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Abstract— This project seeks to generate small Unmanned
Aerial System (sUAS) flight paths that are broadly understood
by the general population and can communicate states about
both the sUAS and its understanding of the world. Previ-
ous work in sUAS flight paths has sought to communicate
intent, destination, or emotion of the system without focus-
ing on concrete states (e.g., low battery, landing, etc.). This
work leverages biologically-based flight paths and experimental
methodologies from human-human and human-humanoid robot
interactions to assess the understanding of avian flight paths
to communicate sUAS states to novice users. If successful, this
work should inform: the human-robot interaction community
about the perception of flight paths, sUAS manufacturers on
how their systems could communicate with both operators
and bystanders, and end users on ways to communicate with
others when flying systems in public spaces. General design
implications and future directions of work are suggested to
build on the results here, which suggest that novice users
gravitate towards labels they understand (draw attention and
landing) while avoiding more technical labels (lost sensor).

I. INTRODUCTION

Small unmanned aerial systems (sUAS) have sophisticated
control stations and a rich variety of interfaces to commu-
nicate with their operators. Yet, as these vehicles become
part of applications involving stakeholders that are not the
operators, they will increasingly need to establish broader
communication channels in order to be accepted in public
spaces and to create safer interactions.

Consider for example existing public-facing applications,
such as Amazon Prime Air [1] or the Alphabet’s burrito de-
livery [2]. For such applications, the sUAS might be required
to communicate not just with their control base, but also with
the customers expecting a delivery, and bystanders that may
not be fully aware of the intent of the vehicle. These other
stakeholders may not have experience dealing with the sUAS
but they will ultimately render their judgment about the
application in part based on how the vehicle communicates
with them. In other more specialized application contexts,
like that of sUAS supporting fire management activities [3]
as depicted in Fig. 1, communicating dangerous situations to
fire personnel and accidental observers is critical. Alternately,
these gestures could be used in agricultural applications of
UAS, such as those in orchards [4] where most workers are
unlikely to be trained on technologies unrelated to their tasks,
but should be alerted to off-nominal operations.
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Fig. 1. Concept imagery depicting UAV operators at a prescribed fire,
where bystanders work around the fire and may need state information.

Our approach to communicating to such stakeholders is
through sUAS gestures, more specifically flight motions
that convey the sUAS state. This communication medium
is appealing in that it requires no additional equipment
(such as speakers or lights) and can be easily incorporated
into existing systems. If well designed, these motions are
also robust to communication challenges such as partial
occlusion, viewing angle, or ambient lighting (as in [5]).

One of the challenges of using sUAS gestures is identify-
ing those that can be consistently interpreted by stakeholders
that may not have been trained in the technology. In this
work we start investigating this challenge by asking: Do
novice users show broad agreement on the meaning of sUAS
gestures? We investigate this question using Amazon’s Me-
chanical Turk (mTurk) platform to gain access to 64 general
users for a video-based study of sUAS communications.

Leveraging methods from human gesture understanding,
this paper contributes the first study of general commu-
nications by sUAS. It is distinct from previous work on
sUAS gestural communication in that we are attempting to
communicate relevant action information from simple sUAS
gestures to novice users, instead of attempting to mirror
users’ emotions or communicate about only direction of
flight. The results indicate that novice participants are able
to properly label gestures associated with landing or drawing
attention, with less agreement for other gestures. We also
found that, contrary to the findings of previous work, user
attitudes towards robots did not seem to affect their ability
to recognize the meaning of a gesture.



II. RELATED WORK

The human ability to infer intentionality from random
motion has been well established, beginning with Heider’s
work on apparent behavior in 1944 [6], which was later
extended to understand perception of biological motions
from humans and animals [7], [8]. Through studies such as
these, we can begin to understand the intentionality that is
applied to observed motion and the components that make
this intentionality more broadly understood. In this section,
relevant work on human and robot gestural communications
will be presented.

A. Human Gestural Communications

Human gestural communications have been studied for
their communicative ability in order to understand how they
are perceived and what they can be used to communicate.
Krauss, Morrel-Samuels, and Colasante [9] conducted a
set of studies to understand how co-speech hand gestures
are understood and found that while hand gestures convey
some information, they do not communicate as well as
speech. Prati and Pietrantoni [10] investigated the use of
hand gestures when verbal communication would be diffi-
cult to understand differences in communicative ability of
different gesture types. Their participants watched videos of
firefighters performing ten gestures and labeled them using
free response. In both studies, these gestures had meanings
that were similar to gestures participants had previously seen.

B. Robot Gestural Communications

Gestural communications in robots can be split into ground
robot gestural communications and sUAS gestural commu-
nications. While gestures have been examined in humanoid
robots, this has been limited to social gestures and collabo-
rative gestures. The current state of the art with sUAS has
been to communicate high-level state information or to use
gestures for control of a vehicle.

