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Abstract We present an algorithm for estimating thruster configurations of under-
water vehicles with reconfigurable thrusters. The algorithm estimates each thruster’s
effect on the vehicle’s attitude and position. The estimated parameters are used to
maintain the robot’s attitude and position.
The algorithm operates by measuring impulse response of individual thrusters and
thruster combinations. Statistical metrics are used to select data samples. Finally,
we compute a Moore-Penrose pseudoinverse, which is used to project the desired
attitude and position changes onto the thrusters.
We verify our algorithm experimentally using our robot AMOUR. The robot con-
sists of a main body with a variable number of thrusters that can be mounted at arbi-
trary locations. It utilizes an IMU and a pressure sensor to continuously compute its
attitude and depth. We use the algorithm to estimate different thruster configurations
and show that the estimated parameters successfully control the robot. The gathering
of samples together with the estimation computation takes approximately 40 sec-
onds. Further, we show that the performance of the estimated controller matches the
performance of a manually tuned controller. We also demonstrate that the estima-
tion algorithm can adapt the controller to unexpected changes in thruster positions.
The estimated controller greatly improves the stability and maneuverability of the
robot when compared to the manually tuned controller.
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1 Introduction

We wish to develop underwater robot systems whose dynamic properties can be
adjusted in real time. Specifically, we are developing modular underwater robots
capable of collecting and placing loads, and whose thruster configuration can be ad-
justed on the fly, by adding, removing, or repositioning thrusters. A key challenge
is to develop robot control systems capable of adapting in situ, without human re-
programming to changing robot dynamics. In this paper we present an algorithm for
estimating the thruster configuration of a modular underwater robot.

This line of research is motivated by our prior work on developing modular un-
derwater robots with variable thruster configurations and dynamics. AMOUR is de-
signed to be a flexible underwater platform that can operate in shallow ocean envi-
ronments [11]. Other hovering underwater robots that maneuver predominantly us-
ing thrusters include the University of Hawaii ODIN-III robot [1], the CSIRO Star-
bug robot [3] and the Bluefin Robotics HAUV [10]. The Modular Thruster Control
Algorithm developed in our previous work [2] provides attitude and position control
for modular robots and can handle arbitrary thruster configurations. However, the al-
gorithm requires knowledge of the thrusters’ locations. The estimation algorithm in
this paper determines the robot’s inverse thruster model automatically effectively
learning the robot’s thruster geometry and dynamics.

Prior work on learning the thruster configuration of a robot uses neural nets to
create a mapping between commands and thruster outputs. Van de Ven et al. give
an overview of neural network control of underwater vehicles and simulation stud-
ies [13]. Gua et al. and Ishii et al. learn yaw control [6, 7] and Farrell et al. and
Kodogiannis et al. learn depth control [4, 8]. They all verify their controllers in
simulation as well as through experiments. Further, Lorentz et al. present an on-
line adaptive single input single output neural net controller for the heave motion
of the ODIN underwater vehicle [9]. They experimentally verify their controller
in the pool. Gaskett et al. present a model-free reinforcement learning system for
their underwater vehicle Kambara[5]. They evaluate their model in simulation with
a two-thruster AUV (one left, one right) in the plane.

In this prior work, the neural nets attempt to simultaneously learn a model of the
vehicle and a controller. The learning often takes a long time and the resulting con-
trollers show slow response times of multiple seconds. In contrast to these works we
assume the existence of a stable control algorithm and learn an inverse model of the
thrusters that is then used by the controller. The approach is related to a procedure
presented by Van de Ven et al. that uses neural nets to identify the main hydrody-
namic parameters of an underwater vehicle model, assuming a priori knowledge of
an inverse model of the vehicles propulsion system [12]. However, instead we de-
termine the inverse thruster model and we do so analytically without the use of a
neural net.
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Fig. 1 Picture of the robot AMOUR 6 with spare thrusters.

2 Technical Approach

Algorithm 1 for estimating the thruster configuration of an underwater modular
robot makes the following assumptions: (1) the robot is capable of determining its
own attitude by measuring the acceleration vector, a ∈R3, and the magnetic field
vector, m ∈ R3; (2) the number of thrusters N is known but their location is not
known; (3) each thruster is rigidly mounted to the robot at some unknown position
with an unknown orientation of thrust; (4) thrusters take a command between −100
and +100 (full thrust backward/full thrust forward), 0 means the thruster is off. The
output of Algorithm 1 is an inverse model of the thrusters, i.e. a mapping from a
desired rotation and position change of the robot to thruster commands.

