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Abstract. We define a family of interest operators for extracting features from
one-dimensional omnidirectional images, and explore the utility of such features
for navigation and localization of a mobile robot equipped with an omnidirec-
tional camera. A 1D circular image, formed by averaging the scanlines of a cylin-
drical panorama, provides a compact representation of the robot’s surroundings.
Feature detection proceeds by applying local interest operators in the scale space
of the image. The work is inspired by the recent success of similar operators de-
veloped for 2D images. The advantages of using features in omnidirectional 1D
images are fast processing times and low storage requirements, which allows a
dense sampling of views. We present experimental results on real images that
demonstrate that our features are insensitive to noise, illumination variations, and
changes in camera orientation. We also demonstrate that most features remain
stable over changes in viewpoint and in the presence of some occlusion, thus
allowing reliable tracking of features through sequences of frames.

1 Introduction

Scale-invariant interest operators and feature detectors have received much recent inter-
est in the computer vision and robotics literature [3, 9, 12, 13, 19]. These methods work
by computing the scale space of an image [6, 23, 24], and finding the extrema of simple
operators. Each such potential interest point (which identifies a location and a scale)
is then augmented with a descriptor that encodes the image patch around this point in
a manner that is invariant to a local (rigid, affine, or perspective) transformation of the
patch, for example using modes or histograms. The advantage of such invariant descrip-
tors is that they can be stored in a database, and subsequently be retrieved to identify
scene locations observed from different directions and distances, with applications in
object recognition, image retrieval, tracking, and robot localization.

The success of these methods inspires the work in this paper, where we apply sim-
ilar ideas to extract stable features from the scale space of one-dimensional panoramic
images. Instead of creating a database of distinct, globally invariant features, however,
the focus of our work is on features that are only locally invariant to changes in scale
and viewing angle. That is, we are interested in extracting a large number of features in
each frame, most of which will remain stable over small changes in viewpoint. This al-
lows tracking of features through sequences of frames as the viewpoint changes. Robot
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localization can then be obtained by matching groups of features between the current
frame and stored features of reference frames.

Figure 1 illustrates our experimental setup. It shows the robot equipped with an
omnidirectional camera, a sample panoramic view, and the evolution of a 1D circular
image over time as the robot travels.

Using one-dimensional images is appealing due to low storage requirements and
fast processing times, which enable dense sampling and real-time analysis of views.
The reduced dimensionality also aids greatly in image matching, since fewer parameters
need to be estimated. However, there are also several factors that make it difficult to
extract stable, globally invariant features from 1D omnidirectional images:

1. A single scanline does not carry very much information, and distinct features that
can be matched reliably and uniquely over wide ranges of views are rare. A unique
descriptor would have to span many pixels, thus requiring a certain minimum fea-
ture size, which in turn increases the chance of occlusion. A 1D view of a typi-
cal indoor environment with little texture, such as a corridor, may not contain any
unique features.

2. For global invariance to viewpoints, the imaged scene has to lie in the plane tra-
versed by the camera, i.e., a single horizontal slice. While such images can be
obtained with specialized sensors such as “strip cameras” [15], or simply by ex-
tracting a single scanline from a view taken with an omnidirectional camera, it
requires that the robot travels on a planar surface, which limits the applicability to
indoor environments. Furthermore, it is difficult to precisely maintain the camera’s
orientation due to vibrations of the moving platform [28].

3. Finally, achieving scale invariance by finding extrema in the scale space only works
for planar projection. For circular or cylindrical projection, a scale change in the
scene no longer corresponds to a uniform scale change in the image, unless the
object subtends only a very small viewing angle.

For all of the above reasons, we adopt a different approach. First, we forego global
uniqueness of features in favor of a large number of simple features. Unique matching
will still be possible in many cases by considering groups of features [3]. The appeal of

Fig. 1. Our robot with omnidirectional camera, a sample panoramic view, and the epipolar plane
image (EPI). The EPI is a “stack” of one-dimensional images over time as the robot drives towards
the bookshelf in the center of the image. Each such image is formed by averaging 50 scanlines in
the center of the panoramic view. For pure translation of the camera, scene points traverse tangent
curves in the EPI.
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Fig. 2. (a) Averaging of scanlines increases robustness to vibration, but causes different parts of
the scene to be imaged depending on the distance. (b) A sample distance-dependent intensity
profile for the scenario shown in (a). The drop in intensities is caused by the black object coming
into view. Note that intensities cannot change abruptly.

