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ABSTRACT

Monitoring lakes, rivers, and oceans is critical to improv-
ing our understanding of complex large-scale ecosystems. In
this work, we develop and analyze three path planning al-
gorithms for underwater robots to optimize sensing in con-
junction with networks of underwater sensors. The algo-
rithms require different levels of knowledge about the en-
vironment: global, local, and decentralized control of the
robot by the sensor network. We find our global Voronoi
approach produces paths that are typically best for sensing,
but are longer, which can be problematic if the robot has
limited endurance. The local algorithm, inspired by Tangent
Bug, produces paths that are usually shorter while still hav-
ing good sensing. The decentralized controller also has good
sensing and short paths and has the advantage that it can
also adapt the depths of the underwater sensors to jointly
optimize the sensor network and robot sensing and the robot
path length. The drawback is the somewhat higher com-
munication and processing requirements. For each of these
algorithms we perform a detailed analysis and comparison
in simulation. We identify limitations of each and provide
framework for future improvements.

1. INTRODUCTION
Water is crucial for supporting life on earth, so it is im-

portant to develop tools to monitor the water bodies. New
technologies have enabled the exploration of the vast unex-
plored aquatic environment. This includes underwater sen-
sors nodes that can be deployed for long periods to study
single points in high detail over time and underwater glid-
ers, ROVs, and AUVs that can be deployed to monitor larger
regions. By enabling close interaction of these two types of
systems there is the potential to enable long-term monitor-
ing of select locations with an underwater sensor network,
while periodically filling in the sensing gaps and providing
high-resolution sensing with an underwater vehicle.

In this work, we develop and analyze the cost and bene-
fit trade off of three algorithms that optimize the path for
sensing of underwater robots moving through networks of
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Figure 1: AquaNode underwater sensor nodes with the
underwater robot Amour.

underwater sensors, such as those shown in Figure 1. The
first algorithm, VoronoiPath, is a global path planning
algorithm using the Voronoi Tessellation method. The al-
gorithm needs a priori knowledge of positions of all sensors
before the mobile robot enters the water column, but no ad-
ditional communication is needed once traveling through the
water. The second approach, TanBugPath, is a local path
planning algorithm inspired from the traditional robot path
planning Tangent Bug algorithm. When the robot enters
the water column it knows the position of only the nearest
sensor. The robot moves towards this sensor maintaining
a minimum distance from it. This sensor then communi-
cates information on the position of the next sensor to the
robot and the process continues in this manner. The third
algorithm, AdaptivePath, is based on our prior work in de-
veloping adaptive decentralized control algorithms that op-
timizes the depths of underwater sensors for sensing [5] and
for determining the path of an underwater robot in networks
of underwater sensors while also constraining the length of
the path [4]. In this work we develop and analyze these
algorithms in simulation.

The research can be broadly divided into three main cat-
egories: path planning, sensor placement and underwater
sensing. Takahashi et al. [19], introduced a path planning
algorithm based on Generalized Voronoi Diagram (GVD).
Garrido et al. [9], Bhattacharya et al. [2] used it for global
path planning between a source and destination. So and Ye
[17] show that GVD can be used to solve coverage prob-
lems. Kamon et al. first introduced Tangent Bug algorithm
in [12]. Ge et al. introduced the local target approach [10].
Buniyamin et al. used it in PointBug algorithm which re-
sults in shorter path lengths [3].

Detweiler et al. presented a decentralized controller opti-
mization by adjusting depths of underwater sensors in [5].
In [14], Liu et al. introduced a method of joint optimization
for minimizing communication cost and maximizing infor-
mation gainand Stranders et al. [18] presented an on-line,
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Figure 2: Sensors and robot waypoints (N = 10,M = 9)

decentralized coordination algorithm for a team of mobile
sensors. Leonard et al. [13] designed a mobile sampling net-
work to take measurements and Smith et al. [16] performed
angle optimization to control path of an autonomous un-
derwater glider. In all these, the focus is on avoiding ob-
stacles or planning the shortest distance path. However, in
this research we introduce a robot to a region deployed with
semi-mobile sensors to improve sensing quality.