While the robot is at rest, the algorithm measures σacc and σrot , the acceleration
noise levels and the changes in rotation of the robot. Estimation is performed by
pulsing individual thrusters and recording the measured rotational changes rot and
accelerations acc of the robot together with the thruster output. Each thruster is
pulsed for 1 second with a settling time of 3 seconds in between pulses.

Data samples are only chosen during pulse time. Samples are selected when they
show a change of at least k times larger than the noise level of the corresponding
signal (σacc and σrot ). In our implementations we use k = 3. Initially a thrust level
of 50% maximum thrust is selected as the pulse strength. However, the flags f lagrot
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and f lagacc ensure, that if no samples are gathered during a pulse because the accel-
erations and changes to rotation are smaller than k times the noise levels, then the
thrust level is increased by 10%.

After a sufficient number of pulses (currently determined manually by an ob-
server) we compute a least squares solution to the linear equation system S ⋅A = T
for both accelerations and rotational changes. This is done by computing the Moore-
Penrose pseudoinverse for the matrix S. The matrices Aacc and Arot represent inverse
thruster models of the underwater vehicle. These matrices can be used to project the
desired changes in attitude and position onto the robots thrusters. We refer inter-
ested readers to our previous work on the Modular Thruster Control Algorithm for
details [2].

3 Simulations

We studied the thruster configuration estimation algorithm in simulation to verify
the correctness of the estimation and its performance. We developed a model of
the robot and considered configurations with 2, 4, 6, and 8 thrusters. In each case
we selected some fixed thruster configurations to experiment with. We also ran the
thruster estimation algorithm in segments of 100 runs for each thruster number (2, 4,
6, 8). For each of the 100 runs we generated randomly the thruster configuration. We

Algorithm 1 Thruster Configuration Estimation Algorithm

thrust[1 . . .N]⇐ 0, power⇐ 0.5
measure IMU noise levels σacc and σrot
while learning do

PICK I ∈ 2N

f lagacc⇐ 1, f lagrot ⇐ 1
for 1 sec do

thrust[I]⇐ power
if ∣∣acc∣∣> k ⋅σacc then

APPEND (acc, thrust) TO (Sacc,Tacc)
f lagacc⇐ 0

end if
if ∣∣rot∣∣> k ⋅σrot then

APPEND (rot, thrust) TO (Srot ,Trot)
f lagrot ⇐ 0

end if
end for
if f lagacc or f lagrot then

power⇐max(power+0.1,1.0)
end if
thrust[i]⇐ 0, PAUSE(3 sec)

end while
Arot = S+

rot ⋅Trot , Atrans = S+
acc ⋅Tacc
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(a) pulses at 20% power (p = 20)
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Fig. 2 Thruster estimation algorithm simulation results for 4 randomly drawn thruster configu-
rations (4 top rows) and 4 manually defined thruster configurations (4 bottom rows). The x axes
denote the number of thruster pulses used so far. Each pulse is 1 s long with a 3 s pause following
it for a total of 4 s per thruster pulse. The y axes denote the error, 0 meaning a perfect estimate and
values above 0 indicating deviation from the ground truth as described in Section 3. The blue solid
line shows the error of the estimation of the rotation matrix and the red solid line shows the error of
the estimation of the acceleration matrix. All values are averaged from 100 experiment runs. The
dashed lines represent error bounds (1 standard deviation).
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measured the difference of the learned thruster configuration from the true thruster
configuration as the main evaluation metric.

More specifically for each simulation we first chose the thruster configuration
at random by sampling the effect of each thruster on the vehicles rotation and ac-
celeration from a uniform distribution. The simulation parameters were selected as
follows. We chose the maximum possible rotation speed of the vehicle caused by
a single thruster to be 5 rad/s at full thrust. (In comparison we recorded rotation
speeds of 2.5 rad/s during rolls effected by a single thruster commanded to operate
at half thrust on AMOUR.) We choose the maximum possible acceleration of the
vehicle caused by a single thruster to be 0.2 g. (This value was also chosen in accor-
dance with accelerations measured on AMOUR.) For a simulation of a vehicle with
N thrusters this resulted in two matrices that described the rotation and acceleration
contributions of each thruster:

R ∈R3×N ∣ s.t. ∣∣Ri,1..3∣∣ ≤ 0.05 and Macc ∈R3×N s.t. ∣∣Ri,1..3∣∣ ≤ 0.02

During simulation the thrusters were pulsed individually at a manually defined
thrust which corresponded to thrust values of −p and +p. We performed two sets
of simulations, one with p = 20 and one with p = 50. We pulsed thrusters in order,
each first in one direction and then in the other. After all thrusters have been pulsed
the simulation continued again with the first thruster and so on. This was done for a
total of 50 pulses during each simulation.

