., 2015) explores the use of fusing downward-facing ultrasonic sensors with an air pressure

altimeter, and we use this method for comparison in the current work.

Several efforts model and control cable-suspended payloads from a UAV (Tang and Kumar, 2015; Goodarzi et al.,

2014), but assume that the cable can be observed. We likewise use a cable-suspended payload but do not attempt to

observe or model the cable’s dynamics during flight.

3 Technical Approach

This section describes our approach to the problem of obtaining precise depth control of a submerged sensor payload.

We seek to retain the benefits of monitoring water properties by UAV while adding minimal system complexity.

Overall, our approach is to simulate the dynamics, sensing, and control of the system to establish feasibility and

determine baseline system performance requirements, like signal delay and sampling rate. The simulations include

control and dynamics of the UAV, wind gusts, GPS drift, sensor delay, depth altimeter sampling rate, depth altimeter

sensor noise, and water drag on the submerged sensor payload. In the rest of this section, we discuss each of these

simulation elements in detail, show the outcomes of the simulations, and discuss key simulation results.

3.1 Simulation Elements

Our system model is shown in Figure 2 and consists of: A) UAV; B) dangling cable; and, C) sensor payload. The

forces acting on the system include the total thrust from the UAV Fthrust , wind Fwind , drag on the submerged sensor



Figure 2: Model of UAV-system used in simulation, showing the suspended cable as a series of rigid links.



Fdrag, and gravity. The figure also shows the portion of UAV thrust that directly opposes gravity, Fz, that is actuated

by the depth controller. Table 1 shows a list of simulation parameters and the values used.

UAV Dynamics and Control. The stability and accuracy of the system depend on the interplay between the UAV-

cable-payload system and the environment. Therefore the UAV’s dynamics and control are important to model. The

UAV model is based on an AscTec Firefly hexacopter (Achtelik et al., 2012), with a total mass of mu =1.0 kg including

battery, and a maximum thrust of 36 N. The UAV’s thrust is the only actuator, and the UAV is modeled as a 6-DOF

spherical mass. We implemented a cascaded position-derivative (PD) attitude and position controller, similar to (Meyer

et al., 2012), with velocity and thrust parameters from the UAV’s datasheet (Ascending Technologies, 2012). We tuned

to P and D terms by hand to match the performance of the real system. We use a PD controller for lateral position

because we observed in the field that an integral term struggles in wind turbulence and a precise position in x and y

(<3 m) is not required in this application as long as the location is known. Changes to the UAV’s roll and pitch in

response to external disturbances (like wind) can cause small errors in depth because the cable is attached 4 cm below

the center of mass, but the depth controller treats this error like any other disturbance and adjusts Fz accordingly.

Figure 3 shows the design of the depth controller that attempts to minimize the error between target depth and readings

from the submerged depth altimeter. As shown in the figure, the depth altimeter readings are run through a Kalman

Filter without the control input, because the transfer function involves the non-linear dynamics of the cable that we do

not model.

Figure 3: Depth control using the UAV’s thrust, specifically only the portion of thrust that opposes gravity, Fz. The UAV-

cable-payload dynamics are the plant.

We do not model the UAV’s state estimator that might include input from accelerometers and gyroscopes, because

small changes (<3 m) in the UAV’s position in x and y are not critical to the scientific value of sensor readings, unlike

the small changes in z that are only controlled with respect to the depth sensor. Therefore the impact of omitting the

error in UAV pose estimation to our model is likely small and simplifies the model.



We want to calculate the force, Fwind , exerted on the UAV given a lateral wind velocity, vw. We start by considering

the drag equation:

Fwind =
1
2

ρaAuCuv2
w (1)

Where ρa is air density at 15 ◦C, Au is the UAV’s cross-sectional area, and Cu is the drag coefficient. We first combine

all the constants into the value ku:

ku =
1
2

ρaAuCu (2)

Then substitute ku into Equation 1:

Fwind = kuv2
w (3)

Figure 4: Simulated airflow velocity on a hovering AscTec Firefly used to estimate air drag force, Fwind . The figure shows

a constant lateral 5 ms−1 wind.

To estimate ku for our UAV, we use Solidwork’s computation fluid dynamics (CFD) to calculate the drag force,

Fwind , over a range of wind velocities from 1.0 ms−1 to 10.0 ms−1 and simulate with the average force estimate,

Fwind =0.258 N at vw =5.0 ms−1. Figure 4 shows the resulting CFD simulation showing the downwash from the UAV’s

spinning propellers during hover in wind. Using these values in Equation 3, we solve for ku and find ku =0.010 kgm−1.

Table 1 shows a summary of all the parameters used during simulation. Knowing ku allows us to solve for the wind

force, Fwind , given a wind velocity, vw. We use Equation 3 during the UAV-cable-payload simulations to apply a force

to the UAV over a range of wind velocities.

Submerged Sensor Payload. The sensor payload includes the depth altimeter modeled as a cylindrical mass of

mp =18 g attached at the cable terminus. The resistance from water shown in Figure 2, Fdrag, limits the payload’s

velocity. We want to calculate the force, Fdrag, as a function of the payload’s velocity in water, vp.