2. PROBLEM FORMULATION
We now formalize the problem statement and discuss our

assumptions. While this work presents simulated results, it
is motivated by our prior work on underwater sensor network
with depth adjustment capabilities, called AquaNodes [20],
and an underwater robot that can communicate and collect
data from the sensor nodes [7, 8]. Figure 1 shows a picture of
the system. The AquaNodes are anchored at the bottom of
the water column and can dynamically adjust their depths.
Amour can communicate both acoustically and optically
with AquaNodes. We assume a 2D configuration and do
not examine the impact of communication performance. We
leave examining these for future work, but note that in our
prior work [4] we implemented similar algorithms on the
AquaNodes and found that it worked well in practice. We
also do not consider localization as we have shown in our
previous work that both sensors and robot are capable of
localizing in the water column [6].

Figure 2 shows the setup of our system. There are N
sensors at locations {p1 · · · pN}, and we want to determine
the best M locations for the robot, {pR1 · · · pRM}, to sense
the field. We also want to ensure that the robot sensing
locations do not cause the robot to travel excessively far,
since the robot has limited energy. For a region we are
sensing, Q, we call points we are interested in q ∈ Q. In
practice we discretize Q into a fine grid and aim to obtain
as much information about all of these points. A covariance
function is needed for this algorithm which describes the
relationship between sensor positions and all other points in
the region of interest. This covariance function is modeled as
a multivariate Gaussian, as is often used in objective analysis
in underwater environments [15].

To evaluate the performance of our algorithms we use the
posterior error or entropy measure [11]. The posterior error
of a point can be calculated as:

σ2
q|P = Cov(q, q)− Σq,P · Σ−1

P,P · ΣP,q (1)

The vectorΣ q,P is vector of covariances between q and sen-
sors P = {p1, ..., pN}. The vectorΣ P,q isΣ q,P transposed.
The matrixΣ P,P is covariance matrix for sensors. The val-
ues ofΣ P,P areΣ pi,pj = Cov(pi, pj) for each entry (i, j). In
our algorithms we do not directly aim to minimize entropy
since this requires the inversion of the covariance matrix,
which cannot be easily computed on most memory and pro-
cessor constrained sensor network systems.
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Figure 3: Sensors and Voronoi path
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Figure 4: Sensors, sensing radius and Tangent Bug path
(rS = 5; rR = 5)

3. ROBOT SENSING ALGORITHMS
In the following subsections, we discuss three different

methods for planning the path of an underwater robot through
a sensor network. We assume that movement of sensors is
constrained, hence, the sensor network is not able to sense
at all possible location in the region. The goal of the path
planners is to allow the robot to sense at positions which
are under sensed and unreachable by the sensors. In our
examples, we use a water column of depth 30m.

3.1 Voronoi Path
Voronoi Tessellation is a method of dividing a given space

into number of regions called Voronoi cells and the set of
all Voronoi cells for a given set of points is called a Voronoi
diagram. Given a set of coplanar points P = {p1, · · · , pn}
and a distance function d(x, y), it is a subdivision of the
space into n different cells, one for each point in P such that
a point q lies in the cell corresponding to a point pi if and
only if d(pi, q) < d(pj , q) for i ̸= j.

Let us assume sensors in a plane of water. If we draw
Voronoi cells around each sensor, then each boundary of a
Voronoi Cell is a straight line which is equidistant from the
two sensors on either side of it. Thus, influence of these
two sensors is minimum on this line. If we release a robot
to increase the information gain between sensors, then it
should pass through this straight line. The path obtained
this way is the Voronoi Path and can be seen in Figure 3.

