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Abstract— Using Unmanned Aerial Vehicles (UAVs) to deploy
sensor networks promises an autonomous and useful method of
installation in remote or hard to access locations. Some sensors,
such as soil moisture sensors, must be physically installed in
soft soil, yet UAVs cannot easily determine soil softness with
remote sensors. In this paper, we use data from an onboard
accelerometer measured during UAV landings to determine the
softness of the ground. We collect and analyze over 200 data
sets gathered from 8 different materials: foam, carpet, wood,
tile, grass, dirt, concrete, and woodchips. Based on this analysis,
we examine a number of features from the accelerometer and
four classification algorithms: LDA, QDA, SVM, and binary
decision trees. The decision tree performs well and is simple to
implement onboard the UAV. We implement this in our UAV
control system and perform experiments to verify that the UAV
can accurately classify the softness of the surface with 90%
accuracy. This lays the groundwork for our future work on
developing a UAV capable of installing sensors in soft soil.

I. INTRODUCTION

Deploying sensor nodes to create a monitoring system

outdoors is time consuming, especially when sensors must

be placed in remote or hard to access locations. Unmanned

Aerial Vehicles (UAV) can automate deployment to enable

faster deployment times as well as provide mechanisms for

easier system repair when deployed sensors fail [1]. Yet

UAVs face challenges in knowing where they can safely

deploy sensors and how to install the sensors. Cameras and

remote sensors can be used to identify target installation

locations; however, every gram of cameras and sensors

replaces mass that could be devoted to carrying more or

larger sensors to distant locations. Further, UAVs cannot

easily measure some physical parameters remotely, such as

how yielding the soil is for installing a moisture sensor.

In this paper, we develop a surface classification methodol-

ogy and algorithms that a quadcopter UAV can use to identify

whether a surface is hard or soft to enable proper sensor

installation. Our approach relies exclusively on acceleration

data acquired during landing using a sensor available on
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Fig. 1. UAV with sensor deployment mechanism.

nearly all UAVs. Figure 1 shows our UAV equipped with our

sensor deployment mechanism that both deploys and anchors

the sensor by inserting a “spike” into soft ground. The

spike can also be replaced with a soil moisture, conductivity,

temperature, or other contact-based sensors that must be

inserted into the ground.

To accurately classify soft and hard surfaces, we develop

a set of classification features extracted during in indoor and

outdoor UAV landing experiments. Using these features, we

evaluate four different classification algorithms: (1) linear

discriminant analysis (LDA), (2) quadratic discriminant anal-

ysis (QDA), (3) a support vector machine (SVM) classifier,

and (4) a decision tree classifier. We find that a decision

tree classifier based on the accelerometer’s maximum up-

ward acceleration and frequency with maximum amplitude

performs as well or better than the other approaches and is

also computationally simple to implement in real time on our

UAV. We evaluate our approach using indoor experiments

and verify its performance in classifying hard versus soft

landing surfaces. Our indoor experiments yield 90% accuracy

in classifying with all hard surfaces correctly classified and

some soft surfaces misclassified; we prefer that the UAV

misclassify soft where it simply avoids a deployment site

compared to hard where it could damage the system by

incorrectly deploying.

We organize the paper as follows. Section II outlines prior

work in surface classification. Section III describes the UAV

system used for classification. Section IV explores features of

indoor and outdoor data sets. Given these features, Section V

develops, analyzes, and compares our four classification al-

gorithms. Section VI describes the experiments. We conclude

and discuss future work in Section VII.



II. RELATED WORK

There is a wide range of work related to surface classifica-

tion, mainly in two categories: (1) those that actively touch

to characterize the surface, and (2) those that sense remotely.

