
Autonomous Meta-Classifier for
Surface Hardness Classification from UAV Landings

Elizabeth Basha1, Tristan Watts-Willis1, and Carrick Detweiler2

Abstract— Developing surface classification models manually
requires significant time and detracts from the goal of automat-
ing systems. We create a system that automatically collects
the data using an Unmanned Aerial Vehicle (UAV), extracts
features, trains a large number of classifiers, selects the best
classifier, and programs the UAV with that classifier. Motivating
our work is a prior project [1] that manually developed a
surface classifier using an accelerometer; to verify our system
functionality, we replicate those results with our new automated
system and improve on those results, providing a four-surface
classifier with a 75% classification rate and a hard/soft classifier
with a 100% classification rate. We further verify our system
through a field experiment that collects and classifies new
data, proving its end-to-end functionality. Overall, our system
reduces the time and machine learning expertise needed by the
user to develop new time-series classifiers usable by the UAV.
The general form of our system provides a valuable tool for
automation of classifier creation and is released as an open-
source tool [2].

I. INTRODUCTION

Previous research demonstrated that a unmanned aerial
vehicle (UAV) can classify a surface using only its ac-
celerometer sensor [1]. This allows the UAV to determine
whether a surface is soft enough to install a sensor node with
a spike without breaking the spike; this spike allows the node
to stay fixed in place despite erosion and unstable terrain.
A key challenge with that work was the need to manually
create, train, and implement the classifier as well as manually
collect the training data. This process takes weeks of manual
tuning and work, limiting efforts to modify the classifier for
different conditions. The problem of manual development
of the classifier is not isolated to the surface classification
problem, but any classification problem. In this paper, we
automate the classifier development process, demonstrating
our process and validating the results in the context of the
UAV surface classification application.

We developed an open-source system (available on Bit-
Bucket [2]) consisting of a set of algorithms that collect data
using the UAV, compute features, train classifiers, select the
best classifier, and implement the classifier system on a UAV.
The system automates the process, reducing the amount of
time a person needs to spend by orders of magnitude as it
only requiring starting the process.

We are grateful to USDA-NIFA 2017-67021-25924, USDA-NIFA 2013-
67021-20947, and NSF CNS (CSR-1217400 and CSR-1217428), which
partially supported this work.

1E. Basha and T. Watts-Willis are with the Department of Electrical and
Computer Engineering, University of the Pacific, Stockton, CA 95211, USA
ebasha, twattswi at pacific.edu

2C. Detweiler is with the Department of Computer Science and Engineer-
ing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA carrick
at cse.unl.edu

To use our system, a user defines a set of locations, label-
ing the locations with the categories. The system does not
require the user to know anything about machine learning;
it provides default settings such that the user only has to
provide labeled locations. For users who want to configure
the process, the system allows for optional user configuration
of various parameters, including the set and number of
features, the set of classifiers, and the definition of a “best”
classifier. Once started, the system sends the UAV to the user
provided locations to collect training data, which is fed into
our tool. The tool then selects the best classifier based on
the user goals (e.g. minimizing false positives, minimizing
features, etc.). This selected classifier model is programmed
on the UAV, which now can use the model to classify
unknown locations. While we focus on the application of
surface classification in the development of our system, the
system uses generalized approaches that allow it to classify
any time-series sensor data that the UAV can collect.

To verify our new system, we use the data collected in our
prior surface classification work [1] and first compare our
results under the same conditions, showing that our process
can provide similar results. We then run the full automated
system, allowing for different features and classifiers from
the prior work, to find the best classifiers through our
automated approach. To classify four different surfaces, ex-
amining only classification accuracy, we find 5499 classifiers
with an accuracy higher than 63.75%, the best accuracy
found in our prior work. The best of these classifiers provides
a classification accuracy of 75%, a significant increase over
the prior work. Classifying two surfaces, our new approach
provides a 100% classification accuracy, also improving over
the prior work. We also compare our system to Auto-WEKA
2.2 [3], a different form of meta-classifier that de-emphasizes
model efficiency; our system provides more efficient models
with better classification rates and reduced false positives
than the latest Auto-WEKA system. Having proved our
approach achieves our goals of efficient models and minimal
user interaction, we deploy the complete system in a field
experiment that collects and classifies based on new data,
thereby validating its use in an end-to-end approach.

