
Hierarchical Control for Self-assembling Mobile
Trusses with Passive and Active Links

Carrick Detweiler∗, Marsette Vona†, Keith Kotay and Daniela Rus
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
∗carrick@mit.edu,†vona@mit.edu

Abstract— This paper explores the space of active modular
trusses, ranging from a passive truss with one independent
active climbing module to fully self-reconfiguring dynamically
controllable trusses comprised of active modules and passive
struts. We describe a hardware design for truss climbing and
present hierarchical algorithms for controlling hyper-redundant
modular trusses.

I. INTRODUCTION

Self-reconfiguring robots are modular robot systems that
are physically connected and capable of making structural
geometric changes autonomously. Most current research in
this field is focused on homogeneous systems in which all
the modules are identical. In this paper we study a special
class of heterogeneous self-reconfiguring robots we call active
trusses. The robots in this class look like trusses and are
comprised of two types of modules: passive structural modules
which may either be fixed in the environment or free to move
individually, and mobile active modules which may pick up
or climb on the passive modules, organize and hold them in a
desired shape, and actively move them for self-assembly, self-
reconfiguration, or self-repair purposes. The passive modules
can be passed around by the active modules and coordinated
to form the skeleton of a large class of truss geometries. For
example, figures 8 and 9 show a self-assembling active tower
belonging to this class. Such active trusses have many potential
applications, ranging from self-assembly of truss structures for
space exploration to creating dynamic scaffolds and movable
towers for construction tasks.

A long-term application of these systems is in-space struc-
ture construction. Simple self-reconfiguring robot modules will
pack tightly in a spacecraft, yet they will be able to self-
assemble, self-reconfigure, self-repair, and adapt their collec-
tive morphology, and function, to perform a variety of tasks—
some known in advance (pre-launch) and some dynamic (post-
launch). The modules can act both as effectors to assem-
ble/repair/service other space structures and as active orbiting
structures themselves. Other applications include terrestrial
construction of increasingly more capable structures.

One specific application we are developing is customized
window shading. We work in a lab with a large wall-window
(about 4m tall and 8m wide) which has no shades to block
sunlight. Instead of traditional shades which would block the
whole window, we are using the fixed truss structure formed
by the window’s grid of aluminum supports as a passive

element and one module, called Shady, as an active element.
Shady will grip and locomote on the window frame grid to an
optimal location where it will deploy a fan, thus creating active
personal shading in the lab. Experiments with a preliminary
version of the hardware have shown locomotion capability but
require a slight modification to the window frame (section IV-
A.2). We are currently developing revised hardware to solve
this problem; initial results are promising, and we hope to
report fully on this work in a latter publication.

The challenge in building such mobile trusses spans the
entire spectrum from issues related to designing simple and
robust active modules to problems of control and planning.
Control for these systems is challenging because their c-space
has dynamic topology, and in the general case they are under-
constrained (hyper-redundant) systems with a continuum of
solutions. Similarly, planning is challenging due to the large
number of degrees of freedom that have to be coordinated for
high-level tasks.

In this paper we propose the concept of building trusses
with passive and active modules and examine some control
and coordination issues that arise when using such systems.
We describe a continuum of trusses that covers the spectrum
from passive trusses with active modules that can traverse
them all the way to active trusses that can self-assemble,
self-inspect, self-repair, and move. We present a hardware
instantiation of the truss-climbing robot Shady, and the concept
of Multi-Shady which instantiates the idea of mobile active
trusses in simulation. We present our hardware and control
algorithms for Shady and our simulated control algorithms
for Multi-Shady. Finally, we discuss the benefits of building
self-reconfiguring robots with active and passive modules.

II. RELATED WORK

Our proposed systems and algorithms are related to prior
work in the fields of self-reconfiguring robots, hyper-redundant
robots, and variable-geometry truss robots.

A. Self-Reconfiguring Robots

Of all the self-reconfiguring modular robots which have
been previously reported, our current work seems most closely
allied with systems based on rotary DOF and mechanical
connection mechanisms, for example: Murata, Kurokawa, et
al’s “3D Fracta” [1]; Kotay and Rus’ “Molecule” [2], [3], [4];
Unsal, Kiliccote, and Khosla’s bi-partite “I-Cubes” [5] system;



Duff, Yim, et al’s PolyBot [6]; and Lund, Beck, Dalgaard, Støy
et al’s ATRON [7], [8].