Within active touch methods, whiskers, accelerometers,

and other tactile sensors have classified surface types or

objects by identifying shapes or textures. Dallaire et al. use a

triple-axis accelerometer as a contact-based tactile sensor to

accurately classify a large set of surface types like aluminum,

linoleum, and carpet, using an SVM classifier [2]. They

achieve a surface classification rate of 96.7% using 1 second

of data and a variety of features including the variance up to

the fifth standard moment. Romano and Kuchenbecker use

a PR2 robot with a custom acceleration and force sensor to

classify 15 different surfaces with a recognition rate of 80%

using an SVM classifier [3]. Fishel et al. develop a Bayesian

exploration approach that obtains 95.4% performance in

discriminating between 117 textures using a finger-like tactile

sensor [4]. These types of approaches require rubbing the

sensor over the surface at a variety of precise distances

and angles. In contrast, our method uses one accelerometer

during one landing with a range of distances and orientations.

The drawback of using fewer constraints is lower overall

classification success. Fox et al. also relax the requirements

on a precise orientation and distance while using a whisker

to discriminate between two surfaces with 65% accuracy

after two passes [5]. This shows the difficulty of surface

classification by contact in unconstrained setups.

Sensors have also helped ground robots classify the sur-

faces over which they drive. Roy et al. tap a microphone on

different floor materials and examine the normalized cross

correlation between the frequency response of the tap and

a library of known surfaces. This method obtains a 98%

classification performance of six surface types [6]. However,

the experiment occurred in a controlled lab environment by

tapping the same object in the same spot, so it is unclear how

well this approach would generalize. Brooks et al. use the

on-board accelerometer on a robot with LDA to classify the

terrain over which it is driving [7]. They divide the signal into

short segments and analyze the power spectral densities and

the signals in the Fourier domain to create a voting system

for surface type. All of these approaches use long sequences

of data to accurately classify the surfaces, whereas we use a

quick burst of information from a single landing.

Non-contact sensors can also classify terrain, with the

most popular types of sensors being cameras and LIDAR

sensors. Larson et al. use a single camera and measure the

“gait bounce” to determine characteristics of the terrain for

legged robots [8]. Vandapel et al. use LIDAR to classify

safe and unsafe driving areas [9]. Manduchi et al. use

LIDAR and a color stereo camera pair to classify terrain for

obstacle avoidance in off-road settings where a ground plane

cannot be easily computed [10]. While these techniques are

appealing and applicable in many settings, terrain analysis

from cameras is subject to errors as lighting conditions

change as well as seasonal changes. For the types of small

UAVs we are using, carrying a LIDAR and the associated

processing systems would consume nearly all the payload.

Finally, UAVs have been used for terrain mapping and

characterization. Templeton et al. use a vision system on

a helicopter to compute safe landing areas free of obsta-

cles [11]. Thrun et al. use a laser-scanner mounted on a

helicopter to reconstruct the 3D map of the environment [12].

Ahmadi et al. process aerial imagery to classify terrain into

various categories such as water, grass, trees, buildings, and

roads by using both color and texture features [13]. Scherer et

al. use a camera and laser scanner to classify safe areas to fly

along a river [14]. Our work differs from these in that we

examine the surface with one landing using simple, light,

cost-effective sensors and therefore do not require heavy

cameras or laser scanners to classify the surface. In the fu-

ture, as cameras and processors get smaller, we plan to merge

these remote sensing techniques ours to identify candidate

locations for deployment, so that automated deployment of

sensor networks is possible [15].

III. SYSTEM OVERVIEW

In this section, we provide an overview of the system

hardware and software, including the UAV, accelerometer

hardware, altitude estimation system, and the ground station.

A. UAV

The experiments in this paper utilize an Ascending Tech-

nologies Hummingbird quadrotor UAV, shown in Figure 1.

The Hummingbird is capable of autonomous flight, utilizing

onboard processors and sensors. The UAV’s sensors include

accelerometers, gyroscopes, GPS, and a barometric pressure

sensor. The UAV also has a 802.15.4 ZigBee radio so that

an operator can remotely monitor and control the UAV.