The rest of this paper is organized as follows. We start by
discussing related work in Section II before describing our
system in Section III. Section IV compares our results to our
prior work. Section V then describes our field experiment
proving the complete operation of our system on new data.
Section VI summarizes our work and outlines our future
work extending this tool.



II. BACKGROUND AND RELATED WORK

We first provide background on surface classification work
and then, given our contribution of a tool for automated
classifier creation and use, discuss the related work on
automated classifiers with a focus on the use in robotics.

A. Surface Classification
Surface classification is the application area of our work

in which we will verify our approach. To better understand
it, we discuss the prior work that explored a number of
methods for surface classification, covering ground robots,
online learning approaches, and aerial robots.

Many of the ground robot approaches that used vibrations
for classification also used manually trained classifiers [4],
[5], [6], [7], [8], [9], [10]. Some do adaptively modify
parameters such as Komma et al. who adaptively changed the
parameters for their Bayes Filter approach on their ground
robot [11]. Otsu et al. provided a more automated approach
with adaptive co-learning using a camera and a vibration
sensor [12]. Dutta and Dasgupta utilized a number of smaller
classifiers in an ensemble approach; these classifiers were
still manually trained although the approach considered
computational complexity [13].

Closer to our motivating application is research utiliz-
ing aerial robots. Most of these approaches are camera-
based with manually tuned classifiers as demonstrated by
Mejias [14]. Mizui et al. inspected infrastructure using a
hammer on a UAV and measured the sound waves to deter-
mine defectiveness [15]. Although this did rely on the UAV
striking the system under test, the classification approach was
binary thresholding on the frequency response.

In our prior work, Anthony et al. used acceleration in-
formation with an aerial robot [1] to classify surfaces on
landing. The authors manually piloted a UAV over various
sample surfaces and collected data samples using the on-
board IMU. The authors then manually identified the most
useful features and trained several classification algorithms,
selecting a decision tree classifier as the best. This paper
directly extends and improves that work through our new
automation system.

Our system automatically gathers data using a UAV with
an onboard accelerometer and processes this data to extract
useful features. This system automates the selection of
features and classifiers, increasing the amount explored and
resulting in a better classification model for the data than
other approaches. It also allows for easy re-training and re-
selection for new terrains.

B. Automated Classifiers
Different methods exist for selecting a machine learning

model, especially for the task of minimizing error by filtering
models that underfit or overfit the data. Biem used Hidden
Markov Models with a discriminative information criterion
to determine the best model [16]. Chapelle et al. utilized two
methods for model selection: smallest empirical bound and
direct eigenvalue estimator [17].

Thornton et al. developed Auto-WEKA, a meta-
classification algorithm that found the best model using

different classifiers with many different parameters [18].
Kotthoff et al. extended this work with Auto-WEKA 2.0,
an improved version that provided support for regression
algorithms, parallelized training of classifiers, saved multiple
models, and optimized more metrics [3]. Feurer et al. also
improved Auto-WEKA by focusing on the efficiency of the
underlying optimization problem [19]. They implemented a
meta-learning step at the beginning of the process to better
prepare the Bayesian optimization algorithm for the various
machine learning frameworks; this showed a significant
improvement in the performance of the classifiers.

Reif et al. developed a regression-based approach to
estimate the classifier accuracy based on statistical analysis
of the data set [20]. The system trained only the selected
classifiers and optimized the parameters for those classifiers.
While this approach is fast, one drawback is the lack of
feature selection, resulting in a classifier that may not provide
the best accuracy possible.

These methods do not consider computational complexity
of the models, reducing their utility on a robotic platform.
Our system trains many different classifiers over every com-
bination of features and available sensors. This allows us
to check the relevance of each feature and each sensor in
order to determine the classifier model that has the best
trade-off between computational efficiency and classification
rate. Additionally, we can configure our system to run on the
computational system available, which allows it to run on a
robot while in the field.

III. META-CLASSIFICATION SYSTEM

We developed a meta-classification system to au-
tonomously compute features, train classifiers, and select
the best classifier based on user-defined criteria to program
the aerial robot. This system utilizes a UAV, the sensors
already on the UAV, and a computer; these autonomously
work together to perform the meta-classification. For the
computer, the approach was designed so that the user can
configure the system to match the processing power available
for anything from an embedded processor like a Raspberry
Pi to a high-power desktop system. As of now, the system
works with supervised learning, assuming some method of
labeling exists (either automated or manual).

In this section, we describe our overall classification
system and then discuss the different sub-algorithms.