1) Ground Robot Gestural Communications: Social ges-
tures have been investigated in HRI in much the same way
that was described above for communicative hand gestures.
Salem et al. [11] investigated the ability for co-speech
gestures to enhance humanoid robot communications. Huang
and Mutlu [12] evaluated the use of gestures to improve
recall in humanoid robot interactions. Ng, Luo, and Okita
[13] developed a gesture model to produce gestures from
text input and tested the modification of parameters to convey
excitement or expressiveness. Riek et al. [14] tested cooper-
ative social gestures on a humanoid robot to understand the
impact of speed and viewing angle, and found that negative
attitudes towards robots correlated with a decreased ability
to understand the gestures in the study. Overall, these works
have assessed understanding of gestures, but they are focused
on leveraging the existing understanding of participants from
interacting with other people in order to improve humanoid
robot communications.

Of more interest to this work are the collaborative gestures
that have been developed primarily for industrial applications
as in [15], [16], but one limitation of the work in this area

is the assumed presence of a visible goal as reported in
[17]. Dragan and Srinivasa [15] tested the integration of an
observer into motion planning for an industrial robot. Glee-
son et al. [16] observed gestural communications between
humans, derived terms and gestures for use by the robot, and
implemented them on a robot to observe their communicative
ability. Both of these studies indicated that gestures were
more effective when they conveyed context and goal, which
is a challenge for the sUAS gestures to overcome.

2) sUAS Gestural Communications: Communications
with sUAS can be split into communication from the sUAS
and communication to the sUAS.

a) Communication from sUAS: Communicative flight
paths have been investigated for ability to communicate
affective state [18], [19], intended destination [20], and
intended direction of flight [5]. These flight paths would en-
hance interaction with sUAS in collocated environments, but
do not communicate actions or states that might be necessary
in uses with more bystanders or broader application.

Sharma et al. [18] investigated the ability to communicate
affect via flight path with collocated users and found that
to increase valence or arousal communication, space should
be used more indirectly and the motions should be faster.
Cauchard et al. [19] explored personality models for the
sUAS to increase interest in interaction and possibly allow
them to mirror the personality of their users in the future.
Findings from both studies were operationalized by keeping
these parameters as constant as possible across flight paths.

Szafir, Mutlu, and Fong [20] used both mTurk and in-
person interactions to explore the perception of animation
principles applied to sUAS flight paths to increase the
communication of intent. Szafir, Mutlu, and Fong [5] next
assessed the ability of a light ring to communicate the
direction of sUAS flight through in-person testing where
the participants would predict the end state of the vehicle.
This work considered: viewing angles, movement in multiple
dimensions, occlusion, and ambient lighting. While very
informative to the field at large, this work is better applied
to close interactions in more controlled environments so we
primarily focused on possible problems in communication.

b) Communication to sUAS: Gestural communication
to sUAS for commanded control has been investigated [21],
[22], [23], but this work is not directly relevant to the work
described here.

III. DEFINING SUAS COMMUNICATIVE FLIGHT
PATHS

This paper presents an initial study to address the question:
Do novice users show broad agreement on the meaning of
sUAS gestures? From a methodology perspective we start
exploring this question by following established protocols
used to investigate human gestures [9], which seek to un-
derstand the level of agreement by exposing participants to
a limited gesture set and then requesting those participants
to apply a label from a limited set. From the sUAS gesture
perspective, we start by adopting flight paths used in nature,
which are robust to viewing angle or occlusion, oscillatory



in nature to allow looping, and adapted from biological
inspiration to explore any templates that might exist. Given
the formative stage of the work, we limit the impact of
environmental factors (through being performed in an indoor
space), constrain the labels (to understand agreement rather
than generation), and do not introduce a visible goal state
(to assess understanding rather than inference). Further de-
scription of the motions and labels are described in Section
IV and the methodology details appear in Section V.

IV. SUAS FLIGHT PATH DESIGN

The initial paths created from this work were developed
from flight patterns used by birds in order to leverage the
advantages inherent in biologically inspired behaviors, as
described in [24], [25]. This section will describe the avaiable
labels, flight path selection, programming environment, and
video creation for the experiments described later in this
work.

A. Possible Flight Path Labels

The current labels were chosen based on likelihood that
they would be encountered in flights and generally would
require redirection or intervention from the operator, or
awareness from bystanders. It was also anticipated that
these states would be understood by novice users due to
the widespread use of hobbyist systems or observations of
other aircraft (e.g., Landing, Low Battery, Draw Attention),
commonality with other taskable systems (e.g., Missed Goal,
Change Position), and potential similarities to states encoun-
tered in smart phone technology (e.g., Lost Sensor, Lost
Signal). Another consideration was to choose states that
were domain independent rather than focusing on possible
applications of the technology (e.g., not Deploying Sensors
nor Taking Pictures).