B. Sensor Deployment and Data Collection

The UAV carries a 58g sensor that can be deployed with

the sensor deployment mechanism shown in Figure 2. The

sensor is held in place by an electromagnet that can release

the sensor once the system finds a suitable location. A

“spike” can be rotated into place to anchor the sensor to

the ground after deployment. Alternatively, the spike can be

replaced with an insertable sensor, such as a soil moisture

probe. We leave a detailed discussion and analysis of the

deployment mechanism to future work.

We augmented the UAV with a 3-axis accelerometer

mounted underneath the center of the UAV, and a second

ZigBee radio to collect the acceleration data we use for the

surface classification. Ultimately, the classification approach

could be implemented using the UAV’s IMU accelerometer

and onboard microcontroller, but the additional accelerome-

ter allowed us to transmit readings to an offboard computer

to enable computation of complex features and classifiers

while not interfering with the command radio link. The

accelerometer is an Analog Devices ADXL335 that has

a minimum ±3g measurement range. An ATmega 1284p
microcontroller samples the accelerometer and transmits the

data to an offboard computer via the second ZigBee radio



Fig. 2. Sensor deployment mechanism.

link. As Section V discusses, we achieve good results with

features and classifiers that we can easily implement on this

microcontroller. The radio bandwidth constrains the sensor

sampling rate to 167Hz; this captures the features of interest.

C. Altitude Estimation

Accurately classifying the landing surface requires precise

control of the UAV at low altitudes (< 0.5m). The fused

height estimate provided by GPS, barometric altimeter, and

IMU is not stable, and can rapidly drift over several meters in

an outdoor environment. This altitude estimate is not accurate

enough for this experiment. Therefore, we augment the sys-

tem with a Sharp GP2Y0A21YK infrared (IR) rangefinder.

This sensor has a measurement range of 10-80cm. It attaches

to the arm of the UAV, as seen in the lower left of Figure 1.

The same microcontroller used for the accelerometer

samples the IR rangefinder measurements and transmits the

data. We use attitude information from the UAV’s IMU to

correct the range readings for the UAV’s roll, pitch, and

yaw. We then filter the IR range information to obtain good

height estimates when operating less than 0.5m from the

ground. The sensor does not work well in direct sunlight, but

works outdoors in shade and provides sufficiently accurate

height estimates for control of our UAV. In the future, we

will integrate short-range ultrasonic range finders to enable

outdoor operation in direct sunlight.

IV. FEATURE ANALYSIS AND CLASSIFICATION

We use the system to collect a base set of data on a range

of surfaces. With this data, we analyze the different surfaces

to determine which features seem useful for classification.

We prefer low complexity, easy to compute features that are

possible to implement on a UAV with limited processing

power. These features then lead us to a set of classification

algorithms we can use to effectively determine surface type.

In this section, we first describe our data collection process,

then our feature analysis before examining classification

algorithms in Section V.

A. Indoor Data Collection

Our initial experiments focus on indoor surfaces of various

hardnesses as seen in Figure 3. We explore four different

surfaces: (1) hard and rigid wood platform, (2) tightly woven

Fig. 3. Test surfaces. Clockwise from top left: Wood, foam, carpet, tile.

carpet over a concrete floor, (3) 2 cm rubber tile, and (4) soft

and flexible foam pad. This set will help us understand how

precisely the accelerometer data can differentiate between a

range of hardnesses.

To collect the data, the UAV hovers approximately 20cm

above each surface, and begins recording z-axis acceleration

data. The motors are then commanded to turn off, which

causes the UAV to descend. After the UAV reports that its

motors are off, the system continues logging data for four

seconds. The system then analyzes the recorded data to find

the maximum acceleration reading, which corresponds to

the initial impact on the surface. From this point, we use

400 samples (approximately 2.5s) to compute our different

statistical features. We collected 80 different indoor samples,

20 from each of the different indoor surfaces.