We again start with the drag equation, but this time for the payload’s drag in water:

Fdrag =
1
2

ρwApCpv2
p (4)

Where ρw is water density at 15 ◦C, Ap is cross-sectional area of the sensor payload, and Cp is the drag coefficient. We

first combine all the constants into the value kp:

kp =
1
2

ρwApCp (5)

Then substitute into Equation 4:

Fdrag = kpv2
p (6)

Now we solve for kp, substituting the gravitational force on the payload’s, mpg for Fdrag:

kp =
mpg
v2

p
(7)

We know mp =18 g and conduct an experiment to measure the payload’s terminal velocity, vt , in water. We release the

payload at the top of a translucent 3 m water test tank (≈0.25 m radius by 3 m) tall and measure the time at which the

payload reaches markings of depth 1 m and 2 m. Using six observations, we estimate the average terminal velocity, vt ,

to be −0.54 ms−1. By setting vp = vt in Equation 7 we obtain kp =0.605 kgm−1.

With an empirical value for kp in Equation 4, we can solve for the payloads drag force in water, Fdrag. We use Fdrag

from Equation 6 to model how the payload will move in water. The force Fdrag reduces the payload’s descent rate to

slower than the UAV’s descent rate, creating a hazard of the UAV outpacing the depth sensor and flying toward the

water. Therefore we limit changes to the target depth to 1 m and eventually will implement velocity control as part of

the depth controller. Decreasing the target depth by increments of <1 m allows the payload to descend fast enough to

match the descent of the UAV.

Cable. The dangling cable is modeled as a series of 16 rigid links suspended directly underneath the UAV’s center

of mass et al. (Goodarzi et al., 2014) and connected by a series of 2 DOF joints, as shown in Figure 2. We use a

total cable length of 4 m based on conversations with our water science collaborators, who indicate that 3 m depth is

sufficient to characterize many shallow lakes and stream confluences (Chung et al., 2016). We divided the 4 m cable

into 16 lengths following the approach in (Goodarzi et al., 2014). We tried using 30 links and obtained similar depth



error results but in substantially more simulation time. We weighed a cable, also from our current work to calculate

that each 0.25 m link has a mass of ml =3.8 g. We assume the water drag on the cable is small compared to the drag on

the sensor payload because the cable mostly moves up and down during translations between depths and it has small

surface area profile when suspended vertically in the water. Every link joint has a small damping constant to reduce

oscillations in the cable. The swinging, dampening, and overall behavior of the simulated cable appears consistent

with observations of real UAV cable systems.

3.2 Simulation Disturbances

Now that we have a model of the UAV-cable-payload system, we consider common environmental and system distur-

bances. Based on our experience, we assume that the biggest disturbances would be: 1) wind gusts; 2) GPS drift; and,

3) signal delay and sampling rate of the depth readings. We now consider each of these disturbances and describe the

results in Section 3.3.

Wind Gusts. Wind gusts are important because as the UAV is blown laterally, the submerged payload will be pulled

away from the target depth, and gusts might make the depth controller unstable. We consider wind gusts at intervals

of 1 ms−1 up to 10 ms−1, the limit specified for the Firefly UAV by the manufacturer.

We model wind gusts as an instantaneous force, Fwind , acting on the system starting from an ideal case, where the UAV-

cable-payload system is vertical with zero velocity. For a given wind velocity, vw, Fwind is determined by Equation 1

and assumes that the air drag constant ku does not change with UAV’s attitude since the UAV is assumed to be

near hovering. We add noise to wind gusts using Von Kármán Wind Turbulence (Kármán, 1937) used by the U.S.

Military (United States Department of Defense, 1997). The turbulence magnitude scales with wind velocity, but in

winds of 10 ms−1, it is bounded by ±10 ms−1.

GPS Drift. GPS drift is important because we suspect that lateral translations, without depth control, directly impact

depth accuracy. We simulate GPS drift using a Gauss Markov error model (Brown and Hwang, 1997; Meyer et al.,

2012). Gauss Markov is useful for modeling GPS drift because the bias ‘wanders’ over time. Specifically, a GPS



position reading y(t) at time t is:

y = ŷ+b+wa (8)

ḃ =
1
τ

b+wb (9)

Where ŷ is the original reading, b is the bias, and wa is white Gaussian noise. The change in bias over time is ḃ,

where τ is a time constant and wb is white Gaussian noise. We set τ = 0.25 to make the change in bias consistent with

readings from the real system. The noise and bias and updated at 5.0 Hz, based on the uBlox GPS receiver unit on the

AscTec Firefly.

Signal Delay and Sampling Rate of the Depth Altimeter. We model signal delay because of the multiple network

hops for depth readings: from depth altimeter to embedded system to control computer and back to the UAV as shown

in Figure 11. Signal delay and sampling rate are important to model because they indicate performance requirements

for implementation. We model an offboard control computer because this what we use during field experiments.