For every pulse a thrust vector T ∈ RN with Ti = ±p where i corresponded to
the pulsed thruster and Ti = 0 for all other thrusters. We computed the resultant
rotation and acceleration by multiplying the rotation matrix R and the acceleration
matrix A with the thrust vector T . The computed rotation and acceleration were
corrupted by adding a noise value drawn from a normal distribution with mean 0
and standard deviation 0.25 for rotation and standard deviation 0.05 for acceleration.
This corresponds to 0.25 rad/s error for rotations and 0.05 g error for acceleration.
We determined both values experimentally using AMOUR. The noise represented
the average noise over all samples collected during a real world experiment.

For every simulated thruster pulse we store the thrust vector and the rotation and
acceleration measurements in the same manner as presented in Algorithm 1. After
each pulse we computed a new estimate of the rotation and acceleration matrices
Rest and Aest using the data collected so far. We defined the error as

ER =
∣∣Rest −R∣∣
∣∣R∣∣

and EA =
Aest −A
∣∣A∣∣

.

For each thruster number (2,4,6,8) we ran 100 simulations. Figure 2 shows sim-
ulation data for the aggregated set of 100 simulations for k = 2,4,6,8 thrusters as
well as for 4 manually defined configurations. These manual configuration are: (1) 4
thrusters with 2 on each side of the robot, all oriented upwards (2) 5 thrusters in the
default configuration as seen in Fig 4(a), (3) 6 thrusters oriented to achieve 6 degrees
of freedom (DOF), and (4) 8 thrusters oriented to achieve 6 DOF. The left column
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of graphs shows simulation results for p = 20 and the right column for p = 50. The
x axes denote the number of thruster pulses used so far. Since each pulse is 1 s long
with a 3 s pause following it this corresponds to 4 s per pulse. The y axes denote the
error. The solid lines show the error after a given number of pulses averaged over
all 100 simulations. The dashed lines mark the error bounds (1 standard deviation).

The first 4 rows show a gradual decrease in performance. This illustrates that with
an increasing number of thrusters the algorithm takes a linearly increasing time to
achieve the same estimation accuracy. This is grounded in the fact that the thrusters
are pulsed round-robin and so to pulse each thruster a times takes n ⋅a pulses for n
thrusters.

Because the noise is mainly a function of the accelerometer and magnetometer
sensor we chose it to be independent of the actual rotational or translational speed of
the vehicle. A direct result is that simulations will converge quicker when thrusters
are commanded with higher values (faster speed). This behavior is directly visible
when comparing the performance of the estimation algorithm in Fig 2(a) (p = 20)
with the performance in Fig ?? (p = 50). All simulations shown assume the same
amount of noise, but the estimation accuracy converges much faster to a small value
when pulse with a higher thrust are used (p = 50). The same behavior was observed
also experimentally.

4 Experimental Results

In addition to the simulation studies, we also conducted a set of hardware experi-
ments in the pool using AMOUR [11]. We logged more than 10 hours of experimen-
tal data related to estimating thruster configurations. To fit the scope of this abstract
we present 3 sets that well reflect the performance of Algorithm 1.

In the first set of experiments AMOUR is configured with the standard five
thruster configuration visible in Fig. 4(a). Fig. 6(a) shows that when using the
learned parameters the robot can successfully execute and maintain commanded
changes in yaw, pitch, and roll. Fig. 6(a) and 6(c) show that the performance ob-
tained by using the learned parameters is similar to that when using manually tuned
parameters.

In the second set of experiments we rotate the top yellow thruster by 45 degrees
off-axis to simulate a thruster misalignment as seen in Fig. 4(b). We again run the
estimation algorithm. Fig. 6(b) shows the performance of the manual parameters for
the default thruster configuration. The rotation of the top thruster means that it now
has an effect on both pitch and yaw and this is reflected in the yaw error during
pitching. Fig. 6(d) shows that the performance of the controller with newly learned
parameters. With the learned parameters the robot successfully compensates for the
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(a) Estimation convergence for thruster configuration shown in Fig. 4(a).
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(b) Estimation convergence for thruster configuration shown in Fig. 4(b).
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(c) Estimation convergence for thruster configuration shown in Fig. 4(c).