A major difference in our present work is that we are
proposing bi-partite modular systems with only some modules
containing active DOF—the rest serve as static structural
elements. In contrast, all of the above referenced systems are
either homogeneous (all modules identical and actuated) or
are heterogeneous but still require actuation in all modules.

B. Hyper-Redundant Robots

Research in the field of “hyper-redundant” robots has
mainly explored non-reconfiguring systems with high DOF
and fixed kinematic topology, typically open chains. Both
planar systems—e.g. Burdick and Chirikjian’s “snakey” [9];
Greenfield, Rizzi, Choset et al’s modular snake [10]—and full
spatial mechanisms—e.g. Suthakorn and Chirikjian’s binary-
actuation manipulator [11]; Wolf, Choset, et al’s “Schmoopie”
[12]—have been explored. The planar systems typically have
one kinematic DOF per link, and the spatial systems may
have two or more. Sometimes the links are internally parallel
mechanisms, an arrangement which has been called “hybrid
serial-parallel” ([13], [14], [11]).

Our proposed two-leg tower construction (section V-B) is a
hybrid serial-parallel mechanism; and our single-chain tower
is kinematically equivalent to typical hyper-redundant snakes.
Thus far we have applied classical pseudoinverse-derived
inverse kinematics methods for these structures but we are also
considering adaptation of methods developed specifically for
hyper-redundant robots, for example Chirikjian’s “backbone
curve” method [15].

C. Variable Geometry Truss Robots

Variable geometry trusses (VGTs), can be viewed as a
generalization of the serial-chain hyper-redundant systems
to more general kinematic topologies. Both fixed-topology
systems like the NASA/DOE “SERS DM” [16] and manually-
reconfigurable systems—notably Hamlin, Sanderson, et al’s
TETROBOT [13]—have been considered. Also related are
robotic systems which assemble static trusses, for example,
Everest, Shen, et al’s SOLAR [17]. Such self-assembling and
self-reconfiguring truss systems can be a promising direction
for robotic assembly of large structures in space—for example,
see Doggett’s overview of automatic structural assembly for
NASA [18].

Truss climbing robots are also under active investigation,
e.g. Amano et al’s handrail-gripping robot for firefighting [19],
Ripin et al’s pole climbing robot [20], Nechba, Xu, Brown
et al’s “mobile space manipulator SM2” [21], [22], and Al-
monacid et al’s parrallel mechanism for climbing on pipe-like
structures [23]. Truss climbing also has been acknowledged
to have clear applications in inspection and construction of
in-space structures [24].

Our proposed systems can act as self-reconfiguring/self-
assembling modular VGTs (section V), and our Shady robot
(section IV) shows how the same module designs can also be
applied to truss-climbing.

III. ABSTRACT TRUSS MODEL AND SOFTWARE

We envision an abstract continuum of modular truss robots
with varying functionality. The simple end of the continuum is
a fixed truss with one active climbing unit (section IV), and the
complex end is a self-assembling/self-reconfiguring variable-
geometry truss composed of active and passive robot modules
(section V). Examples of intermediate points along the contin-
uum include a fixed truss with multiple independent climbing
units and manually-assembled variable-geometry trusses.

By selecting a point along the continuum, a designer can
match system function (and cost) to the requirements of a
specific application. As a further aid to system design, we
propose unified models for robot modules which allow re-
use of basic electromechanical designs and kinematic control
algorithms in implementations at all points on the continuum.

A. Generic Module Models

It is likely impractical to specify a single hardware design
which applies to all modular truss applications, so instead we
propose abstract module models which can be scaled, adapted,
and specialized to yield hardware appropriate for classes of
applications. This allows us to re-use not only the basic elec-
tromechanical layout, but also kinematic control algorithms
(path planner, section IV-C; hierarchical control methods, sec-
tion V), and user-interface visualization/commanding software
(section III-B).

We propose two abstract module models: passive units,
which are simple rigid bars; and active units which incorporate
several actuated DOF and which grip one or more passive
units.

Though most of our work to-date has been on 2D (planar)
trusses, we also describe simple extensions to the module
models for 3D trusses.