a scale-space approach is that interest points correspond to scene features of all sizes,
ranging from small details such as a chair leg to large features, such as an entire wall of
a room. Second, instead of using a single scanline, we compute the average over a range
of scanlines, which is much less sensitive to small changes in camera orientation due
to vibrations or uneven floor. Averaging scanlines, however, also introduces distance-
dependent intensities changes, since the backprojection of a pixel into the scene now
subtends a positive vertical angle (see Figure 2a). Thus, we trade distance-invariant
intensities for robustness. Note, however, that intensities change smoothly with distance
(see Figure 2b), which in turn causes smooth changes in the scale space. Finally, the lack
of exact proportionality between object size and image size due to circular (rather than
planar) projection is also not a problem for similar reasons: since the relationship is still
smooth (proportional to the tangent of the object size), scale changes still correspond to
smooth changes in the image.

2 Related Work

There has been considerable work in detecting invariant features in 2D images, includ-
ing Lowe’s SIFT detector [9, 10], which uses extrema in scale space for automatic scale
selection, and the invariant interest points by Mikolajczyk and Schmid [12, 13]. Such
features have numerous applications, including object recognition and image retrieval,
as well as robot localization and navigation [18, 19]. Scale-space extrema have also
been used for shape representation [4] and focus-of-attention [7]. A recent comparison
of local image descriptors can be found in [14].

Analyzing an evolving scanline of a translating planar (not panoramic) camera is the
classic epipolar-plane image (EPI) analysis approach [1]. This idea has been applied to
panoramic views taken from a moving platform by Zhu et al. [28], with the application
of dense matching and 3D reconstruction. Camera vibrations are compensated for using
explicit image stabilization. In contrast, our work focuses on the tracking of interest
points over long sequences and employs averaging of scanlines to obtain robustness to
vibrations.

Much recent robotics work has focused on simultaneous localization and map build-
ing (SLAM) [5, 19, 22], which is related to the two-dimensional structure-from-motion
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problem [21]. Approaches to robot localization and map building from omnidirectional
views include those of Zheng and Tsuji [27], and Yagi et al. [25, 26], who use vertical
edges as features. Matsumoto et al. [11] present a method for robot navigation from
memorized omnidirectional views, and Pajdla and Hlaváč [16] use the image phase of a
panoramic view for robot localization. Panoramic views have also been used for motion
estimation [20].

The work presented here extends our prior work on visually guided robot naviga-
tion. In previous work we have presented new path planning algorithms for navigation
among artificial landmarks [2, 17]. The long-term goal of our research is to move to
navigation using natural landmarks, and the features described here are an important
component of extending our approach in this direction.

3 Scale-space analysis

The key idea of our method is to compute the scale space S(φ, σ) of each omnidirec-
tional image I(φ) for a range of scales σ, and to detect locally scale-invariant interest
points or “keypoints” in this space. The scale space is defined as the convolution of the
image with a Gaussian G(φ, σ) over a range of scales σ:

S(φ, σ) = I(φ) ∗ G(φ, σ), with G(φ, σ) =
1√
2πσ

e−φ2/(2σ2).

This convolution is slightly unusual due to the fact that the omnidirectional image
I “wraps around”, i.e., I(φ + 2π) = I(φ). In particular, there are no border effects,
and the infinite integral of the convolution can be replaced with a finite integral with a
convolution kernel G′ that represents an infinite sum of Gaussians spaced 2π apart:

I(φ) ∗ G(φ, σ) =
∫ ∞

−∞
I(ξ)G(φ − ξ, σ)dξ

=
∫ 2π

0

I(ξ)G′(φ − ξ, σ)dξ,

where

G′(φ, σ) =
∞∑

n=−∞
G(φ + 2πn, σ).

While there is no closed-form solution for the infinite sum, it can easily be approximated
by a finite sum since the tails of G quickly approach zero.

Similar to the related two-dimensional scale space approaches, we represent the
scale space using a logarithmic scale for σ, so that neighboring values of σ in the dis-
crete representation of S are a constant factor k apart. Theoretical and empirical mo-
tivation for this representation can be found in [10, 12]. For the results shown in this
paper, we use k = 21/3, i.e., 3 samples per octave (doubling of σ). Figure 3a shows a
gray-level representation of the convolution kernel G′, and Figure 4b shows a sample
scale space image.
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Fig. 3. (a) Gray-level plot of the circular convolution kernel G′. The horizontal axis is the image
position φ = 0 . . . 2π; the vertical axis is the scale σ on a logarithmic scale, ranging over nine
octaves: σ = 2−1 . . . 28. (b–d) Effective difference of Gaussian (DoG) kernels resulting from
computing column (φ) differences (left), and row (σ) differences (right), for smoothing scales
σ = 1, 2, 4. To obtain comparable responses at each smoothing scale, the kernels on the left have
been multiplied by σ.