A. Classification System
Algorithm 1 shows the high-level steps of the full classi-

fication system. Our system begins by collecting data from
pre-labeled locations using the UAV’s onboard sensors. With
the collected data, the system computes features. Next, the
useful features feed into our classification algorithm, which
generates models based on all possible combinations of
classifier algorithms and features. For each run, we collect
metrics, such as the number of features, the classification
rate, and the confusion matrix; after all runs, the system com-
putes which combination worked best. The exact parameters
for determining the “best” model are provided to our program



Algorithm 1 Meta-Classification Overview
1: {trainingData, verificationData} = CollectData(locations, numSamples) . Collect and label data

2: featureNames = 〈. . . 〉
3: featureSets = ∅ . Recursively generate list of all feature combinations
4: for f ∈ 1 . . .Length(featureNames) do
5: featureSets += GetFeatureSets(featureNames, f)
6: end for

. Train classifiers, gather statistics, and save information (See Algorithm 2)
7: modelList = BuildAndTestModels(classifierList, featureSets, trainingData, verificationData)
8: SaveModelInformation(modelList)

. Using supplied parameters, determine best model in modelList (See Algorithm 3)
9: model = GetBestModel(modelList, selectionParameters)

10: ProgramUAV(model) . Program the best classifier model onto the UAV

Algorithm 2 BuildAndTestModels
1: modelList = ∅
2: for c ∈ classifierList do
3: for f ∈ featureSets do . Remove unused features from data set and train the classifier
4: data = GetDataSetWithFeatures(trainingData,f )
5: model = BuildClassifier(c,data) . Run cross-validation on model and measure time taken
6: evalTime = time()
7: evaluation = CrossValidateModel(model,data)
8: evalTime = time() − evalTime
9: falsePositives = GetFalsePositives(evaluation.confusionmatrix)

10: if verificationData then . Evaluate model with optional verification data
11: verification = TestModel(model,verificationData)
12: end if . Store information on classifier and performance
13: modelList += 〈c, f, evaluation.accuracy, falsePositives, evalTime, verification.accuracy〉
14: end for
15: end for

on launch. Finally, the best classifier is then programmed on
the UAV to classify new locations.

B. Data Collection
The first step of Algorithm 1 is the data collection algo-

rithm, shown on Line 1. Initially, the user needs to provide
labeled locations that match the classification categories.
With these locations, the UAV flies to each, measures the
appropriate information, and repeats to collect the data set.
The system divides this data set into training and validation.
While the system does use cross-validation when training,
the additional and separate validation phase reduces the
likelihood of selecting an overfit model. These two data sets
then progress to the feature computation stage.

C. Feature Computation
Our system’s next algorithm extracts features and se-

lects the appropriate data sets as Algorithm 1 describes
in Lines 2-6. The data we are examining is time series
data; therefore, we perform feature extraction to acquire
several key indicators. Examples of possible features include
maximum/minimum, second maximum/minimum, peak fre-
quency, variance, and skew [1]. The user configures the set of
features to test and our approach will prune features that are
not useful. This means that, if the computational resources

are available, the user can comfortably add many features to
better explore the model options in cases of uncertainty or
initial investigations.

Once all of the features are extracted and the tagged
data is loaded, we generate a set of all possible feature
combinations. By default, the program will generate all
feature combinations. As the number of combinations scales
rapidly, to reduce computation time, the user can specify a
limit to the maximum number of features. The number of
combinations generated is given by

min(n,m)∑
i=1

m!

i!(m− i)!

where n is the user specified maximum number of features
and m is the total number of features in the data. While
computation time scales rapidly with the number of features,
in practice, using eight features takes 19 minutes on a
desktop system and 321 minutes on a Raspberry Pi (see
Section V-B for details). This is sufficient for most systems
we are interested in.

D. Build Classifier
With the feature set computed, our system now trains all

of the classifiers using all feature sets, shown in Lines 7-8



of Algorithm 1. Algorithm 2 outlines the key components of
this step. From the prior algorithm, this algorithm receives
the training data, the verification data, and the classification
categories. The user defines the maximum number of fea-
tures, the minimum number of features, and the category
to use for false positives (whichever category could most
damage the UAV if misclassified). Optionally, the user can
define the number of cross-validation folds, the maximum
allowable number of false positives, and the allowable drop
in classification percentage in order to find the result with
the smallest number of false positives or smallest number
of features. All of these parameters have reasonable default
settings so the user can optionally ignore the parameters.