1) Passive Module Model: The passive modules are simply
straight rigid bars. Their cross-section, length, and material
properties are application-dependent, and in some applications
these attributes may vary among modules. Since these passive
modules are rigid they have zero intrinsic state. Their extrinsic
state is the appropriate rigid body transformation: two trans-
lations and one rotation in 2D; three translations and three
rotations (two if the module is a solid of revolution) in 3D.
We consider passive modules to be oriented, so even when the
bar geometry is symmetric we distinguish the two possible
orientations the bar may take along a fixed axis. Individual
passive modules may be marked grounded to represent static
trusses attached to the environment.

We usually depict passive modules as light-colored line
segments, as shown in figure 1.

2) Active Module Model: Active modules contain several
actuated DOF and connection mechanisms for attaching pas-
sive modules. In 2D we have focused on a module with two
rotating grippers, as shown in figure 1. Such a module can hold
two passive modules in arbitrary relative orientations (figure 1,
middle), and it can also locomote independently along a fixed
truss by alternately gripping and swinging (figure 1, bottom).
In 2D we model the active and passive modules to occupy



Fig. 1. A 2D active module concept (top) with two independently rotating
grippers which can connect to passive modules (middle). Such a module
can locomote independently along a fixed truss by alternately gripping and
swinging (bottom).

separate parallel planes, and we assume that the grippers
retract when open so that they may move over passive modules
without collision.

The gripper rotations give these modules two intrinsic
DOF, and their extrinsic state is again given by a 2D rigid-
body transform. We consider the grippers to have distinct
orientations, and we represent two properties when a gripper
is attached to a passive module: where along the axis of the
passive module the (center of) the gripper lies, and whether
the gripper vector is aligned or anti-aligned with the passive
module’s orientation.

We are currently exploring the extension of this model to
3D by adding a third rotary “twist” DOF which can control
the relative angle between the axes of the gripper rotations, as
depicted in figure 2.

B. Software Architecture

We are developing a unified software package based on
these generic abstract module models which can handle com-
mand and high-level control of hardware as well as full
kinematic simulation. Each module type is represented by a
software abstraction which encapsulates the details of par-
ticular implementations. Thus far, we have developed such
implementations for:

• fixed and mobile simulated passive linear bar modules in
2D

• a simulated 2D active module which predicts resource
consumption (battery usage, etc.) as well as kinematic
state

• a hardware version of the 2D module adapted to truss
climbing (section IV-A)

• a simulated 2D active module specifically adapted for
large-scale simulations of many cooperating units

Fig. 2. A potential concept for extending the 2D active module concept
shown in figure 1 to 3D by adding one new “twist” DOF. Two active and two
passive modules are shown here in a chain topology. Figure contributed by
Yeoreum Yoon.

Hiding the details of particular module implementations below
generic—but extensible—abstractions of the passive and active
module types has allowed us to write generic high-level control
and user-interface code that can be applied in all cases. These
high-level components are always run on a workstation and
present a real-time graphical display as well as a Scheme-
language command interface.

For simulations, the active and passive module instance
codes also run on the workstation, communicating with the
higher-level generic code by direct procedure call. For hard-
ware, each active module runs its own code in an on-board
processor and interfaces with the generic high-level code
running on the workstation by remote procedure call over the
lab network. We have demonstrated both scenarios already,
using the same workstation-based user-interface and high-level
control code to run simulations and to operate the Shady
hardware.

IV. Shady: ACTIVE MODULE ON PASSIVE TRUSS

The remainder of the paper is divided in two parts: here,
we describe our initial hardware work at the simple end
of the truss-robot spectrum—a single active module which
locomotes on a fixed passive truss. Next, in section V, we
describe simulations we have performed at the complex end of
the spectrum on large-scale self-assembling/self-reconfiguring
mobile trusses.

Shady (figure 3) is a four degree of freedom robot which
can climb on the lattice truss structure of the large windows
in our lab, and which carries a deployable fan for use as a
personal sun-shade. The two connective and two revolute DOF
are implemented as rotating grippers following the pattern of
figure 1.



Fig. 3. Shady, a four degree of freedom robot which can climb on the lattice
truss structure of the large windows in our lab (represented by the aluminum
bars), and which carries a deployable fan for use as a personal sun-shade.

A. Hardware

The grippers are contained in rotating “barrels” which are
connected via a “dog bone”-shaped body, as shown in the
images. The body contains much of the controller electronics,
batteries, and the barrel rotation actuators. In addition, there is
an actuated fan which can be deployed as needed to provide
shade. The body has a total length of 59cm with a barrel
center-to-center distance of 39cm. The total weight of the robot
is 5.5kg, including its Lithium-Polymer battery pack, and it
is able to run un-tethered for over four hours of continuous
motion, and about eight hours under more typical usage.