B. Outdoor Data Collection

We also collected data from outdoor surfaces of various

hardnesses. The outdoor surfaces used are grass, mulch

woodchips, bare dirt, and concrete. We consider the grass

and woodchips as soft, and the dirt and cement as hard since

during our tests the dirt was dry and highly compacted.

An IR rangefinder controls the UAV’s altitude while the

pilot controls the (x, y) position. This combination ensures

the UAV lands in the desired test location. Other than the

flight method, we use the same data collection procedure as

the indoor experiments, although we discarded any landings

where the UAV tipped over on uneven terrain. Overall, we

collected 71 landing samples on cement, 54 on woodchips,

56 on dirt, and 58 on grass.

C. Feature Analysis

We now analyze our experimental data to determine what,

if any, features exist to differentiate surfaces and utilize with

our classification algorithms.

We first explore the results of single experiments on the

surfaces to ensure differences exist in the data. Figure 4

shows one second of characteristic z-axis accelerometer

readings for the outdoor surfaces. Each surface has a dis-

tinctive response, which hints at the ability of the system to

automatically classify which surface it has landed on. For

example, the UAV makes a series of small bounces when it



Fig. 4. Acceleration data from landings on grass, dirt, cement, and
woodchips

lands on the hard concrete surface, which is reflected in the

decaying series of spikes in the concrete data. On the other

hand, grassy surfaces cushion the UAV’s landing.

We develop a number of features that may characterize

each trial, d. Specifically, the features we explore are:

• Maximum Value: max(d)

• Minimum Value: min(d)

• Peak Frequency: The frequency f, f > 0 with the

largest amplitude.

• Variance of Signal: E[(x− µ)2]

• 2nd Maximum: The second largest acceleration mea-

surement.

• 2nd Minimum: The second smallest acceleration mea-

surement.

• Ratio: The ratio of the max to the 2nd max.

• Skewness:
E[X−µ]3

σ3

• Kurtosis:
E[X−µ]4

σ4

• Mean: E[X]

• Settling Time: After subtracting the mean of the final

20 samples, find the time between the largest spike and

the spike that has 50% of this value.

Figure 5 shows some of these statistical measures com-

puted for each trial, grouped by the surface type. This pro-

vides further evidence that surfaces do demonstrate differen-

tiation based on these features that could lead to a viable clas-

sifier. The maximum value shows that the harder surfaces,

such as cement and dirt, consistently have higher values

than surfaces such as grass, because the UAV rebounds

much harder on these surfaces when landing. Figure 5 also

confirms our intuition developed from Figure 4. The plot of

the peak frequency shows that the harder surfaces, such as

concrete, dirt, and tile, have higher peak frequencies than the

softer surfaces, such as grass and foam.

Finally, we perform a principle component analysis (PCA)

on the data to better analyze our indoor data features. This

analysis fails to identify descriptive features, as the eigenvec-

tors with the largest eigenvalues have multiple components

Fig. 5. Features for different trials and surfaces

with approximately the same values. Two factors cause the

lack of distinguishing features in the PCA. First, not all

features in the potential set are independent. For example,

the second maximum is related to the first maximum, and

the surface the UAV landed on. Therefore, it often explains

a similar amount of variance as the first maximum. Second,

the data has noise, which distorts the potential features

and weakens their predictive powers. Thus, we manually

use different feature subsets to identify the most accurate

predictors when developing classifiers.

V. INDOOR AND OUTDOOR CLASSIFIER CREATION

Using the features developed in the prior section, we

explore four different classification algorithms on the in-

door and outdoor datasets: (1) Linear Discriminant Analysis

(LDA), (2) Quadratic Discriminant Analysis (QDA), (3) Sup-

port Vector Machine (SVM) Classifier and (4) Decision Tree

Classifier. For the indoor materials, our goal is to differentiate

between the soft foam and the other three surfaces, which

are significantly harder. Outdoors, we consider the grass and

woodchips as soft, and the dirt and cement as hard.