Implementing an onboard controller is more complex for prototyping, but would likely reduce signal delay. We

assume that the impact on the simulation will be at least as much as the impact on the real system. We expect that

the impact of signal delay and sampling rate will be most acute during vertical translations between target depths.

Therefore, we simulate a range of delays and rates without other disturbances to isolate the impact of these factors.

We include simulation of extreme values, like a 1500 ms delay and a very slow sampling rate of 0.5 Hz even though

these values are unrealistically pessimistic, to show nearly unstable system responses.

Air Pressure Altimeter Control. For comparison, we model air pressure altimeter control because it is one of the

previous modes that is used commonly in other efforts. This is not a system disturbance like wind gusts, but instead

a different method of maintaining a target depth. This uses the UAV’s built-in air pressure altimeter to maintain a

specified air altitude as a proxy for target depth. We model the drift and error in the air pressure altimeter using

the Gauss Markov error model shown in Equation 8-9. In our previous work (Ore et al., 2015), we characterized

air pressure altimeter drift during steady-state tests, and in these simulations chose parameters that matched field

observations. In the field, we observed small oscillations over 3−5 s seconds and larger drift over 30 s. We set the time

constant τ = 30 in Equation 9, meaning that the value drifts towards a new value over the course of 30 s.



Figure 5: Depth error with air pressure altimeter control, our previous method used in standard UAV controllers. Errors of

this magnitude (σ =11.05 cm) reduce the spatial resolution of water science datasets.

3.3 Simulation Results

All simulations begin from the ideal state, vertical with zero velocity, and are subject to disturbances for 30 s. In the

ideal case, when the UAV moves up, the sensor payload is directly coupled, and when the UAV moves down, the only

forces acting on the payload are gravity and resistance from water, Fdrag. Below we present simulation results for

GPS drift, wind gusts, sensor delay and sampling rate. All of the simulations use the depth controller, except the air

pressure altimeter simulation that uses the UAV’s altimeter as a proxy for depth.

Air Pressure Altimeter Results. For comparison, we simulated the standard control method of using the UAV’s air

pressure altimeter as a proxy for submerged depth. Figure 5 shows the result of 10 simulations with air pressure altime-

ter control. In these simulations, the standard deviation of depth readings (σ = 11.05) means 95% of simulated depth

readings are within ±22.1 cm of the target depth. As expected, air pressure altimeter control yields insufficient depth

resolution, motivating our depth control approach. This simulation shows that the pressure altimeter control is not

accurate enough, and therefore we need to rely on a better sensor like the depth altimeter. The subsequent simulations

presented below use our new depth control method that is not influenced by transient air pressure fluctuations.

Signal Delay and Sampling Rate Results. These simulations test −1.0 m step responses over a range of signal delays

and sampling rates from the depth altimeter. Figure 6 shows the depth readings of the UAV-cable-payload system over



Figure 6: Impact of signal delay on target depth during 1.0 m translation, sampling rate held constant at 10 Hz. Signal

delay >125 ms causes overshoot while translating between depths.

a range of signal delays with the sampling rate held at 10 Hz. As shown in the figure, shorter delays result in faster

convergences with less oscillation. To avoid overshooting the target depth, a delay of <125 ms is required. When

reducing the delay from 125 ms to 62.5 ms, there is only a modest improvement therefore we set a goal for signal

delay of <100 ms.

Figure 7: Impact of sampling rate on target depth during 1.0 m translation, single delay held constant at 100 ms. Sample

rates <8 Hz causes overshoot while translating between depths.

Figure 7 shows the system response over a range of depth sensor sampling rates with the signal delay held to 100 ms.

As shown in the figure, to avoid overshooting caused by sampling rate, >8 Hz is required, but 16 Hz reduces the

time to converge by only a small amount. Although the overall stability depends on a combination of parameters, the

signal delay and sampling rate parameters individually can cause the simulated system to become less stable. These

simulations suggest bounds for delay and sampling rate. During simulation, the system could still converge quickly

to the target depth with a slow sampling rate of 2 Hz, and with little improvement from 8 Hz to 16 Hz. Therefore we

consider 10 Hz to be a sufficient sampling rate.

GPS Drift Results. Figure 8 shows the target error in 10 simulations, subject to the GPS sensor noise from Equa-



tions 8-9. As shown in the figure, the depth target error is bounded by ±5.0 cm, with a standard deviation σ =1.6 cm.

The bottom part of the figure shows a sample of simulated GPS drift error in x for one run, consistent with GPS

readings from the field.

Figure 8: Depth altimeter readings in 10 simulations response to wind gusts with GPS drift. The bottom part of figure

shows GPS drift error in x during a simulation run.