1) Barrel Design: Each barrel is a hollow tube containing
a gripper mechanism. Barrel rotation is effected by a cable
drive system which provides low-backlash ±360◦ rotation, and
this drive is able to provide the necessary torque for rotating
the robot body to any cantilevered orientation in the vertical
plane. Rotation feedback is obtained from motor encoders and
from potentiometers located above each barrel. Two infra-red
proximity sensors are also included on each barrel, in-line with

the gripper axis and facing toward the window, and are used to
help align the gripper with the window frame. The barrel tubes
were built on a rapid prototyper out of ABS plastic, and other
standard and custom-machined parts complete the design.

2) Gripper Design: The current gripper design (figure 4)
requires a slight modification to the window frame. Specif-
ically, we added a small “T” cap to the window bars which
allows the gripping mechanism to catch and positively hold the
window frame. With this modification, the gripper is easily
able to hold the robot in any orientation. We are currently
testing a new gripper design which leverages linkage kinematic
singularities to achieve much larger gripping pressure, and
preliminary results indicate that this design will allow robust
locomotion on the unmodified window frame. We hope to
report more fully on this new work in a future publication.

An important feature of the gripper is its ability to fully
retract, allowing disconnected barrels to pass over the window
frame without collision.

Fig. 4. A CAD image of the barrel with gripper open (left) and partially
closed (right). Translucent rendering allows the internal mechanism of the
gripper to be seen through the wall of the barrel. The gripper incorporates
two “paddles” attached to counter-rotating gears which extend downward and
then close onto a bar of the window frame.

The gripper is designed to be highly compliant. Its paddles
open very wide—8.0cm at maximum—to grip onto the 2.5cm
window bar, and they are able to grab the bar when it is
up to 1.5cm away (a distance much greater than observed
during experiments). These compliances allow the gripper
to close even when not precisely aligned to the window
frame. Additionally, there are force sensors located at the
corners of the gripper paddles which can sense and compensate
for angular misalignments of up to 25 degrees (measured
experimentally).

3) Control System: Shady incorporates a network of five
Acroname “Brainstem” motor control and sensor modules
for low-level real-time control. These implement the basic
hardware functions described below in section IV-B. Each
barrel contains a sensor module to interface with all the
sensors in the barrel and gripper. The robot’s central body
contains two motor control boards (two outputs each) and an
additional sensor module which monitors battery levels and
which networks the other modules together.

The Brainstem network communicates with an on-board
Sharp Zaurus PDA (running Linux) which runs mid-level
sensor-based motion control algorithms. The Zaurus shares
much of its code base with the code we use for fully simulated



mobile modules, and implements the generic active module
software interface described above, making algorithms devel-
oped in simulation easy to run on the hardware.

B. Experiments

We have performed a number of experiments to characterize
the performance and reliability of the first version of the Shady
hardware on a fixed truss. From this we have identified areas
to improve in future revisions. We first introduce the primitive
moves that are required for walking on a truss structure.

1) Primitive Moves: If the geometry of the environment
and the pose of the robot are completely known then it is
theoretically possible to explicitly compute the needed barrel
angles to perform a step. However, uncertainty is inevitable,
and to compensate for it we have developed a set of primitive
moves which make use of the sensors we have included on
Shady. The first move is called find. As the name implies,
this move finds the nearest bar to the distal (i.e. disconnected)
barrel in either a clockwise or counter-clockwise direction.
The algorithm is straightforward: the connected barrel rotates,
hence moving the distal barrel in a circular arc, until the distal
barrel detects a bar with one of its proximity sensors.

After a find is successful, we perform an align. This
move refines the alignment of the distal barrel to the bar by
rotating it to find the edges of the bar and then moving to a
position midway between these. Next, a grip move closes
the gripper while monitoring the force sensors on the gripper
paddles. Imbalance in these readings indicates that the barrel
does not have correct angular alignment, so these sensors are
used as input to a PD controller which further refines the
alignment. The grip move was experimentally verified to
handle up to 25 degrees of angular misalignment as well as
3.75cm of translational error.

The final move we perform is an ungrip, which opens
the gripper. When this occurs in a horizontal configuration the
ungripping barrel may drop somewhat due to gravity. This
can cause problems as the retracting gripper paddle may catch
on the window bar. To compensate for this during an ungrip
we monitor the force sensors on the other (i.e. connected)
barrel and actuate to correct for any undesired movement.