All classification procedures use 10-fold cross validation

for evaluation based on the data collected indoors and

outdoors as described in Section IV-A. Experimentation

with various subsets of features reveals that the maximum

acceleration and the peak frequency create the most accurate

classifiers. We find none of the approaches do particularly

well for discriminating between all of the surfaces (see the

confusion matrices in Tables I and II), most likely due to the

similarity of the harder surfaces. However, all approaches do

well discriminating between hard and soft surfaces.

1) Linear Discriminant Analysis: We start with LDA

to classify based on a linear combination of the features.

This linear combination separates the data into two or more

classification categories, relying on the assumptions that the

feature data are normally distributed with the same covari-

ance matrices. We used Matlab R2014a’s fitcdiscr function

to perform this classification [16].

Table I shows the performance of of LDA when trying

to exactly classify the four indoor surfaces. This classifier

has an accuracy of 63.75%. It correctly classifies all of the

soft foam landings as foam, but does not do as well in



Classified Category

LDA QDA SVM Decision Tree

True Category Carpet Foam Tile Wood Carpet Foam Tile Wood Carpet Foam Tile Wood Carpet Foam Tile Wood

Carpet 0 2 10 8 0 0 12 8 15 0 2 3 3 0 11 6

Foam 0 20 0 0 0 19 1 0 4 13 2 1 1 19 0 0

Tile 0 2 17 1 0 1 18 1 15 1 2 2 10 1 8 1

Wood 1 1 4 14 5 0 5 10 16 0 1 3 5 0 3 12

TABLE I

INDOOR CLASSIFICATION RESULTS, ALL SURFACES.

Classified Category

LDA QDA SVM Decision Tree

True Category Cement Woodchips Dirt Grass Cement Woodchips Dirt Grass Cement Woodchips Dirt Grass Cement Woodchips Dirt Grass

Cement 54 2 13 2 52 2 17 0 70 0 1 0 58 2 11 0

Woodchips 2 27 2 23 2 33 4 15 46 2 2 4 3 27 11 13

Dirt 16 14 9 17 16 19 10 11 46 2 4 4 17 15 17 7

Grass 0 5 0 53 0 8 0 50 28 6 5 19 0 6 5 47

TABLE II

OUTDOOR CLASSIFICATION RESULTS, ALL SURFACES.

Classified Category

LDA QDA SVM Decision Tree

True Category Hard Soft Hard Soft Hard Soft Hard Soft

Hard 55 5 59 1 60 0 59 1

Soft 0 20 1 19 9 11 1 19

TABLE III

INDOOR CLASSIFICATION RESULTS, HARD VERSUS SOFT SURFACES.

discriminating between the hard surfaces. Table III shows the

LDA classification results when only differentiating between

hard and soft indoor surfaces. The system is able to correctly

the soft landings, but misclassifies five hard surfaces as soft.

This is undesirable, as it could lead to deploying a node

in an undesirable location, and risks damaging the system.

Overall, however, accuracy for LDA classification of indoor

surfaces is high at 93.75%.

On the outdoor dataset, the system is able to achieve

an 59.83% classification accuracy for all surfaces and

80.75% between soft and hard surfaces as shown in Tables II

and IV, respectively. The classification rate is very poor

for all surfaces; however, we are less concerned with this

classification since we are primarily interested in identifying

soft surfaces. For the hard and soft, the confusion matrix

reveals that the system has a tendency to classify hard

surfaces as soft surfaces, which may lead to UAV damage.

However, it rarely misclassifies the soft surfaces.

2) Quadratic Discriminant Analysis: To see if we can

improve on the LDA results, we next try a quadratic discrim-

inant analysis (QDA) classification technique on the data,

which should capture some non-linear relationships between

the features. This approach is similar to LDA; it too assumes

that the feature data are normally distributed, but it does

not assume that the covariances are identical. Relaxing this

assumption results in quadratic separation of the classes.