Wind Gust Results. Figure 9 shows the result of 10 simulations over a range of wind gust velocities, from 10 ms−1

down to 1 ms−1 at 1 ms−1 increments. As shown in the figure, the target depth error grows with the magnitude of

the wind gust. For all wind gusts, during the first ≈2 s, the target depth error is increasingly positive as the sensor

payload is pulled up in the water as the UAV is blown laterally off course, also indicated in Figure 2. After the sensor

payload is pulled up above the target depth, it then ‘plunges’ in the water as the UAV descends and simultaneously the

cable is pulled straight by gravity. Note that the response shown in Figure 9 might appear to be overshooting from an

excessive P term, but really the plunge in target error is a consequence of the interplay between the cable, water, depth

controller, and gravity. As shown in the figure, the target error moves back towards zero with some depth error caused

by turbulence in the wind model.

The bottom part of Figure 9 shows the UAV’s altitude during a 10 ms−1 gust, showing how it descends as it pitches

against the gust, reducing the portion of the thrust vector directed against gravity. Although a 10 ms−1 wind might

blow a micro-UAV off course by 1−3 m meters, the simulations suggest that this will only cause a depth target error



Figure 9: Simulated depth altimeter readings in response to wind gusts up to 10 ms−1 at 1 ms−1 intervals. Bottom part of

figure shows UAV’s altitude during 10 ms−1 wind gust.

of ±10 cm. We expect the real system will be operated in winds less than 10 ms−1. For wind gusts, the depth standard

deviation is σ =2.8 cm.

Figure 10: Simulated depth altimeter readings for 10 runs in response to simultaneous wind gusts, GPS drift, sensor delay

and sampling rate disturbances.

All Disturbances Combined Results. In the field, we expect all these disturbances simultaneously: signal delay, wind

gusts, sampling rate, and GPS drift. Therefore we simulated the system’s behavior with all disturbances over a range

of wind gusts, and the results are shown in Figure 10. The signal delay and sampling rate used in these simulations

was 100 ms and 10 Hz respectively—values based on the simulation results. As shown in the figure, the depth target



error is bounded by ±10 cm. All disturbances combined is not significantly worse than GPS drift alone, as can be

seen by comparing Figures 10 and 8. For wind gusts with GPS drift, 95% of depth readings are within ±5.2 cm of the

desired target.

Key Simulation Results Overall, simulations indicate that the system can achieve the desired target depth resolution,

even in response to wind gusts of 10 ms−1, near the manufacturer’s limit. Here are the key takeaways we learned from

simulation:

• Depth altimeter sampling frequency should be ≥10 Hz.

• Signal delay from the depth altimeter to UAV control input should be ≤100 ms.

• Small transient lateral disturbances from wind or GPS drift do not cause the system to become unstable, and

also do not compromise depth accuracy.

• Air pressure altimeter control is insufficient for the desired depth resolution.

• Depth control with the depth altimeter is sufficient for the desired depth resolution.

We now use these simulation results to guide our implementation.

4 Implementation Details

This section explains the system architecture, characterizes the depth altimeter, and describes the three flight modes

used during experiments.

4.1 System Architecture

Figure 11 shows the system architecture used during experiments, consisting of 1) shoreside control computer and RC

controller; 2) UAV with an embedded system; and, 3) submerged system with sensor payload.

The Firefly includes a GPS and air pressure altimeter as well as an onboard controller for attitude and position. We

chose the Firefly for overwater experiments because it can return to shore even after one motor fails. It has a payload



Figure 11: System Architecture.

capacity of 600 g, flies for 15-20 minutes per battery, and tolerates winds up to 10 ms−1.

The sensor payload installed on the Firefly consists of two embedded systems, the first installed on the vehicle and

the second waterproof system attached to the end of the cable that dangles below the UAV. The first embedded system

has an NXP-LPC2368 (ARM7TDMI) microprocessor running a control loop at 50 Hz, and has inputs for a variety

of water sensors and is used to log and transmit real-time readings over the radio. The submerged embedded system

contains an ATmega-1284pb microprocessor that reads the depth altimeter at 50 Hz. The embedded system installed

on the UAV receives the depth readings and re-transmits them to the control computer. The control computer is an

Apple MacBook “Early 2015” running Ubuntu 14.04 with ROS Jade for control and logging.

In this architecture, we estimate the complete signal delay from the depth altimeter to the UAV control input to be

45 ms worst case, based on measurements and an analysis of the communication systems. This is within the 100 ms

bound identified during simulation and described in Section 3.3.



4.2 Depth Altimeter Characterization

For the depth altimeter, we use a Measurement Specialties MS5803-01BA (Measurement Specialties, 2015) installed

on an embedded system, and shown in Figure 12. By the datasheet, this sensor is water resistant to 100 m with a built-in

24-bit ADC and a 10 ms read time, plus an additional 10 ms to read the onboard thermometer to correct for temperature

variation. By reading from the onboard thermometer, the depth altimeter can operate over a range of temperatures,

from −40 ◦C to 85 ◦C as specified on the datasheet. The 10 ms total means a maximum sampling frequency of 50 Hz

and this is what we use, above the baseline 10 Hz indicated by simulation.