2) Experimental Setup: We performed 103
find-align-grip-ungrip sequences from various
configurations. This was done on a lattice we built (aluminum
bars in figure 3) which emulates the window frame but which
is more easily accessed. The configurations we tested included
horizontal, vertical, horizontal-to-vertical, and vertical-to-
horizontal. We recorded the number of successes and failures
of all the individual moves (a move was considered to have
failed if it did not perform as described previously).

3) Results and Discussion: Below is the results of the 103
find-align-grip-ungrip sequences:

find align grip ungrip Total
Success 90 88 88 88 84
Failure 13 11 4 2 19
% Success 87.4 88.9 95.7 97.8 81.6

The find move failed 13 times, however, a find failure
is fairly easy to detect, and in this case we perform a binary
search to attempt to find the bar, allowing continuation of the
subsequent operations in 11 out of 13 trials. Most of the find
failures related to an unresolved bug in the Brainstem software
which caused the distal barrel to not rotate as commanded.

The remaining find failures, and many of the align
failures, were due to a poorly initialized proximity sensor
during one series of tests. These sensors are automatically
calibrated each time the robot starts; however, sometimes this
does not work as well as desired. Adding to the problem is
the fact that the proximity sensors have a slightly larger field
of detection than desirable, so the robot may think that it is
aligned when, in fact, it is not.

While find and align fail gracefully, without potential
damage to the robot, failures in grip and ungrip can
damage the robot. The gripper element which holds the force
sensors is particularly prone to damage. However, these types
of failures occurred much less frequently than the other types.
grip failures occurred when the barrel was sensed to be

aligned to the bar, but the bar was still misaligned too much
for a successful grip. The two ungrip failures were caused
by over-compensation for the “gravity” affect mentioned in
section IV-B.1.

Overall, the experiments illustrated that the methods are
sound, however, there is room for improvement–particularly
on the hardware front. We have had several runs with over 6
consecutive steps, but larger motions appear to be less feasible
with this initial hardware implementation.

C. Path Planning

The above-described low-level primitive moves can be
combined sequentially to locomote on an arbitrary “environ-
ment” truss. Arbitrary-angle concave and convex transitions
are possible, as are linear gaits along passive segments at any
orientation. Such locomotion could be used for applications
such as material and tool delivery across truss structures or
inspection/repair on trusses. For the sun-shading application,
for example, Shady could move to position its fan so that
it intersects the ray from the sun to a particular researcher’s
computer screen. In this application the reachable shade lo-
cations are limited to an offset-band about the skeleton of
the window frame, so our implementation of Shady and its
fan has been scaled appropriately so that the reachable band
covers a large fraction of the area of our window. The window
and, in particular, its structural aluminum frame, are shown
schematically in figure 5.

We have developed a path-planning algorithm to determine
a short locomotion sequence to any target location in the
reachable band, and we have implemented this algorithm
in simulation. Since our Shady hardware presents the same
generic control interface, it should be possible to run this
same high-level planning code to control the hardware—an
experiment we look forward to performing.

The path planning algorithm is illustrated in figure 5. The
user interacts with the planner and can specify a target location



Fig. 5. All reachable Shady grip points (light blue) in the window frame truss
environment (horizontal and vertical line segments) up to a certain granularity,
and a short path through these grip points (red circles) to a user-specified target
point (red cross). This simulator image depicts Shady beginning to traverse
the indicated path, beginning from its start location in the lower-left corner
of the window.

for Shady by clicking on the screen. The algorithm first
performs a breadth-first search of reachable gripper locations
on the truss based on the kinematic structure of the robot, the
geometry of the truss, and the robot’s starting point.

The set of reachable grip points is discrete, but may be
infinite even in finite environments due to “spiral” motion
sequences about truss joints which can return the robot to its
original grip location plus an arbitrarily small delta. Thus, it
is useful to put a maximum bound on the search—grip points
closer than a specified distance to already-found points are
pruned. The final set of discovered grip points is then used to
create a graph on which Dijkstra’s shortest-path algorithm can
be run.

The final step, picking a particular grip point for any given
target location, is non-trivial. Choosing the point closest to the
target by the standard planar Euclidean distance metric is one
strategy, although it is possible that this point will require a
longer locomotion sequence than another grip point which is
sufficiently close. It may be desirable to pick several nearby
grip points and evaluate them based on their closeness to the
target vs. their locomotion sequence length.