B. Flight Path Selection

The avian flight paths we selected were originally iden-
tified by Davis [7] as oscillatory motions (those with a
steady periodic motion and which could be created from
sinusoid functions). More details on their inclusion/exclusion
criteria can be found in the original work, but these motions
were of interest to this work because they are biologically
inspired, can be created in a replicable way, offer the ability
to scale and loop as needed, and can generally be perceived
in the presence of occlusion or multiple viewing angles. The
requirement for biologically inspired behaviors also takes
into consideration the requirements for deployment of these
motions, such as the need to be observable against a natural
background, able to contend with energy constraints, and
understandable by other animals (or in this case humans).
The eight cyclic motions used by birds and identified in
[7] are: Circle, Figure-8, Left-Right, Loop, Spiral, Swoop,
Undulate, and Up-Down

When designing the labels for this study, we considered
states that may impact and may need to be communicated
to bystanders. The states we chose were: lost signal, lost
sensor, draw attention, landing, missed goal, change position,

and low battery. We then performed an initial assignment of
those labels to the motions to later gauge whether participants
would confirm these assignments or realize alternative ones.
The initial assignments with a brief description of the thought
behind these assignments follows:

• Circle: lost signal, in which the movement could help
the sUAS regain signal

• Figure-8: lost sensor, which looks like the motion used
to recalibrate your phone’s magnetometer

• Left-Right: missed goal, which looks like shaking head
• Loop: draw attention, which might be reminiscent of a

ferris wheel
• Spiral: landing, which could be used in indicating a

position of landing
• Swoop: draw attention, since this is eye catching
• Undulate: change position, since this motion could be

performed while starting in the direction
• Up-Down: change position, which looks like nodding

to acknowledge the command

C. Flight Path Programming

To perform each gesture, the Ascending Technologies
Firefly hexcopter (weighing less than 1.6 kg and 60.5x66.5
cm) would take-off, hover at the starting point of the gesture,
perform the flight path representing the gesture for 30
seconds, and then land.

To create the flight paths, the sUAS autonomously flew
along pre-programmed paths. A Vicon motion capture sys-
tem tracked reflective markers attached to the sUAS and mea-
sured its position and orientation to a high degree of accuracy
(submillimeter error and 200Hz). The sUAS performed each
gesture by following a target position that was continuously
moved through a three dimensional space, using a PID pose
controller to have the sUAS chase the target. The target’s x,
y, and z coordinates were coded as mathematical functions
of time, as described next, thus yielding a parametric path
for the gesture. Each gesture was programmed to move the
sUAS at approximately 1 meter per second.

1) Flight Path Parameters: Table I shows the equations
used to generate the eight paths. The x, y, and z positions
are evaluated based on a specified range of time, t, starting at
zero. In addition, the table shows the typical displacements
observed during the sUAS flights for each motion.

2) Flight Path Visualizations: Fig. 2 shows a visualization
of some of the flight paths reproduced from logged pose data.
The red path shows the actual sUAS path, each square is 1
meter wide, and the gesture primarily took place over the
center of the grid. Some gestures (e.g., swoop) are shown
from an off-angle so that the path can be better viewed.

D. Flight Path Video Creation

Each flight was filmed by a video camera, and the video
was later trimmed to include only the gesture and to ensure
that all gesture videos were the same length and size. The
camera’s view was orthogonal to the gestures’ width and
height displacements, and its height centered the gestures
within its view. Each video was uploaded to Youtube.com



Fig. 2. Visualizations of the Spiral, Loop, Undulate, and Figure-8 paths from the flight log. Each square is 1m wide.

TABLE I
MOTIONS’ EQUATIONS AND TYPICAL DISPLACEMENTS OBSERVED.

Motion Equations Displacement (m)

Circle

for 0 ≤ t ≤ 30:
x = 2.5cos(t)
y = 2.5sin(t)
z = 1.5

x : 2.5m
y : 2.5m
z : 0.0m

Figure-8

for 0 ≤ t < 2PI:
x = 0.75 − 0.75cos(t)
y = 0.75sin(t)
z = 1.5

for 2PI ≤ t ≤ 4PI:
x = −0.75 + 0.75cos(t)
y = 0.75sin(t)
z = 1.5

x : 4.0m
y : 2.0m
z : 0.0m

Left-Right

for 0 ≤ t ≤ 30:
x = 1.5sin(1.5t)
y = 0
z = 1.5

x : 2.5m
y : 0.0m
z : 0.0m

Loop

for 0 ≤ t ≤ 30:
x = 0.75sin(0.75t)
y = 0
z = 1.25

+0.9 × 0.75cos(0.75t)
+0.4 × 0.75sin(0.75t)