To better understand the performance of the depth altimeter we seek to characterize its steady-state error, lag time,

accuracy, and precision. Although the datasheet specifies the altimeter’s steady-state error, lag time, accuracy, and

precision, our implementation and waterproofing might influence this crucial sensor. Understanding the behavior of

the depth altimeter is critical because it is used for both depth control and comparison with to other methods during

field experiments. To characterize steady-state error, we placed it at a fixed depth in a bucket of 22 ◦C water. Figure 13

depicts 10 s of readings and shows a steady-state error of ±3 mm.

To characterize the depth altimeter’s response time and accuracy, we compared the depth readings to ground truth

readings captured by a Vicon motion capture system. The experimental setup is shown in Figure 14. As shown in

the figure, we built a 2.0 m water tube and an upside-down ‘U-shaped’ rigid linkage between the depth altimeter and

Vicon markers. When we move the linkage assembly up and down, both the depth altimeter and the Vicon markers

Figure 12: The waterproof embedded system

and sensor payload.

Figure 13: Depth altimeter steady-state error at constant depth

showing ±3 mm error. This measured error is used the system sim-

ulations discussed in Section 3.1.



Figure 14: Water-tube apparatus (2.0 m) to characterize depth altimeter error.



move together. Figure 15 shows the results, and how closely the depth altimeter tracks Vicon position data. Figure 16

zooms in on 10 s. Notice that during the 20 cm decent between 40 and 42 s that there is negligible lag, and sometimes

the depth altimeter leads Vicon, possibly due to variable Vicon latency.

Figure 17 shows a distribution of depth altimeter sensor errors with respect to Vicon from the step response shown in

Figure 15. As shown in the figure, 95% of depth altimeter readings are within ±7 mm of Vicon (σ =3.5 mm). We

characterized the sensor down to 2.0 m depth, and the manufacturer’s datasheet indicates <0.5% error down to 12 m.

Because of the MS5803’s fast response, accuracy to depths of 10 m, and small steady-state error, we use this sensor

for comparison during our field experiments.

It is important to note that changes to ambient air pressure cause pressure changes in water, impacting depth readings.

For example, an air pressure difference of 100 mbar across a strong weather front results in 0.6 m pressure difference

measured in water depth. In practice, the depth altimeter must be calibrated for the current air pressure every few

hours by submerging the sensor to a known depth (we used 5 cm). However, during a 20-minute flight, the total air

pressure change is likely small, and transient air pressure fluctuations like wind that cause an air altimeter change of

±2.0 m cause a depth altimeter change of only ±3 mm. This makes sense since water is ≈ 800 times denser than air.

4.3 Flight Modes: Depth, Air Pressure, Ultrasonic + Air Pressure

We implement three flight modes: depth altimeter, air pressure altimeter, and ultrasonic altimeter. The depth altimeter

mode is the new method proposed and implemented in this work, and the air pressure and ultrasonic modes are

alternative methods for comparison during experiments. Note that the depth altimeter method controls depth while air

pressure and ultrasonic methods control the UAV’s altitude as a proxy for sensor depth.

Depth altimeter mode controls only depth using the portion of the UAV’s thrust that opposed gravity, Fz, as shown in

Figure 2, while the UAV controls roll, pitch, and yaw. On the control computer, the stream of depth readings is passed

through a Kalman filter assuming Gaussian noise (characterized in Section 4.2), and we assume a linear state transition

function during hover. The filtered readings are used in a 50 Hz PD position controller (described in Section 3.1) for

depth that commands the thrust opposing gravity, Fz.



Air pressure altimeter mode uses the UAV’s onboard controller for everything: roll, pitch, thrust, and yaw. Air

pressure mode uses the UAV’s air pressure altimeter, GPS, and an onboard IMU together to create a fused pose

estimate. This is the basic ‘out-of-the-box’ controller.

Ultrasonic altimeter mode fuses downward-facing ultrasonic sensors with the air pressure altimeter to form an al-

titude estimate. We include ultrasonic mode because: 1) we used it in our previous work (Chung et al., 2015); 2)

ultrasonics rangefinders are accurate to within ±1.0 cm over water at close range (<1.85 m) (Ore et al., 2015) and can

be used in combination with spooling mechanism; 3) to obtain variable depth readings; and, 4) this mode is roughly

similar in altitude accuracy to Lidar using specular returns (Nuske et al., 2015). To prevent the ultrasonic sensors from

seeing the cable, the readings from each of the two ultrasonic sensors (Maxbotix MB1240-EZ4 (Maxbotix, 2018)) are

pre-filtered based on both the variance of recent readings and the proximity of readings to the current altitude estimate,

before being passed through a Kalman filter. The details of this pre-filtering are described in previous work (Ore et al.,

2015).

Now that we have an implementation guided by simulation, we discuss experimental validation in the field.

5 Field Experiments

This section describes the setup of field experiments and presents results. To test our approach, we designed three field

experiments:

1. A comparison of depth precision for three flight modes with a 3.5 m cable and submerged sensor payload;

2. Step responses to changes in target depth for the proposed depth altimeter method;

3. Initial exploration of the depth altimeter method using a longer, 8.0 m cable, measuring precision and step

response.