V. MultiShady: MOBILE ACTIVE TRUSSES

Our current Shady hardware is scaled for climbing on a
fixed truss, and is likely not appropriate for applications at
the high end of the truss robot spectrum involving many
cooperating active and passive modules. However, we expect
that hardware with the same basic kinematic topology–that
of the abstract mobile module shown in figure 1–could be
designed and built in a way that is applicable to such coop-
erative applications. For a system operating under terrestrial
gravity, necessary changes will likely include making the
module significantly smaller, increasing its power-to-mass
ratio, improving the gripper design, and possibly designing
the system to distribute power through the truss. Other design
considerations might become important in zero/low-gravity
environments, or for particular applications.

We are beginning the design of such modules, shown

conceptually in figure 2 (also depicted is a simple extension
to three dimensions, which we are simultaneously design-
ing), and we have begun to explore the possible capabilities
and control of large-scale cooperating self-reconfiguring/self-
assembling truss robots in our 2D simulation environment. We
present some initial results from these simulations here.

A. Concept of Hierarchical Control

A key concept we have been developing is the hierarchical
control of large-scale truss robots. We divide the total set of
active and passive modules into disjoint groups, and we design
particular controllers and planners for these smaller groups
(there may be many instances of the same type of group, so
the total number of distinct group control algorithms may
be much lower than the total number of group instances).
We also implement controllers and planners which operate
at the highest level, and which consider the aforementioned
groups to be monolithic meta-modules, thus forming a two-
level hierarchy of control.

As the scale of the systems we explore increases, we
predict that it will likely be useful to extend this hierarchy
to additional levels; i.e. to form groups within groups, etc., at
each level designing controllers and planners which operate
on meta-modules of the lower-level.

Meta-modules in self-reconfiguring robots have previously
been explored ([25], [26], [27], [28]), but mostly in the context
of topological reconfiguration and structural shape-changing.
We extend the concept to also include kinematic/geometric
control (e.g. figures 9 through 11) and we also generalize it to
a hierarchy of module-group controllers which may each have
several different operational modes, as described next.

B. Tower Simulations

As an example of hierarchical control, figures 6 through 10
show the construction and operation of a reconfigurable mo-
bile tower. The groups, in this case, are composed of five
active modules (blue/dark segments) and four passive modules
(orange/light segments). We have developed a set of seven
separate controllers for such groups which can

• assemble the group from a starting “packed” configura-
tion into a two-legged walking structure (figure 6)

• locomote the walking structure with a statically stable gait
along a fixed truss segment from the site of the walker’s
creation to the base of a tower-in-progress (figure 7)

• make a concave transition from walking on the segment
to walking up the side of the tower (figure 8)

• walk up the side of the tower (figure 8)
• make a convex transition from walking up the tower to

standing on top of the tower (figure 8)
• reconfigure from the walker shape to an inverted-U shape

trapezoidal tower structural block (figure 8)
• tilt, as a tower block, to the left or right (figure 9)
Using these group controllers, we can easily direct the

simulated construction of an arbitrary-height tower. Figure 9
shows a 15-block tower containing 75 active modules and 60
passive modules.



Fig. 6. Snapshots from a simulation showing the construction of a two-legged walking structure (rightmost) starting from a “packed” configuration of active
and passive modules (leftmost).

Fig. 8. Snapshots from a simulation showing a walker structure performing concave and convex transitions, walking up a tower, and reconfiguring into a
new structural block of the tower.

Fig. 7. Snapshots from a simulation showing a walker structure locomoting
on a truss segment.

Fig. 9. Simulation of a 15-block tower acting as a hybrid serial-parallel
hyper-redundant active structure, in this case under keyframe-type high-level
control. We have also implemented damped-least squares inverse kinematics
control (figure 10). This example shows a possible self-inspection capability—
a camera mounted on the tower top could be aimed to inspect lower parts of
the tower.

Once such a tower is assembled, we can apply a high-level
controller to command the blocks to collectively perform a
task. We have explored high-level controllers which utilize
the block-tilting group controller to make the tower a hybrid
serial-parallel ([13], [14], [11]) hyper-redundant ([9], [10],
[12]) active structure, allowing it to bend and move like a
tentacle. A possible application is tower-self inspection: a
camera mounted on the tower top could be positioned to
inspect lower sections (figure 9).