x : 2.0m
y : 0.0m
z : 1.5m

Spiral

for 0 ≤ t ≤ 30:
x = cos(t) × (30 − t)/20
y = sin(t) × (30 − t)/20
z = 2 − t/20

x : 2.0m
y : 2.0m
z : 1.5m

Swoop

for 0 ≤ t < 2.4:
x = 0.5t
y = 0
z = 0.5 + ((t − 1.2)2)

for 2.4 ≤ t ≤ 4.8:
x = 1.2 − 0.5t
y = 0
z = 0.5 + ((t − 1.2)2)

x : 1.5m
y : 0.0m
z : 1.5m

Undulate

for 0 ≤ t ≤ 6:
x = −1.5 + t/2
y = 0
z = 1.5 + 0.5sin(3.14 ∗ t)

for 6 ≤ t ≤ 12:
x = 1.5 − t/2
y = 0
z = 1.5 + 0.5sin(3.14 ∗ t)

x : 3.0m
y : 0.0m
z : 0.8m

Up-Down

for 0 ≤ t ≤ 15:
x = 0
y = 0
z = 1.25 + 0.4sin(4t)

x : 0.0m
y : 0.0m
z : 0.5m

with dimensions of 854 by 480 pixels and sound was
included in each video. Original videos can be found at
https://unl.box.com/v/ICRA-duncan-videos and a summary
of representative videos is included in the media attachment
to this paper.

V. FORCED CHOICE LABELING STUDY

This study investigates the ability of novice users to dis-
cern possible intent of gestures. We employ the n-alternative
forced-choice technique, which has been used in psychology
[26], [27], [28], human-robot interactions [29], [30], and
human gesture recognition in [9], [10]. More specifically, we
conduct two studies. The first one employs a two-alternative

forced-choice (2AFC) model to test the recognition of a ges-
ture from two labels (one chosen by us and one distractor).
The second one, a seven-alternative forced-choice (7AFC),
is meant to test the recognition of a gesture among seven
labels, to assess broad agreement.

A. Approach

As in [9], it was expected that for the 2AFC condition
users would be able to select the preferred label (chosen
by the experimenters) more often than chance. One major
difference in this work than in the work on co-speech
gestures by [9], [10], [12], [11], [13] is that the gestures
tested here do not have an inherent meaning within speech;
instead we are assessing whether they map to concepts
assumed to be already understood by the users.

We also wanted to take this experiment a step further to see
if there was convergence from participants on label assign-
ment by testing all labels and all gestures in the 7AFC task.
Here, it was expected that gestures with high recognition
in the 2AFC task would also show high convergence in the
7AFC condition.

B. Participants

Participants were a convenience group recruited from
mTurk and paid $2.00 dollars for their participation in the
experiment. All participants were required to have a 95%
task approval rate with a minimum of 10000 tasks and with a
Master rating. To prevent participants from working in more
than one posting (condition) of this study, the experimenter
assigned an ID to all workers who completed a task, which
prevented them from accepting another.

In the 2AFC, thirty-two participants (22 male, 10 fe-
male) with an age range of 26-49 (mean=34.75, standard
deviation=6.97) were involved in this study. Sixteen partici-
pants reported prior robot experience with seven participants
reporting robot ownership. Thirteen participants reported
prior piloting experience with remote controlled or manned
aircraft. Twenty-one participants had completed a bachelor’s
degree or higher, four completed some college, three had an
associate’s degree, and four completed high school.

The 7AFC had thirty-two participants (21 male, 11 fe-
male) with an age range of 21-61 (mean=33.88, standard
deviation=9.06). Seven participants reported prior robot ex-
perience with four reporting robot ownership. Thirteen par-
ticipants reported prior experience piloting a remote con-
trolled or manned aircraft. Fifteen participants completed a
bachelor’s degree or higher, eleven had some college, two
had an associate’s degree, and four completed high school.



Fig. 3. Participant view of the mTurk task.

One important note about the robot experience questions
is that they were phrased to solicit interactions in a broad
context. Robot experience was assessed by: asking whether
participants had “ever interacted with a robot”, the frequency
of interaction, and the type of robot (consumer, including
Roomba or a pool cleaning robot; industrial, including telep-
resence or other workplace robots; educational, including
Lego Mindstorms or those in a museum; or entertainment,
including Parrot AR.drone, DJI Phantom, or Sony Aibo).
These prompts also serve to remind people about times when
they may have interacted with a robot, so might be overly
sensitive to individual interactions. Within the participants
that had robot interactions, 6 of 23 had only interacted with
a robot once.