All field experiments were conducted during March, 2017 at Wildwood Lake near Lincoln, Nebraska, USA, as shown

in Figure 18. Wildwood has relatively still water, and is similar to the kinds of shallow surface water system we

target in this work. In total, we flew 33 missions. The comparison dataset was collected during three days, and the



wind average speeds were 3.5 ms−1, 2.0 ms−1, and 1.3 ms−1, respectively with a maximum 5-second wind speed of

8.5 ms−1, 7.2 ms−1, and 7.9 ms−1, respectively, indicating occasional strong gusts. We measured wind speed and

direction using a weather station recording into a time-synced computer log.

5.1 Experiment 1: Comparison of Flight Modes for Maintaining Constant Depth.

The purpose of this experiment is to compare three flight modes and quantify how precisely we can maintain the depth

of a sensor payload. We collect depth readings in each of the three modes while maintaining a specified depth, and

then measure the difference in variance between the modes. The three modes are detailed in Section 4.3.

We launched the vehicle from a jetty to a sampling location 10 m from shore, indicated in Figure 18. For these

experiments, we used a 3.5 m cable affixed below the UAV’s center of mass (see Figure 2). For each mission, we flew

to the sampling location by a human pilot, descended until the depth altimeter was at least 1 m deep, then switched to

one of the computer controlled flight modes. Once in computer control mode, the system attempts to remain stationary

in x and y while recording depth. We flew two modes per flight, each for ≈240 s. It can be difficult to compare the

results of different outdoor trials, so within a single flight we tested different flight modes successively, and recalibrated

the depth altimeter every few hours to adjust for changing air pressure. We swapped the flight mode sequence between

trials to ensure that no mode benefited from fresher batteries. In total, we flew 36 minutes, 12 minutes in each mode

maintaining a specified depth. We use the depth altimeter reading for comparison, as it is accurate and fast as described

in Section 4.2, and use this as a basis for evaluating the target depth precision.

Figure 19 shows the distribution of depth readings collected during the three flight modes. The data are collated from

3-4 flights per mode. To compare the variances of depth readings collected in each mode, we use a F-test (Box,

1953), and find significant differences between the variance of depth control mode and ultrasonic mode (p < 0.0001),

and between depth control mode and ultrasonic mode (p < 0.0001). Since F-tests can be sensitive to non-normal

distributions and our distributions are only approximately normal ((Shapiro and Wilk, 1965) test for non-normality

indicates a non-normal distribution with p < 0.0001), we also compared the variance using a Fligner-Killeen (Fligner

and Killeen, 1976) test and confirmed the significant differences in variance (p < 0.0001).



As shown in Figure 19, the depth altimeter mode is significantly more precise than either ultrasonic or air pressure

modes. Specifically, the statistical dispersion of depth readings in depth altimeter mode keeps 95% of readings within

±8.4 cm (σ =4.2 cm) from the target depth. This is within our goal of being able to obtain readings with a resolution

of at least ≈25 cm. The depth readings for the ultrasonic altimeter are slightly offset and centered near −0.03 m due

to calibration. The ultrasonic-pressure altimeter mode shows σ =16.1 cm, or 95% of readings within ±32.2 cm, while

the air altimeter has the largest dispersion, with 95% of readings within ±60.2 cm (σ =30.1 cm) of the target depth.

To give the reader better intuition about the variation of depth readings in each mode, Figure 20 shows examples of 4

minutes of continuous flight for each mode along with the 5-second-average wind speeds. As shown in Figure 20(a),

depth altimeter mode stays closest to the target depth with almost no drift and small disturbances, and note that it

maintained this target depth during 5.0 ms−1 wind gusts. Also, note in Figure 20(b) how ultrasonic altimeter mode

is not as precise and occasionally deviates almost a meter even with calmer winds, but does not drift significantly

over time, unlike the air pressure altimeter mode. The variations are likely caused by transient atmospheric pressure

differences and noise. During the ultrasonic altimeter test, we moved the UAV closer to the water so that the ultrasonic

rangefinders could get better readings, resulting in greater depth compared to the other two methods. In Figure 20(c),

the air altimeter mode depth readings change by 30−40 cm in a small amount of time, but that within two minutes the

depth readings can be off by ±0.75 m. The large drift in air pressure mode is likely caused by significant changes in

ambient air pressure, like the wind.

5.2 Experiment 2: Step Response of Depth Altimeter Mode for a 3.5 m Cable

To determine if the system under depth altimeter control could transition between target depth reference points, we

conduct ‘step response’ maneuvers. Figure 21 shows the step responses under depth altimeter control. For each

reference depth, we set the system to hold a particular target depth, then adjust the target by 0.5 m. Notice how the

reference depths are repeatable both ascending and descending and the depth quickly settles to within ±5 cm of the

target depth. For comparison, Figure 22 shows the step response for air pressure altimeter mode. We do not show the

step response for ultrasonic altimeter mode because it only works well when close to the water. We use 0.5 m changes

to avoid the UAV outpacing the submerged sensor toward the target depth, until we implement a descent velocity limit,



reserved for future work.