We have implemented a keyframe-type high-level controller
which interpolates among manually specified vectors of block-
tilt values (figure 9), and we have also implemented a damped-

least-squares (DLS) inverse kinematics control, following [29],
which allows the user to interactively drag the tower towards
a goal configuration (figure 10).

Fig. 10. An example of the simulated 15-block tower under damped-
least-squares inverse kinematics control. The user’s position and orientation
command for the tower top is represented in red. The high-level controller
automatically seeks a vector of block-tilts which approaches the command,
and then the block controllers translate each such tilt into actual joint
commands for the individual active modules.

The high-level controllers were implemented carefully to
only rely on a generic abstraction of the block-tilt controller,
so we can use the same high-level control code to actuate
towers made of different types of blocks. Figure 11 shows an
alternate single-chain tower in several poses under the DLS
IK control.

VI. CONCLUSION

We have described a continuum of modular truss robots with
varying functionality. The simple end of this continuum is a
fixed truss with one active climbing unit, and here we have
developed hardware called Shady for an indoor sun-shading
application. We described high-level and low-level algorithms
for planning and executing locomotion on trusses, and we
presented results of experiments with an initial hardware
implementation, indicating the potential of the approach.

The complex end of the continuum is a self-assembling/self-
reconfiguring variable-geometry truss composed of active and
passive robot modules. We hypothesize that such modules
can re-use the same kinematic topology as our truss-climbing
robot, and we presented initial results from simulations of



Fig. 11. Several poses of an alternate single-chain tower under damped-
least-squares high-level control, showing that the same high-level controller
can be used with different block instances, provided they support a common
“tilt” abstraction.

systems containing up to 135 active and passive modules
performing self-assembly and self-inspection tasks. We also
presented our initial work in developing the concept of hierar-
chical control for such systems, where controllers are designed
for particular groups of modules and then these groups are
treated as monolithic elements by higher-level controllers.

ACKNOWLEDGMENT

The authors would like to thank Peter Osagie for imple-
menting the path planning algorithm described in section IV-
C. This work was supported by Intel, NSF IIS-0426838, and
MURI ARO W911NF-0510219.

REFERENCES

[1] Satoshi Murata, Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita, and
Shigeru Kokaji, “A 3-d self-reconfigurable structure,” in Proceedings of
the 1998 IEEE International Conference on Robotics and Automation,
Leeuven, Belgium, May 1998, pp. 432–439.

[2] Keith Kotay, Daniela Rus, Marsette Vona, and Craig McGray, “The
self-reconfiguring robotic molecule: Design and control algorithms,” in
Workshop on the Algorithmic Foundations of Robotics, 1998.

[3] ——, “The self-reconfiguring robotic molecule,” in IEEE International
Conference on Robotics and Automation, 1998.

[4] Keith Kotay, “Self-reconfiguring robots: Designs, algorithms, and appli-
cations,” Ph.D. dissertation, Dartmouth College, Dec. 2003.

[5] Cem Unsal, Han Kiliccote, and Pradeep Khosla, “A modular self-
reconfigurable bipartite robotic system: Implementation and motion
planning,” Autonomous Robots, vol. 10, no. 1, pp. 23–40, Jan. 2001.

[6] David G. Duff, Mark Yim, and Kimon Roufas, “Evolution of polybot:
A modular reconfigurable robot,” in Proceedings of the Harmonic Drive
International Symposium, Nagano, Japan, Nov. 2001.

[7] Henrik Hautop Lund, Richard Beck, and Lars Dalgaard, “ATRON hard-
ware modules for self-reconfigurable robotics,” in Proceedings of 10th
International Symposium on Artificial Life and Robotics (AROB’10),
ISAROB, Sugisaka and Takaga, Ed., Oita, 2005.

[8] Kasper Støy, “The ATRON self-reconfigurable robot: challenges and
future directions,” Presentation at the Workshop on Self-reconfigurable
Robotics at the Robotics Science and Systems Conference, July 2005.

[9] Gregory S. Chirikjian and Joel W. Burdick, “A hyper-redundant manip-
ulator,” IEEE Robotics & Automation Magazine, pp. 22–29, Dec. 1994.

[10] Aaron Greenfield, Alfred A. Rizzi, and Howie Choset, “Dynamic
ambiguities in frictional rigid-body systems with application to climbing
via bracing,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, Barcelona, Spain, Apr. 2005, pp. 1959–
1964.