C. Experimental Procedure

Participants were required to click a button labeled “I
Accept” to consent to participate in the study, otherwise they
had to decline and return the task. After accepting, they were
given a short demographics survey, positive and negative
affect assessment, and negative attitudes towards robots scale
to answer. Upon completion of the questions on mTurk, the
participants were redirected to a Google Form (while being
instructed to keep the task open for a completion phrase to
be provided at the end of the Google Form). This allowed the
task time to be tracked and all information for task approval
to remain within mTurk, while also enabling filtering of
repeated workers and a fixed ordering of both the videos and
post-experiment questionnaires. While not very streamlined,
this guaranteed ordering was important for the counter-
balanced conditions in order to prevent the participants from
reordering on the single page design required by mTurk
(participant view is shown in Fig. 3).

The Google Form began by requiring the mTurk ID to
prevent repeated access by the same workers. Next, partic-
ipants were required to perform a manipulation check to
ensure that their computer displayed video and they could
follow directions (enter the word displayed in a video similar
to those they would watch for the task). Following this,
they were shown a set of four videos (counterbalanced in
four presentation orders with eight participants each for each
experiment). For each video they were shown an embedded
video with a label that read “Please use this video to answer
the next question.” The task was shown below with the title

Fig. 4. Participant view of a Google Form question.

of the video and a subtitle reading “Watch the above video
and select the word that best describes what the robot is
trying to communicate.” and below this was a set of either
two words or seven words depending upon the participant
condition (a sample 2AFC participant view is shown in Fig.
4). After completing these four videos, another manipulation
check was performed before the participant continued to
another four videos to label (with each participant seeing all
eight videos). Finally, a post-experiment questionnaire was
administered to assess: positive and negative affect, whether
they thought the robot was looking at them, whether they
were scared of the robot and if they would approach it
outdoors, comments about the robot, comments about the
experiment, and general comments.

Participants completed the entire task in an average of
24.63 minutes (SD=12.18) in the 2AFC task and 26.15
minutes (SD=12.29) in the 7AFC task.

D. Experimental Materials

The same videos were used for all of the experiments, with
the only difference in materials being the choices provided
in the forced-choice tasks, shown in Table II.

E. Analysis and Results

The results in these studies were judged using a binomial
test for 2AFC (compared to 50%) and a Chi-square test
(compared to an even distribution) with p <0.01; the resul-
tant necessary agreement was 75% agreement in 2AFC and
34.4% agreement in 7AFC. In the 2AFC, subjects labeled
gestures with a chosen label compared with a distractor
chosen from a set of seven labels (draw attention, lost sensor,
landing, change position, lost signal, low battery, and missed
goal). Those labeled with high agreement are: Figure-8 (Lost



TABLE II
AVAILABLE LABELS FOR EACH CONDITION.

2AFC 7AFC
Motion Label Distractor Label

Circle Lost Signal Draw Attention Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Figure-8 Lost Sensor Landing Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Left-Right Missed Goal Lost Sensor Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Loop Draw Attention Low Battery Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Spiral Landing Missed Goal Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Swoop Draw Attention Low Battery Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Undulate Change Position Low Battery Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Up-Down Change Position Lost Signal Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery

TABLE III
RESULTS FROM A PRELIMINARY TEST WITH 64 PARTICIPANTS (32 IN EACH CONDITION), WITH ONLY P <0.01 SHOWN.

2AFC 7AFC
Motion Percent Chosen Label Percent Chosen Label

Circle 40.6% Draw Attention
Figure-8 84.38% Lost Sensor 40.6% Change Position
Left-Right
Loop 34.4% Landing
Spiral 87.5% Landing 59.4% Landing
Swoop 75% Draw Attention
Undulate 34.4% Draw Attention
Up-Down

Sensor, 84.38%), Spiral (Landing, 87.5%), and Swoop (Draw
Attention, 75%). To further explore these results, a 7AFC
test was run with all labels available for each motion. These
results suggest that 5 motions (3 unique from the first set)
could be discriminated at a p <0.01, these are: Circle (Draw
Attention, 40.6%), Figure-8 (Change Position, 40.6%), Loop
(Landing, 34.4%), Spiral (Landing, 59.4%), and Undulate
(Draw Attention, 34.4%). These results are also shown in
Table III.

VI. DISCUSSION

We now discuss the results found in the studies presented
above before remarking upon the manipulation consider-
ations, limitations, research and design implications, and
future work related to these studies.

A. Use of Avian Flight Paths to Convey sUAS State Infor-
mation

The primary finding in this work was that sUAS flight
paths can be used to communicate information about the
sUAS and its understanding of the world to diverse par-
ticipants. Participants broadly agreed that a Spiral could be
used to indicate landing and participants in the 7AFC also
suggested that Undulate could be used to draw attention, and
we believe these gestures could likely be used by developers
now to indicate these states in public facing interactions. It
was also interesting that there was significant agreement in
2AFC for the use of Figure-8 for lost sensor and Swoop for
draw attention, but that Figure-8 was more recognized for
change position in the 7AFC. This suggests that users may
understand in the presence of suggestion but might be less
likely to apply these labels without prompting.