Having defined the necessary parameters, we now consider
the classification algorithms. We use several classification
algorithms, including: (1) Discriminant Analysis, (2) Support
Vector Machines, (3) Decision Trees/Forests, (4) Logistic
Regression, (5) Naive Bayes, and (6) Multilayer Perceptron
Neural Network. This is only a subset; the user can include
many others in the system easily by modifying the configu-
ration text file that defines our classifier list. These provide a
diversity of algorithm types, allowing our meta-classifier to
generate the best possible model. To implement each algo-
rithm, we use the WEKA machine learning workbench [21];
a different machine learning library could easily be used in
our system such as Python scikit-learn [22].

We loop through these classifiers and, for each classifier,
we generate a model for all combinations of features using
the WEKA default parameters. To utilize non-default param-
eters, we can modify the configuration text files as we do
to define the classifier list. Adding the ability to perform
parametric sweeps of the various parameters within our
system is future work along with quantifying the increased
runtime.

In the WEKA implementation, we use the functions Build-
Classifier, CrossValidateModel, and TestModel for generating
and evaluating classifiers. BuildClassifier accepts a classifier
algorithm, data set, and optional parameters and outputs a
usable model (see Lines 4-5 in Algorithm 2). CrossValidate-
Model (Line 7) accepts a model and data set, performs n-fold
cross-validation, and then returns performance metrics, such
as the confusion matrix. TestModel (Line 10) evaluates a
model and returns performance metrics without validation.

The model is evaluated on the training data as well
as the separate verification data, if provided by the user
(Line 11). We save the evaluation results for each data set
such as classification rates and confusion matrices for further
processing.

E. Classifier Selection
Once all of the models have been trained and evaluated,

we rank them by classification rate and filter based on user
inputs. Algorithm 3 describes the selection process. First, the
user can specify a false positive rate limit. If the user sets
this, the program will filter out models that have equal or less
than the false positive limit; otherwise, the program returns
all models. Then the program selects all models within that

set that have the highest accuracy. Additionally, if the user
specifies a maximum allowable percentage drop, the program
will add those models within that accuracy range of the best
classification rate. Finally, the algorithm selects the model in
the remaining set that has the least number of features and
lowest computational time.

F. Program UAV
The classifier models are represented by small configu-

ration files, typically less than 50 KB. This enables easy
storing and transmission of the models between robots and
optional base stations. In our current implementation, we
send the model to the UAV via SCP (Secure Copy) over
Wi-Fi when using a base station for computation or we can
perform computations on an onboard Raspberry Pi.

IV. ALGORITHM VALIDATION

To validate our system and approach, we compare our
system’s results to the results of the motivating paper [1].
We start by reviewing the results of the motivating work,
our results replicating their work on the same data, and our
improved results using the full abilities of our system.

A. Motivating Results

Anthony et al. previously developed surface classification
algorithms for UAVs [1]. This process was highly manual
and motivates our goal of automating classifier selection.

In their experiments, the authors recorded accelerometer
data for landings on four types of indoor surfaces (wood,
carpet, rubber tile, and foam). They then extracted features
based on several common time series predictors, a sub-set
of those we use. Using MATLAB, the authors manually
created and trained models using Decision Trees, Linear Dis-
criminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA). This required weeks of work to manually compare
results, to pick parameters, and to adjust parameters.

They trained models in two different ways for each set
of data. The first classification had four categories of indoor
surfaces; the second classified two categories of hard or soft.
Table I shows the results of these trials.

B. Our System’s Replication Results

We began by replicating the original results. Using our
system, we first performed classification using LDA, QDA,
SVM, and Decision Trees on the set of all original features.
We also performed the second experiment from the prior
paper to classify surfaces as hard or soft, again training our
classifiers using all 11 original features. Table I shows how
our results compare to those of the original paper.

Our results are within reasonable ranges of the original pa-
per’s results. Overall, both approaches select the decision tree
algorithm for both experiments (the original paper selected
it for all surfaces due to its computational simplicity even
though it performed slightly worse than LDA). Our system
took minutes for the user to setup and all remaining steps
were automated, while the prior work took the user weeks
of direct work, showing the clear improvement our system
provides.