3.2 Tangent Bug Path
A global map of environment is often not available be-

fore a robot starts moving. Tangent Bug is a local path
planning algorithm in which a robot finds endpoints of fi-
nite continuous segments by drawing a tangent from its
current position to the surface of obstacles [12]. If the in-
tersection points are denoted by a set O = {O1, · · · , On},
the algorithm chooses the point Oi such that the distance
d = dist(Pcurr, Oi) + dist(Oi, Pend) (where Pcurr is the cur-
rent position of robot and Pend is the destination) is mini-
mized and then moves towards that point. Once it reaches
Oi the robot again aims to go towards the destination and
repeats the process again if it faces another obstacle.

Tangent Bug algorithm can be applied to Tangent Bug
Path algorithm if we assume that each sensor can sense the
surrounding region effectively up to a certain distance. This
region can be marked by a circular region with the sensor
as center and a radius rS . Any point outside this region



is under-sensed by that sensor. A robot does not need to
sense any point inside this region and so avoids it. Both
sensors and robot communicate acoustically, so their range
is limited. A robot has to move towards the sensing bound-
ary of a sensor to be able to communicate with it to get
information on the position of the next sensor. The robot
also senses locally up to a certain distance which can be de-
noted by a circular sensing region with radius rR (rS and rR
can be same or different). The Tangent Bug Path algorithm
proceeds in small intervals and the robot has a local target
at each interval. Since the algorithm is local, this local tar-
get can be either the next sensor position or the intersection
point of the tangent with the circumference of sensing region
of the next sensor or the final destination.

Figure 4 shows that the robot moves in the direction of the
next target in small intervals. When the robot is closer to the
target, the algorithm finds intersection points between the
tangent from its current position to the boundary of near-
est sensor. The algorithm chooses the intersection point Oi

which is closer to the next target, and then moves towards
this point. Once Oi is reached, if the straight line that con-
nects the robot to the next target does not pass through the
sensing region of the current sensor, then the robot moves
along this line. If the line passes through the sensing re-
gion then the robot moves along the sensing boundary of
the nearest sensor till the algorithm finds a point Oj from
which the robot will have an unobstructed path towards the
next target. When Oj is found, the robot leaves the bound-
ary and moves towards the next target.

3.3 Adaptive Path
In our prior work we developed a decentralized algorithm

for controlling the depth of the underwater sensors to opti-
mize depths for sensing [5]. We extended this work to also
consider hybrid systems with underwater sensors and robots
that can be used to fill the gaps in sensing while also con-
straining the length of the robot path [1, 4]. In this section
we provide an overview of this algorithm.

We start by defining an objective function, H(p1, ..., pN ),
that is the cost of sensing at point q given sensors placed at
positions p1, ..., pN . For N sensors, we define our objective
function over a region Q as:

H(p1, ..., pN ) =

∫

Q

(

N
∑

i=1

f(pi, q)

)−1

dq (2)

Minimizing this function positions the sensor nodes to cover
the region Q for sensing. In practice we use a Gaussian
covariance function for f(pi, q), which relates the location
the sensor is placed, pi, to a point in the region q ∈ Q,
but f(pi, q) can take other forms as well. Equation 2 only
serves to position the underwater sensors for sensing. We
can extend this to include robot sensing points, {pR1 , ..., p

R
M},

by minimizing H(p1, ..., pN , pR1 , ..., p
R
M ) where each point pRi

is one point along the robot path for M robot waypoints.
However, minimizing this function may cause the robot path
to be extremely long. So we introduce a constraint on the
robot path length:

P(pR1 , ..., pRM ) =
M−1
∑

i=1

dist(pRi , pRi+1) (3)

where dist(pRi , p
R
i+1) represents distance between consecu-

tive robot waypoints. We combined the objective functions
to balance improvements in sensing with robot path length:

HR = (1− α)H+ αP (4)
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(b) Sensing, Distance & Overall Objective function

Figure 5: Start and end layout for AdaptivePath (Sen-
sors at 5m & 25m at start, robot at 10m; α = 0.01;
k = 4000; V = 3) with different objective functions

where α is a weight function which varies between [0,1]. The
variable α lets us select between longer robot paths that
produce better sensing versus shorter paths.