The states proposed in this work were based on a de-
veloper’s understanding of states that would be helpful to

communicate and which might align with participants’ prior
experiences in the world. Also of interest is that the as-
sumptions about the participants’ likely mental models were
largely unconfirmed in the 2AFC study, but the 7AFC study
should provide insight into the ability for participants to
engage with labels for future studies. When less constrained
in their choices, the participants largely agreed about gestures
to draw attention and to land, which might be due to the
ability of novice users to better understand these states.
Participants without experience in working with sUAS may
not understand the impact and standard responses to states
such as lost signal or lost sensor. This was thought to be
a benefit when designing the study, but may have led to a
reluctance to use these labels or a less principled application
of their use. Draw attention and landing were both used at
least 20% of the time, while the others were used 15% or
less of the time and lost sensor was only used in 10% of
responses across both conditions. A recommendation would
be to follow these studies up with an open-ended study,
but this would be largely dependent upon the instructions
given to the participants and the ability to create meaningful
categories from the unconstrained data. On the other hand,
it would provide a richer data set from which to generalize
states to communicate.

B. Impact of Negative Attitudes towards Robots

Riek et. al [14] found that people with negative attitudes
towards robots, as assessed by the Negative Attitudes towards
Robots (NARS) scale [31] had more difficulty in recognizing
robot gestures when interacting with a humanoid robot. We
also examined our data to assess whether this finding was
supported with sUAS and the results are presented in Table
IV. There were 17 participants with positive attitudes towards
robots (8 in 7AFC and 9 in 2AFC with means below 2) and



TABLE IV
RESULTS FROM A PRELIMINARY TEST WITH 64 PARTICIPANTS (32 IN EACH CONDITION) COMPARING BROAD AGREEMENT OF PARTICIPANTS WITH

NEGATIVE ATTITUDES TOWARDS ROBOTS VERSUS THOSE WITH POSITIVE ATTITUDES TOWARDS ROBOTS.

2FAC 7FAC
Motion Positive Attitude Negative Attitude Label Positive Attitude Negative Attitude Label

Circle 77.8% 50% Draw Attention 50% Draw Attention
Figure 8 77.8% 100% Lost Sensor 50% Draw Attention 50% Change Position
Left-Right 66.7% 100% Lost Sensor 50% Missed Goal
Loop 77.8% 50% Draw Attention
Spiral 88.9% 83.3% Landing 50% 66.7% Landing
Swoop 88.9 % 66.7% Draw Attention 50% 50% Low Battery
Undulate 55.6% 50% Change Position
Up-Down 66.7% 50% Change Position 50% Lost Signal

12 participants with negative attitudes towards robots (6 in
each 2AFC and 7AFC with means above 3).

This data does not seem to support the Riek finding,
which could be due to multiple factors such as the lack
of a clear meaning for prejudice against robots to interfere
with, lack of mapping from humainoid or ground robots to
aerial vehicles, and too small samples for those with extreme
opinions about robots. Note when viewing the table that 50%
was the expected agreement in the 2AFC, which was shown 4
times in the negative attitudes conditions, but the two highest
agreements also appeared in the negative attitude conditions.
Across all attitudes and conditions, the recognition of spiral
relating to landing was shown.

C. Manipulation Considerations

To confirm that users were able to play the videos and
follow directions, each task had two test tasks, which said
“Watch the video above and type the word shown.” Each of
these videos displayed words on the screen and participants
were required to type those words into a text box to have
their tasks approved. These test tasks were displayed at the
beginning of the task and again halfway through the labeling
task.

One manipulation that we did not assess, but should be
considered in future work, is whether the users have sound
enabled on their computer. This task did not require sound
to be enabled, but also did not remove the sound from
the videos, which may have resulted in different sensory
interactions from different participants. Some participants
mentioned the sound in their post-experiment feedback on
the robot, for example:

• P14, 2AFC: “It’s very loud. I can see how the noise can
become grating soon enough.”

• P11, 7AFC: “Never realized just how loud they are.”
• P15, 7AFC: “It is an excessively loud robot. ”

D. Limitations

At this formative stage, we attempted to control several
factors to gain an understanding of communicative ability
with limited complexity. The work is replicable and also a
valuable starting point that has been successfully used in
human-human communication studies [10], [9]. The design
choices we made, however, limit the generalization of our
findings, and we intend to relax them in the next studies.

Among those are moving from indoor flights to outdoor
flights and from video to live flights, adding goal states, and
enriching both the response set and the whole context.