Algorithm 3 GetBestModel
1: modelList = {m ∈ fullModelList | m.falsePositives ≤ selectionParameters.falsePositives} . Filter list of models by

false positive rate
2: maxAccuracy = max(m.accuracy | m ∈ modelList) . Determine highest accuracy model
3: maxAccModels = {m ∈ modelList | m.accuracy = maxAccuracy}
4: maxAccuracyModel = sort(maxAccModels,m→ m.numFeatures)[0]
5: highAccModels = {m ∈ modelList | maxAccuracy−m.accuracy ≤ selectionParameters.percentDrop}
6: minFeatures = min(m.numFeatures | m ∈ highAccModels) . Find minimum feature count of available models
7: minFeatureModels = {m ∈ highAccModels | m.numFeatures = minFeatures}
8: fastestModels = sort(minFeatureModels,m→ m.classifyTime)
9: bestModel = sort(fastestModels,m→ m.numFeatures)[0] . Output model with lowest time and fewest features

All Surfaces Hard/Soft
Classifier Classification Accuracy False Positives Classification Accuracy False Positives
ICRA Decision Tree 62.5% 5% 97.5% 5%
Our Decision Tree 68.75% 4.8% 97.5% 5%
ICRA LDA 63.75% 0% 93.75% 0%
Our LDA 68.75% 4.8% 97.5% 9.1%
ICRA QDA 58.75% 5% 97.5% 5%
Our QDA 53.75% 0% 93.75% 0%
ICRA SVM 41.25% 35% 88.75% 45%
Our SVM 36.25% 0% 75% 0%

TABLE I
SUMMARY OF INDOOR TESTING RESULTS FROM ORIGINAL ICRA 2015 PAPER [1] AND OUR RESULTS

C. Our System’s Improved Automated Results

Upon verifying that we were seeing similar results under
the same conditions, we ran the data through our meta-
classification system to generate the best model. For this
test, we defined three different “best” models: (1) the model
with the best classification accuracy, (2) the model with the
lowest false positive rate, and (3) the model using the fewest
features with the lowest false positive rate that was within 5%
of our highest classification accuracy model (for example, if
the most accurate model is 80%, this would be the model
with least features with an accuracy within 76% to 80%).

We began by classifying all surfaces, for which we gener-
ated 22517 different classifier models. The manual method
from the paper resulted in four classifier models; the best
model for all surfaces had a classification accuracy of 62.5%
with 5% false positives. Figure 1 compares these four models
to all of our models. This histogram represents the number of
classifier models providing that classification accuracy and
shows that 5499, or 24.4%, of our models provide better
results than the best one presented in the original paper.
Table II outlines all three of our best models in comparison
to the original paper’s best model. Each results in a 12%
or higher classification accuracy with the QDA model also
avoiding misclassifications and only requiring three features,
which would reduce the processing on the data to enable the
UAV to compute results faster. We also compare our results
to Auto-WEKA 2.2 [3], which is a commonly used system to
automatically find a classifier; that system runs for a defined
length of time, which we set to the same amount of time our
system required to compute our results. Our system finds
a classifier with a better classification accuracy, less false

Fig. 1. Histogram of classification accuracy of all generated classifiers for
all surface data, showing the classifiers from [1] with red triangles

positives, and a reduced number of features.
We next examined the reduced complexity hard versus soft

data set; Table II shows these results as well. The original
paper concluded that a Decision Tree model worked best,
resulting in a classification accuracy of 97.5% with soft
surfaces being misclassified 5% of the time. Our three best
models are all the same Logistic model providing a perfect
classification accuracy based on only two features. Again,
comparing to Auto-WEKA 2.2, our approach provides an
efficient and accurate classifier. Overall, automating the
process and focusing on computational complexity allows



Fig. 2. Flowchart describing data collection procedure for meta-classifier

for determination of an improved and more efficient model,
which reduces the computational time and energy the UAV
requires to classify new locations.

V. FIELD EXPERIMENT

After ensuring the classification aspect of our system
functions, we implement the complete system and perform
a field experiment using a AscTec Hummingbird [23] and a
Raspberry Pi 3 Model B [24] (Pi).

A. Experiment Setup

We have the Raspberry Pi aboard the UAV with an ac-
celerometer. Data samples are collected from preset locations
for different surface types. Figure 2 describes the experiment
procedure. Our program on the Pi instructs the UAV to fly to
these locations, to free-fall from 20cm while the Pi records
three seconds of data, and then fly to the next sample location
until all samples are collected. Our system extracts the
required features from the samples and then begins our meta-
classification algorithm to generate the best model. Once the
model has been generated, our system sends the model to the
Pi for use on the UAV. The UAV then collects data from both
the original training surfaces and two additional surfaces,
classifying the surface immediately after data collection.