[11] Jackrit Suthakorn and Gregory S. Chirikjian, “A new inverse kinematics
algorithm for binary manipulators with many actuators,” Advanced
Robotics, vol. 15, no. 2, pp. 225–244, 2001.

[12] A. Wolf, H. B. Brown, R. Casciola, A. Costa, M. werin, E. Shamas, and
H. Choset, “A mobile hyper redundant mechanism for search and rescue
tasks,” in Proceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Las Vegas, Nevada, Oct. 2003, pp.
2889–2895.

[13] Gregory J. Hamlin and Arthur C. Sanderson, “Tetrobot: A modular
approach to parallel robotics,” IEEE Robotics & Automation Magazine,
pp. 42–49, Mar. 1997.

[14] Tanio K. Tanev, “Kinematics of a hybrid (parallel-serial) robot manipu-
lator,” Mechanism and Machine Theory, vol. 35, pp. 1183–1196, 2000.

[15] Gregory S. Chirikjian, “General methods for computing hyper-redundant
manipulator inverse kinematics,” in Proceedings of the 1993 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Yokohama,
Japan, 1993, pp. 1067–1073.

[16] Robert L. Williams II and James B. Mayhew IV, “Cartesian control
of VGT manipulators applied to DOE hardware,” in Proceedings of
the Fifth National Conference on Applied Mechanisms and Robotics,
Cincinnati, OH, Oct. 1997.

[17] Jacob Everist, Kasra Mogharei, Harshit Suri, Nadeesha Ranasinghe,
Berok Khoshnevis, Peter Will, and Wei-Min Shen, “A system for
in-space assembly,” in Proceedings of 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, pp.
2356–2361.

[18] William Doggett, “Robotic assembly of truss structures for space
systems and future research plans,” in IEEE Aerospace Conference
Proceedings, Mar. 2002.

[19] Hisanori Amano, Koichi Osuka, and Tzyh-Jong Tarn, “Development
of vertically moving robot with gripping handrails for fire fighting,”
in Proceedings of the 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Maui, HI, 2001, pp. 661–667.

[20] Zaidi Mohd Ripin, Tan Beng Soon, A.B. Abdullah, and Zahurin Samad,
“Development of a low-cost modular pole climbing robot,” in TENCON,
vol. I, Kula Lumpur, Malaysia, 2000, pp. 196–200.

[21] Michael Nechyba and Yangsheng Xu, “SM2 for new space station struc-
ture: Autonomous locomotion and teleoperation control,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
vol. 2, May 1994, pp. 1765–1770.

[22] ——, “Human-robot cooperation in space: SM2 for new space station
structure,” IEEE Robotics and Automation Magazine, vol. 2, no. 4, pp.
4–11, Dec. 1995.

[23] M. Almonacid, R. J. Saltarén, R. Aracil, and O. Reinoso, “Motion
planning of a climbing parallel robot,” IEEE Transactions on Robotics
and Automation, vol. 19, no. 3, pp. 485–489, 2003.

[24] Ben Iannotta, “Creating robots for space repairs,” Aerospace America,
pp. 36–40, May 2005.

[25] Serguei Vassilvitskii, Jeremy Kubica, Elanor Rieffel, John Suh, and
Mark Yim, “On the general reconfiguration problem for expanding cube
style modular robots,” in Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, Washington, DC, May 2002,
pp. 801–808.

[26] An Nguyen, Leonidas J. Guibas, and Mark Yim, “Controlled module
density helps reconfiguration planning,” in Proceedings of WAFR 2000:
New Directions in Algorithmic and Computational Robotics, 2001, pp.
23–36.

[27] Daniela Rus and Marsette Vona, “Crystalline robots: Self-reconfiguration
with compressible unit modules,” Autonomous Robots, vol. 10, no. 1,
pp. 107–124, Jan. 2001.

[28] A. Pamecha, I. Ebert-Uphoff, and G.S. Chirikjian, “Useful metric for
modular robot motion planning,” IEEE Transactions on Robotics and
Automation, vol. 13, no. 4, pp. 531–545, 1997.

[29] Samuel R. Buss, “Introduction to inverse kinematics
with jacobian transpose pseudoinverse and damped least
squares methods,” 17 Apr. 2004, available on the web at
http://www.math.ucsd.edu/ sbuss/ResearchWeb/ikmethods/iksurvey.pdf.