To minimize HR, we develop a decentralized gradient con-
troller by taking gradient of HR with respect to z (depth).
Each sensor node communicates with neighbors to compute
a motion based on moving in the negative direction of gra-

dient, −k ∂H
∂zi

R
, scaled by a factor k. In other words we fix x

and y positions of all sensors and robot waypoints and then
adjust their depths to optimize our HR. We show in [1, 4]
that this decentralized controller converges to a local min-
imum, using a Lyapunov-style proof. We also show that
while we can only guarantee a local minimum, this mini-
mum is typically close to the global minimum and we can
adjust α to control the path length the robot travels.

A routine to update depth is run periodically on each
sensor. The algorithm computes the change in the desired
depth, which is bounded by the maximum speed that the
nodes can travel, and changes the node depth. Each sensor
node is responsible for computing and updating the robot
waypoints pR that are closest to it. When the robot comes
close, it will transmit these locations to the robot. In prac-
tice, the sensor network may have a set schedule of times
when the robot enters the network, or the robot might in-
form nearby sensors when it enters the network. These sen-
sors then start running the depth adjustment algorithm to
compute the best path for the robot and any corresponding
changes in the depths for the sensors. This will propagate
through the network, and as the robot moves, it will receive
updated waypoints from nearby sensor nodes.

Since this algorithm runs continuously, it can adapt to
changing conditions. If an area in the water has different
characteristics than the rest of the water column (marked
by lower values of covariances, σd and σs), then Adap-

tivePath distributes the nodes so that more number of
sensors and robot waypoint end in this region irrespective
of their starting location. AdaptivePath is more tolerant
towards the failure of sensors compared to the other algo-
rithms, as the decision of where the robot waypoints should
lie is distributed between each sensor. When a sensor stops
working then a robot waypoint can replace its position and



thus the overall sensing remains unaltered.
Figure 5(a) shows the initial and final layout of sensors

and robot path for AdaptivePath. The sensing objective
(Figure 5(b)a) decreases over time, whereas, distance func-
tion (Figure 5(b)b increases slightly, but its affect on the
overall cost function (Figure 5(b)c) is very low due to the
low value of α. The system converges when the overall cost
function decreases consecutively for more than 5 iterations.

4. COMPARISON
In this section we compare VoronoiPath, TanBugPath

and AdaptivePath algorithms. The three algorithms have
different strengths and weaknesses. To make the comparison
equivalent for all three algorithms, we specify similar initial
conditions for each approach. We specifying rS = rR = 5m
for TanBugPath and σd = 5,α = 0.01 and k = 2000 for
AdaptivePath. The low value of α and moderate value of k
ensure that sensing objective function has prominent effect
on planned path. For three intermediate robot waypoints,
the positions of the robot waypoints in the water column
start horizontally at 18.75m, 22.5m and 26.25m, and then
increase monotonically at gaps of 15m. An overall view of
the comparison of the three algorithms is presented in Ta-
ble 1.
A-Priori Network Knowledge: VoronoiPath is a
global algorithm where the location of all sensors must be
known at the beginning and it is computed centrally. The
algorithm is run before the robot enters water, and the sens-
ing locations are provided to the robot. TanBugPath is a
local path planning algorithm. This implies all processes for
planning path of a robot through an underwater sensor net-
work is done real-time on-board the robot. AdaptivePath

is an adaptive decentralized algorithm. Each of the sensors
can independently decide their location in the water column.
On introducing the robot waypoints, the sensor closest to the
robot waypoints determine the best position for the robot
waypoints along with its own position.
Ease of Implementation: In terms of ease of implemen-
tation, VoronoiPath planning is centralized and relatively
easy to implement as long as the global knowledge of the
sensors is available. This is followed by the AdaptivePath