The training data set for the classifier is taken from 160
samples, split evenly between a soft pillow and hard tile. For
verification of the model, the UAV recorded an additional
20 samples from both surfaces. The system also recorded
20 samples of an alternate hard surface (a lab table) and 20
samples of an alternate soft surface (a different pillow) to
test the classifier on surfaces upon which it was not trained.

B. Results

Our meta-classification system was configured to mini-
mize both the required number of features and the occur-
rences of false soft classifications. We limited the number of
features to eight to reduce the number of generated models
and decrease runtime. On our computer, a 3.9GHz i7 4770
with 8GB RAM, this process took approximately 19 minutes.
On our Raspberry Pi, a 1.2GHz ARMv8 with 1GB RAM,
this process took approximately 321 minutes.

In total, the algorithm trained and evaluated 23760 classi-
fiers. Ten of the models result in a classification accuracy of
100% on the training set. Of these ten, four of the models
used the LDA classifier while the remaining six used the
Logistic classifier. Between these, the system chose one of
the Logistic classifiers as it is the classifier with the highest
classification accuracy and the fewest required input features.

The chosen Logistic model uses four features from the ac-
celerometer z-axis (vertical axis of the UAV): (1) minimum,
(2) variance, (3) kurtosis, and (4) mean. Each verification
data set was separately classified using the chosen model
to populate Table III. Running the classifier for one test on
the Pi required 0.38ms. The verification set for the training
surfaces resulted in 90% classification accuracy. Only four
of the 20 samples were misclassified and, of these, only one
sample was falsely classified as soft.

After verifying the model was accurate on our training
surfaces, we tested to ensure the UAV could classify other
surfaces correctly. All 20 alternate hard surface samples were
classified correctly. For the alternate soft surface, eighteen
samples were correctly classified with only two of the 20
samples on this surface misclassified as hard.

C. Analysis

This experiment verified the full system from data collec-
tion to classification of new surfaces. The UAV successfully
performed automated classification and chose a model that
performed well on new surfaces.

VI. CONCLUSION

We developed an automated system that allows a UAV
to collect data, train and select the best classifier, and then
use that classifier on new surfaces. The system minimizes
the user’s time and requires no machine learning experience
while also allowing the UAV to perform the work in the field
without user interaction. For those with machine learning
expertise, the system parameterizes the number of features,
the number of classifiers, and different best models, allowing
the system to optimize performance based on computation
and energy constraints. This automation also allows the
system to re-select models when the current one no longer
provides reasonable results, which allows for in-field au-
tomated reprogramming of the system to improve results.
While our experiments focused on surface classification, the
system can classify any time-series data that the UAV can
measure, enabling a wide variety of applications. Our system
is publicly available on BitBucket [2] in order to support the
community in performing these classifications.



Classifier Classification Accuracy False Positive Rate Number of Features

All Surfaces

ICRA LDA 63.75% 0% 11
Best Accuracy RandomSubSpace 77.5% 9.1% 7
Best False Positive QDA 75% 0% 3
Fewest Features QDA 75% 0% 3
Auto-WEKA RandomForest 70% 4.8% 11

Soft/Hard

ICRA Decision Tree 97.5% 5% 11
Best Accuracy SimpleLogistic 100% 0% 2
Best False Positive SimpleLogistic 100% 0% 2
Fewest Features SimpleLogistic 100% 0% 2
Auto-WEKA RandomForest 98.5% 9.1% 11

TABLE II
COMPARISON OF BEST ICRA CLASSIFIER TO BEST OF SEVERAL CATEGORIES FROM META RESULTS

Training Set Verification Set
Classification Pillow (Soft) Tile (Hard) Pillow (Soft) Tile (Hard) Table (Hard) Second Pillow (Soft)
Soft 80 0 17 1 0 18
Hard 0 80 3 19 20 2

TABLE III
CLASSIFICATION RESULTS FOR EACH SURFACE TYPE BASED ON CHOSEN LOGISTIC MODEL

Our system does still rely on labeled locations; we plan
to address this in future work. We also plan to add a metric
for the computational complexity of the classification model
to include that in selection of the best model. Ideally, the
system, while in the field, can adapt to the computational
and energy constraints of the UAV and other robotic systems
working to measure and understand the environment.