After the scale space has been computed, we apply difference operators both ver-
tically (between neighboring smoothing scales σ), and horizontally (between neigh-
boring image locations φ). That is, we convolve the discrete version of S(φ, σ) with
kernels [−1, 1]T and [−1, 1], resulting in the difference scale spaces Dσ and Dφ, re-
spectively. Differencing the scale space between neighboring values of σ (which differ
by a constant factor k) is also done in the two-dimensional scale-space approaches [10].
It is equivalent to convolving the original image with a difference-of-Gaussian (DoG)
operator (“Mexican hat operator”), as shown in the right-hand column of Figure 3b–d.
This provides an approximation of the Laplacian of the image, which is an attractive
2D invariant due to its rotational symmetry. In our one-dimensional case, however, we
assume a fixed orientation, and can thus also utilize the directional derivatives by sub-
tracting horizontally neighboring image locations. Unlike in the vertical case, however,
we have to multiply the differences by the corresponding value of σ to compensate for
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Fig. 4. (a) Part of the circular panorama shown in Figure 1. (b) The scale space S of the average of
all 50 scanlines in (a), obtained by “circular convolution” with a kernel G′ like the one shown in
Figure 3a. (c) Differences of rows Dσ . (d) The three color bands of (c), with marked minima and
maxima; these are candidates for stable features. (e) Differences of columns Dφ. (f) The three
color bands of (e), with marked minima and maxima.

the decreasing height of the Gaussian. The resulting equivalent DoG operator is shown
in the left-hand column of Figure 3b–d.

Finally, interest point selection proceeds by finding the minima and maxima of each
of the three color bands of Dσ and Dφ. To do this, we consider all 3×3 neighborhoods in
the six images, and check whether the center value is an extremum. We obtain subpixel
estimates of both location φ and scale σ of all extrema by fitting a quadratic surface
to the 3× 3 neighborhood. This also provides estimates of the local curvature. The
entire process of scale space computation, differencing, and interest point selection is
illustrated in Figure 4.

The appeal of finding extrema in scale space is that it provides automatic estimates
of both position and scale of features [8]. Intuitively, at each image location, the DoG
kernel (Figure 3) that best matches the underlying image intensities is selected. We
now investigate the stability and robustness of these features by tracking them through
various image sequences.
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Fig. 5. Feature tracks overlaid on the EPI shown in Figure 1. Only feature tracks of length 100 or
greater are shown.

4 Evaluating the robustness of features

A very good impression of the stability of the features can be obtained by observing a
movie of images like those in Figures 4d and 4f. From viewing sequences of the 6 color
bands with marked maxima and minima, it is immediately obvious that some extrema
are very stable and persist for a long time, while other extrema are caused by noise and
are very unstable.

4.1 Tracking features over frames

Given an image sequence with closely spaced views, a good way of measuring the
robustness and stability of features is to track features from frame to frame, and to
record the track length for each feature. Given a feature in the current frame, we search
the next frame within a small neighborhood of the feature’s current (φ, σ) location. We
only consider neighboring scales σ (i.e. we use a vertical search radius of ±1), since the
scale of a feature cannot change very quickly. In the horizontal (φ) direction, we use a
search radius of 2–4 pixels, depending on the motion present in the sequence. A feature
is considered tracked only if there is an unambiguous match within the search window,
both searching forward and backward (from the next to the current frame).

The presence of many robust features can be measured by counting the number
of features whose tracks have a certain minimum length. This is demonstrated in Fig-
ure 5, where we show feature tracks that span at least 100 frames, overlaid on the EPI
from Figure 1. It can be seen that despite significant scale changes and some occlusion,
many features can be tracked reliably. Furthermore, the feature tracks closely follow the
scene structure, which is promising if the features are to be used to estimate the robot’s
motion.