From a population perspective, since the participants were
recruited from mTurk, they did have more diversity in age
and education than we would generally see on a college
campus, but they were overwhelmingly American which
could limit the application of these results in other cultures,
as suggested by [32].

One final limitation of note is the idea that the gestures
could interfere with other tasks being undertaken by the
sUAS. While this is a possible drawback from the visual
communication, it is anticipated that the states proposed for
communication would necessitate the pausing of a task. For
example, if a sUAS is taking pictures or videos of a farm and
finds something important then the sensed information would
potentially override the value of the other mission. The states
presented here are targeted for generality, but some such as
attract attention, may less valuable to communicate in hobby
domains and essential in applied domains.

E. Research and Design Implications

A major implication of this work is to suggest investiga-
tions into how naive users understand sUAS problem states
when compared to users with experience in piloting these
vehicles. The communication of more technical states will
be predicated upon a user base that can understand them,
which may result in recommendations for team training prior
to implementing use. This training will be unlikely with
general novice users, but may be resolved through a more
participatory design process or through communication of
the states they do understand. For example, it may be less
important that bystanders understand the “lost sensor” signal
if it is followed by a spiral landing, which they can generally
understand and predict the final state.

Another path for exploration is the idea of a “guessability”
study as conducted by [33], [16], [23] to have a small set
of participants design gestures and then test them with a
larger pool in order to see if there are understood methods
for conveying these ideas. An interesting aspect of these tests
is that the users may converge on any number of parameters,
such as height change indicating attention drawing and
combine these ideas into a richer gesture set than the one
that we applied here. This approach has limitations which



were considered to make it an inappropriate starting point
(such as the limitation to the culture that created the gestures
as seen in [10]) while the labeling study here was deemed
to be a sanity check to understand whether opinions could
converge on given flight paths. With the information here,
it is expected that a “guessability study” would be a valid
method for refinement, allowing a comparison against the
baseline described here and is recommended for additional
study.

Additionally, it is recommended that the Negative Atti-
tudes towards Robots scale [31] be investigated for applica-
bility to sUAS research. This recommendation is based on
the inconclusive support for Riek’s [14] humanoid findings
to the sUAS gestures.

VII. CONCLUSIONS

This paper presents an initial study on the ability for
novice users to understand communicative flight paths from
an sUAS to increase safety in future interactions in public
spaces. Results indicate a strong understanding across users
for a spiraling path to communicate “landing”, but users
primarily gravitated towards well understood states (draw
attention and landing) while avoiding more technical states
(lost sensor). Recommendations for future work include:
outdoor tests, visible goal state, open-ended responses, and
user generated flight paths. An initial finding questions
whether the findings from humanoid robots that negative
attitudes towards robots decrease understanding of gestures
also applies to sUAS, and leaves a more broad question
on whether a version of NARS should be revised to apply
specifically to sUAS.

ACKNOWLEDGMENT

The authors thank Urja Acharya, Rubi Quinones, and Siya
Kunde for their technical assistance.

REFERENCES

[1] Amazon Prime Air Delivery Drones Fly Into Our
Hearts With A Package Of 5 Pounds Or Less, 2016.
[Online]. Available: https://www.forbes.com/sites/curtissilver/2016/
12/15/amazon-prime-air-drone-delivery/#44fc4435bb4a

[2] Alphabet and Chipotle Are Bringing Burrito
Delivery Drones to Campus, 2016. [Online].
Available: https://www.bloomberg.com/news/articles/2016-09-08/
burrito-by-drone-coming-to-campus-in-test-of-alphabet-s-delivery

[3] E. Beachly, J. Higgins, C. Laney, S. Elbaum, C. Detweiler, C. Allen,
and D. Twidwell, “A micro-uas to start prescribed fires,” in Interna-
tional Symposium on Experimental Robotics, 2017, pp. 12–24.

[4] P. Roy and V. Isler, Vision-Based Apple Counting and Yield Estimation.
Cham: Springer International Publishing, 2017, pp. 478–487. [Online].
Available: https://doi.org/10.1007/978-3-319-50115-4 42

[5] D. Szafir, B. Mutlu, and T. Fong, “Designing mechanisms for com-
municating directionality in flying robots,” in Proceedings of the
ACM/IEEE International Conference on Human-Robot Interaction,
2015.

[6] F. Heider and M. Simmel, “An experimental study of apparent
behavior,” vol. 57, no. 2, pp. 243–259, 1944. [Online]. Available:
http://www.jstor.org/stable/1416950

[7] J. W. Davis, “Categorical organization and machine perception of
oscillatory motion patterns,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2000.