REFERENCES

[1] D. Anthony, E. Basha, J. Ostdiek, J.-P. Ore, and C. Detweiler, “Surface
classification for sensor deployment from uav landings,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 3464–3470.

[2] “University of the Pacific’s meta-classifier open tool repository,”
2017, [Accessed: Feb. 27 2017]. [Online]. Available:
https://bitbucket.org/pacific ecpe/pacific metaclassifier

[3] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
“Auto-weka 2.0: Automatic model selection and hyperparameter op-
timization in weka,” Journal of Machine Learning Research, vol. 17,
pp. 1–5, 2016.

[4] E. Coyle and E. G. Collins Jr, “A comparison of classifier performance
for vibration-based terrain classification,” DTIC Document, Tech.
Rep., 2008.

[5] E. M. Dupont, C. A. Moore, E. G. Collins, and E. Coyle, “Frequency
response method for terrain classification in autonomous ground
vehicles,” Autonomous Robots, vol. 24, no. 4, pp. 337–347, 2008.

[6] P. Giguere and G. Dudek, “Surface identification using simple contact
dynamics for mobile robots,” in IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 3301–3306.

[7] D. Sadhukhan, C. Moore, and E. Collins, “Terrain estimation using
internal sensors,” in Proc. of the IASTED Int. Conf. on Robotics and
Applications, 2004.

[8] K. Sullivan, W. Lawson, and D. Sofge, “Fusing laser reflectance and
image data for terrain classification for small autonomous robots,” in
International Conference on Control Automation Robotics & Vision
(ICARCV). IEEE, 2014, pp. 1656–1661.

[9] A. Vicente, J. Liu, and G.-Z. Yang, “Surface classification based on
vibration on omni-wheel mobile base,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 916–921.

[10] X. A. Wu, T. M. Huh, R. Mukherjee, and M. Cutkosky, “Integrated
ground reaction force sensing and terrain classification for small
legged robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2,
pp. 1125–1132, 2016.

[11] P. Komma, C. Weiss, and A. Zell, “Adaptive bayesian filtering for
vibration-based terrain classification,” in IEEE International Confer-
ence on Robotics and Automation. IEEE, 2009, pp. 3307–3313.

[12] K. Otsu, M. Ono, T. J. Fuchs, I. Baldwin, and T. Kubota, “Au-
tonomous terrain classification with co-and self-training approach,”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 814–819,
2016.

[13] A. Dutta and P. Dasgupta, “Ensemble learning with weak classifiers for
fast and reliable unknown terrain classification using mobile robots,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. PP, no. 99, pp. 1–12, 2016.

[14] L. Mejias, “Classifying natural aerial scenery for autonomous aircraft
emergency landing,” in International Conference on Unmanned Air-
craft Systems (ICUAS). IEEE, 2014, pp. 1236–1242.

[15] M. Mizui, I. Yamamoto, S. Kimura, and M. Maeda, “Research on
hammering test system by unmanned aerial vehicles for infrastructure
surveillance,” in International Symposium on Experimental Robotics.
ISER, 2016.

[16] A. Biem, “A model selection criterion for classication: Application to
hmm topology optimization,” in Proceedings of the Seventh Interna-
tional Conference on Document Analysis and Recognition (ICDAR03).
IEEE, 2003, pp. 104–108.

[17] O. Chapelle, V. Vapnik, and Y. Bengio, “Model selection for small
sample regression,” Machine Learning, vol. 48, no. 1-3, pp. 9–23,
2002.

[18] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
weka: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2013, pp. 847–855.

[19] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems, 2015, pp. 2962–
2970.

[20] M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel, “Au-
tomatic classifier selection for non-experts,” Pattern Analysis and
Applications, vol. 17, no. 1, pp. 83–96, 2014.

[21] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning
workbench,” in Second Australian and New Zealand Conference on
Intelligent Information Systems. IEEE, 1994, pp. 357–361.

[22] scikit-learn, “scikit-learn,” 2017, [Accessed: July 20 2017]. [Online].
Available: http://scikit-learn.org/stable/

[23] “AscTec Hummingbird,” 2017, [Accessed: Feb. 27 2017]. [Online].
Available: http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-
hummingbird/

[24] “Raspberry Pi 3 Model B,” 2016, [Accessed: Feb. 27 2017].
[Online]. Available: https://www.raspberrypi.org/products/raspberry-
pi-3-model-b/