Instead of tracking a feature through many frames, it would clearly be useful to
compute an indicator for a feature’s stability from its own properties in a single frame,
such as the size and shape of the scale-space surface in the vicinity of the extremum.
We have performed many experiments investigating the correlation between a feature’s
track length and its properties, using a variety of image sequences. However, the only
properties that show a slight correlation are the absolute value of extrema, and the cur-
vature as given by the σ2 and φ2 terms of the quadratic surface fit. This is shown in
Figure 6. These measures can be used to exclude a small number of unstable features
with very short track lengths (using a threshold close to 0). A higher threshold, however,
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track length → track length → track length →

Fig. 6. Scatter plots of feature properties vs. track length for tracked features in Dσ of the EPI
shown in Figure 1. The horizontal axis shows track length; the vertical axis shows the absolute
value of the extremum (left), the horizontal curvature scaled by σ (middle), and the vertical cur-
vature (right). The zero line is shown dashed. It can be seen that there is only a slight correlation
between track length and each observed value. Plots for features in Dφ look similar.

would also exclude many features with very long track lengths. Thus, these measures do
not enable the prediction of which features can be reliably tracked over many frames,
and our remaining analysis of feature stability is therefore solely based on track length.

4.2 Robustness to varying orientation

To demonstrate the effectiveness of averaging scanlines in order to increase robustness
to orientation changes, we have taken an image sequence while significantly changing
the robot’s tilt and yaw angles. Figure 7 compares the tracked features in an EPI gener-
ated from a single scanline, and one formed by averaging 50 scanlines. The improved
performance by averaging scanlines is obvious.

4.3 Robustness to varying intensities

To evaluate robustness with respect to lighting conditions, we obtained an image se-
quence from the stationary robot while turning on and off the lights and opening and
closing the window shades. The resulting sequence contains many frames in which most
of the room is in almost complete darkness. Nevertheless, as shown in Figure 8, many
features can be tracked through the entire sequence.

4.4 Effects of occlusion

In the final experiment reported here, we took an image sequence from the stationary
robot while a person walked around it, thus temporarily occluding parts of the scene.
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Fig. 7. Testing robustness to orientation changes using a “bumpy” sequence. (a) Single-scanline
EPI. (b) EPI formed by averaging 50 scanlines. (c) Only 8 features can be tracked through all 94
frames of (a). (d) 253 features can be tracked through (b). (e,f) Histograms of track lengths (track
length increases from top to bottom).

Fig. 8. Left top: Part of an EPI from an image sequence with changing lighting. Left bottom:
Feature tracks that span the entire sequence. Right: The corresponding track length histogram.
Note that there are many long tracks, despite the significant illumination changes.
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Fig. 9. (a) An EPI of a person walking around the robot. (b) Feature tracks spanning at least 20
frames, corresponding to features with smaller scales (σ < 8). (c) Feature tracks spanning at least
20 frames, corresponding to features with larger scales (σ ≥ 8).

The resulting EPI and two plots of feature tracks with different scale ranges are shown
in Figure 9. It can be seen that the features with smaller scales (σ < 8), which comprise
the vast majority of all features, are unaffected by the neighboring occlusion. This is
not the case for features with larger scales (σ ≥ 8), whose tracks end many frames
away from the actual occlusion event. This is not surprising, given the larger footprint
of the smoothing kernels for higher values of σ, and has to be taken into account in
feature matching algorithms. The stability of the majority of features, however, is a
good prerequisite for employing robust matching techniques such as RANSAC.

5 Conclusion

In this paper we have defined interest operators for extracting stable features from the
scale space of one-dimensional omnidirectional images. Interest points are selected by
finding the minima and maxima of each of the three color bands of Dσ and Dφ, yield-
ing many features in each of the 12 types. Our experimental results show that a large
fraction of these features are stable, in the sense that they can be tracked through long se-
quences of frames, despite the presence of significant vibration, noise, lighting change,
and nearby occlusion. An attractive property of scale-space extrema is their automatic
scale selection, which avoids the sensitivity to parameter setting of traditional feature
detectors.

The advantages of our approach are the reduced time and space complexities in deal-
ing with one-dimensional images, which enables a dense sampling of views and there-
fore robust tracking of features through sequences of frames as the viewpoint changes.

We are currently working on an effective algorithm for matching features between
more distant views. This can then be used during mobile robot navigation for course
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correction and localization by comparing feature locations in the current frame to those
in stored reference frames. The long-term goal of our work is to provide robust alterna-
tives to the complexities of full 2D image analysis in the context of vision-guided robot
navigation.
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