[8] W. H. Dittrich and S. E. G. Lea, “Visual perception of intentional
motion,” Perception, vol. 23, no. 3, pp. 253–268, 2017/02/21 1994.
[Online]. Available: http://dx.doi.org/10.1068/p230253

[9] R. M. Krauss, P. Morrel-Samuels, and C. Colasante, “Do conversa-
tional hand gestures communicate?” Journal of personality and social
psychology, vol. 61, no. 5, pp. 743

[10] G. Prati and L. Pietrantoni, “The semantic specificity of gestures
when verbal communication is not possible: the case of emergency
evacuation,” International Journal of Psychology, 2013.

[11] M. Salem, S. Kopp, I. Wachsmuth, K. Rohlfing, and F. Joublin, “Gen-
eration and evaluation of communicative robot gesture,” International
Journal of Social Robots, 2012.

[12] C. Huang and B. Mutlu, “Modeling and evaluating narrative gestures
for humanlike robots,” in Robotics: Science and Systems (RSS), 2013.

[13] V. Ng-Thow-Hing, P. Luo, and S. Okita, “Synchronized gesture and
speech production for humanoid robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010.

[14] L. D. Riek, T. C. Rabinowitch, P. Bremner, A. G. Pipe, M. Fraser, and
P. Robinson, “Cooperative gestures: Effective signaling for humanoid
robots,” in In Human-Robot Interaction (HRI), 2010 5th ACM/IEEE
International Conference on, 2010, pp. 61–68.

[15] A. Dragan and S. Srinivasa, “Integrating human observer inferences
into robot motion planning,” Autonomous Robots, 2014.

[16] B. Gleeson, K. MacLean, A. Haddadi, E. Croft, and J. Alcazar,
“Gestures for industry: intuitive human-robot communication from hu-
man observation,” in Proceedings of the 8th ACM/IEEE international
conference on Human-robot interaction. IEEE Press, 2013, pp. 349–
356.

[17] G. Tang, G. Charalambous, P. Webb, and S. R. Fletcher, “Users’
understanding of industrial robot gesture motions and effects on trust,”
Contemporary Ergonomics and Human Factors, pp. 116–123, 2014.

[18] M. Sharma, D. Hildebrandt, G. Newman, J. Young, and R. Eskicioglu,
“Communicating affect via flight path: exploring use of the laban effort
system for designing affective locomotion paths,” in Human-Robot
Interaction (HRI), ACM/IEEE International Conference on, 2013.

[19] J. Cauchard, K. Zhai, M. Spadafora, and J. Landay, “Emotion en-
coding in human-drone interaction,” in Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction, 2016.

[20] D. Szafir, B. Mutlu, and T. Fong, “Communication of intent in assistive
free flyers,” in Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction, 2014.

[21] W. Ng and E. Sharlin, “Collocated interaction with flying robots,”
in IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN 11), 2011.

[22] K. Pfeil, S. Koh, and J. LaViola, “Exploring 3d gesture metaphors for
interaction with unmanned aerial vehicles,” in International Confer-
ence on Intelligent User Interfaces, 2013.

[23] J. Cauchard, L. Jane, K. Zhai, and J. Landay, “Drone and me: an ex-
ploration into natural human-drone interaction,” in ACM International
Joint Conference on Persuasive and Ubiquitous Computing, 2015.

[24] R. Arkin, Behavior-Based Robotics. A Bradford Book, 1998.
[25] R. Murphy, Introduction to AI Robotics. MIT Press, 2000.
[26] G. Legge and J. Foley, “Contrast masking in human vision,” Journal

of the Optical Society of America, 1980.
[27] V. Hazan and S. Barrett, “The development of phonemic categorization

in children aged 6-12,” Journal of Phonetics, 2000.
[28] L. Bartoshuk, “The psychophysics of taste,” The American Journal of

Clinical Nutrition, 1978.
[29] M. Cao, A. Stewart, and N. Leonard, “Integrating human and robot

decision-making dynamics with feedback: models and convergence
analysis,” in IEEE Conference on Decision and Control, 2008.

[30] A. Stewart, M. Cao, A. Nedic, D. Tomlin, and N. Leonard, “Towards
human-robot teams: model-based analysis of human decision making
in two-alternative choice tasks with social feedback,” Proceedings of
the IEEE, vol. 100, no. 3, 2012.

[31] D. Syrdal, K. Dautenhahn, K. Koay, and M. Walters, “The negative
attitudes towards robots scale and reactions to robot behaviour in a
live human-robot interaction study,” in Proceedings New Frontiers in
Human-Robot Interaction, 2009.

[32] L. Jane, L. Ilene, J. A. Landay, and J. R. Cauchard, “Drone &
wo: Cultural influences on human-drone interaction techniques,” in
Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. ACM, 2017, pp. 6794–6799.

[33] J. Ruiz, Y. Li, and E. Lank, “User-defined motion gestures for
mobile interaction,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’11. New
York, NY, USA: ACM, 2011, pp. 197–206. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1978971