5.3 Experiment 3: Longer 8.0 m Cable: Target Error and Step Response

As an additional experiment, we extended the cable length to 8.0 m. The reason we are interested in a longer cable is

that in some applications we want to be able to measure water properties across a range of depths, nearly all <10 m,

and we also wanted to see what impact a longer cable would have on the ability to control the depth. Therefore,

we field tested the depth altimeter flight mode with the 8.0 m cable. The experimental setup is identical to the depth

altimeter mode tests in Sections 5.1-5.2 other than the longer cable length. We were only able to test the 8.0 m cable

down to a depth of ≈ 4 m, due to depth limitations at our field location.

Figure 23 shows the results for holding a target depth, and for comparison, the figure shows the distribution of target

errors for the 3.5 m cable depth altimeter experiments of Section 5.1. As shown in the figure, the 8.0 m cable is less

precise than the 3.5 m cable, with 95% of readings within ±14 cm (σ =7.0 cm), still close to the desired ≈0.25 m

resolution. The dispersion of target errors for the 8.0 m cable still improves on the ultrasonic and air-pressure altimeter

modes, even when those modes use the shorter 3.5 m cable.

Figure 24 shows the step response between target depths at 0.5 m increments. Like the system with the 3.5 m cable

under depth altimeter control, the configuration with an 8.0 m cable can transition precisely between target depths.

Because the 8.0 m cable allows the sensor payload to remain within ±14 cm for nearly all readings, this means an

8.0 m cable might be viable for monitoring water properties down to a depth of 7.0 m, and we intend to explore this in

future work.

6 Discussion

Overall Performance. The precision for the depth altimeter flight mode exceeds our expectations, especially while

flying in wind gusts at 80% of the manufacturer’s limit of 10.0 ms−1. The field tests demonstrated the effectiveness

of using a single depth altimeter as the sole input to a depth controller, since the sensor is small, light, reasonably



affordable (30 USD), and fast (<20 ms). We believe that depth control of a sensory payload will enable dramati-

cally better spatiotemporal resolution in shallow water science datasets with the advantages of quick deployment and

redeployment by UAV without additional sensors.

For the 8.0 m cable, we attribute the increase in deviation in target depth compared to the 3.5 m cable (see Figure 23)

to wind-induced oscillations in the portion of the cable exposed to air (≈4 m of cable) due to 3.5 ms−1 winds. Further

exploration is reserved for future work.

Depth Control in the Field vs. Simulation. Figure 25 shows a comparison between field and simulated target depth

errors. The field data are depth readings in depth altimeter mode, and the simulated data is also depth altimeter mode

and based on the ‘All Disturbances Combined’ simulation shown in Figure 10. As shown in the figure, the simulated

results predict a tighter distribution of target errors (σ =1.9 cm) than what was encountered in the field (σ =4.2 cm).

The simulation likely underestimates the impact of the interactions of parameters that cause the wider range of depth

errors and the longer ‘tails’ in the distribution. Overall, the simulated precision is close to the precision observed in

the field, and allowed us to explore relevant parameters quickly in simulation.

Lessons Learned In this work we have successfully developed a method to keep a UAV’s cable-suspended payload at

a precise depth in water. During development we experienced numerous instructive failures.

During development, we supposed that fusing data from multiple sensors might improve depth precision, but after

characterizing and using the depth altimeter alone we do not see the benefit of additional sensors. This is primarily

because other sensors measure the UAV’s altitude, not the depth of the sensor payload. It could be useful to have two

separate estimators, one for the air altitude and another for the depth. This is particularly useful when transitioning

between having the sensor in and out of the water.

We started to build a such a controller that automatically switched between ‘out-of-water’ and the three ‘in-water’

modes, but found the switching controller to be too complicated, because it is challenging to foresee all the conditions

that are required for a smooth switch. Instead, we found that for these experiments it was sufficient to have a human

pilot manually fly the UAV into position over water, then switch to one of the three computer-controlled modes.



Flying over water with UAVs is challenges, because they are not water-hardened, and waterproofing can increase the

system weight, reducing flight times. We considered adding flotation but have found that it interferes with the flight

dynamics. We also considered (early on) landing on the water, but our water science partners were concerned about

how this would mix the water.

Battery life is still a major factor. Speeding up sensor response times or having multiple sensors in a single payload

could help this to scale.

7 Future Work

One future challenge includes integrating sensor payloads requested by water scientists. The challenge is that the

irregular shapes and configurations of sensors might result in different drag and terminal velocities. We plan to apply

depth control to a larger UAV (5 kg) because of payload and longer flight time, and potentially longer cables. We also

would also like to explore UAV-based subsurface sensing with adaptive sampling. We examined the depth error as a

function of lateral disturbance (error in x and y position), like when wind or GPS drift pushes the UAV out of position.

However, we saw no relationship between lateral error and depth error. We plan to explore this in flowing water or

while the UAV is translating in x and y.