where each sensor runs an algorithm to update its depth
locally. These sensors optimize locations of nearest robot
waypoints on either side. In TanBugPath, the robot needs
to communicate with the nearest sensor and needs to main-
tain a threshold distance with each sensor to plan the path.
It also needs a method to localize itself in water.
Communication Requirement: VoronoiPath has the
least communication requirement when the robot is inside
the water column. However, the robot needs all sensor loca-
tions before it enters water, so it has the highest communica-
tion requirement when the robot is calculating its path. For
TanBugPath the robot communicates with nearest sensors
to know positions of the next sensors. In AdaptivePath,
the robot is dependent on sensors to know next sensing lo-
cations.
Energy Requirement: An important factor in com-
paring the algorithms is energy efficiency of planned robot
paths. A zigzagged path is generally longer and consumes
more energy than a relatively straight path. Thus, even in
cases where a zigzagged path is sensing efficient, it may not
be energy efficient. Often Voronoi path is longer compared
to Tangent Bug and Adaptive path for same input sensor
locations. For VoronoiPath, the path depends on the lo-

cation of the sensors only. The robot moves through the
Voronoi vertices on its path and hence the total distance
covered is 226.35m for this layout. In TanBugPath, the
distance depends on robot start position, sensing radii rS
and rR, and interval size. In the example, distance cov-
ered by a robot is 139.77m. For AdaptivePath, distance
depends on starting location of robot waypoints, number of
intermediate robot waypoints V , the weight factor α and
k value. The average distance for this layout is 140.73m.
We find similar results for different layouts, although poor
initial node configurations can cause AdaptivePath to get
stuck in a sub-optimal local minima.
Sensing Efficiency: Posterior error is a common metric
for defining how well an area is covered by sensors as dis-
cussed in Section 2. A lower value of posterior error signifies
better sensing. AdaptivePath is optimized with respect
to an objective function. But VoronoiPath and TanBug-

Path algorithms do not have any objective function. So we
compare the algorithms with respect to the posterior error
of the final configuration of sensors and robot path. Fig-
ure 6 shows the plots of the posterior error values of the fi-
nal configuration, with and without mobile robot, for three
different robot sensing location configurations. It can be ob-
served that the VoronoiPath method performs best for all
V and performance of the TanBugPath algorithm is com-
parable to that of AdaptivePath algorithm. We calculated
the mean and standard deviation by considering eleven lay-
outs where the sensor positions could vary within ±2m of
their location in the horizontal direction.

Table 1 summarizes these. The table also shows that since
VoronoiPath precomputes the path of the robot before its
enters water, any changes in sensor locations is not taken
into account after the path has been decided. For TanBug-

Path and AdaptivePath any immediate changes in sensor
locations is considered. However, in case of VoronoiPath

and TanBugPath, the traversal of the robot does not have
any effect on the positions of sensors already present in the
water column. The AdaptivePath algorithm, on the other
hand, rearranges the position of the sensors based on the
robot path to improve overall sensing. This is an important
feature of this algorithm.

5. CONCLUSION AND FUTURE WORK
In this paper we describe an underwater sensor network

system that consists of semi-mobile sensors and a mobile
robot. We introduced three different path planning algo-
rithms for planning the path of the mobile robot through
the network of the semi-mobile sensors. The mobility of the
underwater robots enhances the performance of the system
and results in better information gain from the area of water
column, also large areas can be covered more efficiently with
sparse sensor networks. In the future, we plan to investigate
path planning in a 3D environments, local approximation
algorithms for Voronoi path planning, and adaptations to
enable multiple passes of the robot through water column.
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Figure 6: Posterior error comparison for different intermediate robot waypoints, V
Table 1: Comparison of Path Planning Algorithms

Measure Voronoi Path Tangent Bug Path Adaptive Path
A-Priori Network Knowledge Centralized Centralized Decentralized
Ease of Implementation Easy Complicated Moderate
Communication Requirement Least/Highest Moderate High
Energy Requirement Longer path length Moderate Path length Depends on layout, waypoints & α
Sensing Efficiency Highest same as AdaptivePath same as TanBugPath
Change in Sensor Locations Not taken into account Taken into account Taken into account
Sensor Position Remains Static Remains Static Changes with robot path
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