Fig. 3 The convergence of the thruster rotation matrix estimation computed by the estimation
algorithm from experimental data. The x axis denotes the number of thruster pulses (for each pulse
multiple data points were collected). The y axis denotes the error. Each graph displays the error
of estimate Et when compared to the final estimate E f for that particular experiment. The error

is defined as error = ∣∣Et−E f ∣∣
∣∣E f ∣∣

. The final estimate was used to compute the error because it was
impractical to measure ground truth.
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Fig. 4 The thruster configurations used in the hardware experiments.
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Fig. 5 Experimental data (a) and results of the thruster estimation algorithm (b). In plot (a) the x
axis denote time in seconds and the y axis shows: (top) the 5 thruster commands with the thrusters
being pulsed successively, (middle) the rotational speed of the robot in response to the thrusters,
(bottom) the accelerations as measured on the robot. Red denotes a rotation around or an acceler-
ation along the x-axis of the robots coordinate system. Green represents the robots y-axis and blue
the z-axis. In plot (b) the learned rotation matrices and acceleration matrices are shown projected
respectively onto the planes of yaw, pitch, roll as well as heave, sway, and surge. The y axis denote
the magnitude of a thrusters contribution towards that particular motion. T, LB, RB, L, and R on
the x axis denote the thruster as labeled in Fig 4. For each thruster 4 bar graphs are shown: (black)
for the manual configuration, (red) for the default robot configuration shown in Fig. 4(a), (green)
for the robot configuration shown in Fig. 4(b), and (blue) for the configuration shown in Fig. 4(c).

thruster misalignment and the yaw errors during pitch maneuvers are reduced by
more than a factor of 2.

In the third set of experiments all thrusters are aligned with the robot’s main
body as shown in Fig. 4(c). The blue bars in Fig. 5(b) represent the learned parame-
ters for this configuration. It can be seen that the algorithm correctly recognizes all
thrusters contribution to yaw, pitch, and surge maneuvers (the left thrusters screw is
left handed, so it’s thrust direction is reversed). However it is also visible that the
algorithm does not detect missing degrees of freedom and ‘learns’ to heave, sway,
and roll. This sometimes caused oscillations when controlling the robot.

5 Experimental Insights

The estimation algorithm eliminates the need for precise manual calibration of
thruster positions. It allows quick in-situ estimation of the inverse thruster model,
which enables direct control of the robot. In all experiments the algorithm estimates
the thruster positions within 40 seconds: only two thrust pulses per thruster, one in
each direction, were necessary to learn an inverse model that allowed for control of
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(b) Effect of pitch on yaw, top thruster rotated
45∘ (Fig. 4(b)), manual parameters
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(d) Effect of pitch on yaw, top thruster rotated
45∘ (Fig. 4(b)), learned parameters

Fig. 6 Experimental results showing performance of robot with thruster positions estimated by the
algorithm. In plots (a) and (c) the y axes denote angular attitude of the vehicle projected onto the
yaw, pitch, and roll planes. In plots (b) and (d) the y axes denote the pitch angle of the robot (upper
part of each graph) and the angular yaw error (lower part of each graph). The black line in all plots
represents the desired goal attitude. The green and blue lines represent the robots current attitude
and attitude error respectively. The red numbers denote the mean angular error between the robots
position and goal.

the robot. The stability of the controller was of equal quality using the estimated pa-
rameters and the manual parameters for the default robot configuration (Fig. 4(a)).
In the case of a misaligned thruster (Fig. 4(b)) the estimation algorithm correctly
identifies the misalignment and the controller outperforms the default manual pa-
rameters.

We observed that since the acceleration sensors are noisier than the gyroscopes
the translational component of the inverse model was more difficult to learn. Initial



Estimation of Thruster Configurations for Reconfigurable Modular Underwater Robots 11

experiments show that learning performance of the translational parameters can be
improved by pulsing pairs of thrusters.

We are currently working on methods to determine pulse and pause lengths and
when to stop the algorithm automatically. Also, the algorithm does not detect miss-
ing degrees of freedom and this can result in erroneous maneuvers when the con-
troller tries to move the vehicle into a direction its thrusters cannot actuate. We
are working on an on-line method to detect these failures after estimation and ac-
cordingly update the inverse model. Finally, the response time of the controller can
be improved by learning a dynamic model of the thrusters that incorporates time-
varying behavior.
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