A hybrid controller could switch between flight modes based on violations of invariants inferred during successful

flights (Jiang et al., 2017) (like hitting the bed below the water, becoming entangled, or getting encased in muck). This

approach requires positive examples and can be conservative, but is an automated way of detecting system anomalies.

Embedding the control on the UAV is a natural next step, using the radio link primarily for higher-level planning and

safety controls. This could also be coupled with adaptive sampling or in coordinating with a team of vehicles.

There is interest is getting underwater video for other applications, but this might require a different cable like an op-

tical data transfer cable. The primary challenge will be balancing the additional payload requirement both underwater

and on the UAV platform.

In our previous work (Chung et al., 2015), we explored changing the cable length using an electric spooling mecha-



nism. We spooled the cable up during flight to avoid pendulum motions and then unspooled it while hovering over

water to measure temperature. It might be possible to use the depth sensor to actively control the depth with the spool.

This again is a trade-off of system complexity and payload.

Flying over water with micro UAVs that are not waterproof is inherently risky, and there are a number of ways to

increase the reliability of this kind of system: 1) better protection from unsafe descent, including conductivity sensors

on the cable near the UAV, and at least one ultrasonic sensor for redundant backup; 2) break-away cable with a buoy;

3) a protective cover for the depth altimeter to prevent fouling; and, 4) buoyancy of the UAV.

8 Conclusions

This work explores a novel method for precisely maintaining the target of a submerged sensor payload passively cabled

to a UAV. Our method enables 95% of sensor payload readings within ±8.2 cm of the target depth, increasing the depth

resolution of UAV-based water property datasets. We conducted field experiments that validate the approach, resulting

in a 75% reduction in standard deviation of depth readings (σ =4.2 cm) compared with ultrasonic mode (σ =16.1 cm),

and air altimeter mode (σ =30.1 cm) all with statistical significance. We tested our method in winds of 4−8 ms−1 and

the system still quickly and accurately reached and maintained target depths. The non-linear dynamics of a system

with a semi-rigid cable are challenging to model as it interacts with wind and water. Still, we used simulation to guide

and refine our approach before implementation. We also presented initial results for a longer, 8.0 m cable, the longest

cabled sensor system yet attempted in UAV-based sub-surface water monitoring, and demonstrated that even at this

length the approach allows water monitoring at precise depths (σ =7.0 cm) from the air.
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SIMULATION PROPERTY SYMBOL VALUE

UAV

Mass including battery mu 1.0 kg

Air drag constant ku =
1
2 ρaAuCu 0.010 kgm−1

Air density at 15 ◦C ρa 1.23 kgm−3

Cross-sectional area Au -

Drag coefficient Cu -

Wind force on UAV at 5.0 ms−1 Fwind 0.258 N

Total thrust Fthrust varies

Thrust opposing gravity Fz varies

CABLE

Link mass ml 3.8 g

Number of links Nl 16

Cable-payload mass mCP 78.8 g

Link length Ll 0.25 m

SUBMERGED

PAYLOAD

Mass (Sensor & Housing) mp 18 g

Water drag constant kp =
1
2 ρwApCp 0.605 kgm−1

Water density at 15 ◦C ρw 997 kgm−3

Cross-sectional area Ap -

Drag coefficient Cp -

Water drag force at 1 ms−1 Fdrag 0.605 N

Terminal velocity in water vt −0.54 ms−1

Depth altimeter sampling rate dr 50 Hz

Depth altimeter sensor delay ds 100 ms

ENVIRONMENT

Air temperature ta 15 ◦C

Air pressure pa 101.325 kPa

Water temperature tw 15 ◦C

Gravity g 9.81 ms−2

Simulation Duration t 30 s

Table 1: Simulation parameters.



Figure 15: Comparison of depth altimeter vs. Vicon. Figure 16: Zoomed in comparison of depth altimeter

readings to Vicon.

Figure 17: Distribution of depth altimeter errors.

Figure 18: Wildwood Lake near Lincoln, Nebraska, USA, shown with depth contours. The yellow arrow indicates location

of field experiments. Bathymetric map courtesy of Nebraska Game & Parks.



Figure 19: Distribution of target depth error during three flight modes.

(a) Depth altimeter mode (b) Ultrasonic altimeter mode (c) Air altimeter mode

Figure 20: Examples of depth precision in the three different flight modes, showing 5-second-average wind speeds. Note

that the y-axes of all depth figures span 1.8 m.

Figure 21: Step response of depth altimeter mode at 0.5 m increments for a 3.5 m cable.



Figure 22: Step response of air pressure altimeter mode at 0.5 m increments for a 3.5 m cable.

Figure 23: Target depth error comparison between 8.0 m

and 3.5 m cables both using depth altimeter mode over 4

minutes of flight.

Figure 24: Step response to target depths at 0.5 m incre-

ments for an 8.0 m cable. Note the flat readings near 550

seconds indicating the water bottom.
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Figure 25: Comparison of depth control error between simulation and field experiments.