Again, we start by testing the performance of QDA in fully

classifying the surface types; to do so, we use the same

fitcdiscr function from Matlab. As with the LDA analysis,

changing the features used in the classifier does not yield

significant classification improvements.

Table I contains the confusion matrix of the 10-fold cross-

validated QDA classifier, when ran on the entire indoor

Classified Category

LDA QDA SVM Decision Tree

True Category Hard Soft Hard Soft Hard Soft Hard Soft

Hard 84 43 94 33 119 8 101 26

Soft 3 109 8 104 78 34 21 91

TABLE IV

OUTDOOR CLASSIFICATION RESULTS, HARD VERSUS SOFT SURFACES.

data set. This classifier only achieves a correct classification

accuracy of 58.75%, with similar misclassifications to the

LDA classifier. Table III shows the performance of QDA

when classifying the indoor data into hard and soft categories

with the resultant 97.5% accuracy. QDA incorrectly classifies

only one of the hard and soft surfaces, and is thus very safe

to operate.

Outdoors, Table II shows that QDA performs marginally

better than the LDA, with a 60.67% accuracy, for all surfaces.

The improvement is most noticeable when landing on the

woodchips. For the hard and soft classification, Table IV

shows that the QDA achieves an accuracy of 82.85%. This

is slightly better than LDA, but still suffers from a significant

number of misclassifications of hard as soft.

3) SVM Classifier: We next explore the SVM approach.

The SVM is built using Weka 3.6.11 [17] and LIBSVM

3.18 [18] with the default options and 10-fold cross valida-

tion. A SVM divides the data with hyperplanes that maximize

the distance of the data points from the hyperplane; these

separations create the different classes.

The SVM performs far worse on the indoor dataset with all

surfaces than the other approaches, as seen in the confusion

matrix in Table I. It correctly classified only 41.25% of the

indoor trials, which is far below the other approaches. The

SVM fails to accurately detect even the foam surfaces, which

the other classification techniques successfully classified.

Using feature selection methods such as sequential feature

searches or ranking the PCA components does not yield

improvements on the performance. The SVM does show

similar improvements to classification accuracy when limited

to classifying the surfaces as hard or soft, as shown in Ta-

ble III, achieving 88.75%. The SVM does have a tendency to

misclassify soft surfaces as hard, unlike the other classifiers.



This could be a result of having more hard surfaces in the

training set than soft surfaces.

Outdoors, the SVM performs significantly worse and

achieves an accuracy of 39.75% for all surfaces and

64.02% for soft versus hard. Table IV shows that the SVM

has a strong tendency to misclassify soft surfaces as hard,

as in the indoor setting. Unlike the indoor settings, the

two populations have similar size. While this conservative

tendency makes it less likely that the UAV will damage

itself by deploying a node to a hard surface, it may lead

to unacceptably long deployment times, as the system will

ignore many favorable locations.

4) Decision Tree Classifier: Our final classifier approach

uses a decision tree. Decision trees create a set of nodes

that “test” for certain criteria; the path between these nodes

thus provides the classification rules and the final leaf node

is the classification. We used the Matlab fitctree function

to build the decision tree classifier. We train the decision

tree with the same peak frequency and maximum amplitude

features as the other classifiers. The decision tree uses the

node error as the splitting criterion and the classification is

pruned in order to create the optimal sequence of pruned

subtrees. Figure 6 reveals that the best decision tree only

has two levels and uses the two features; this leads to an

efficient implementation that we could easily implement on

microcontrollers onboard a UAV.

Tables I and III shows the decision tree indoor per-

formance of 62.5% and 97.5% for all surfaces and soft

versus hard, respectively. For the outdoor datasets, Tables II

and IV show that the decision tree achieves 62.34% and

80.33% for all surfaces and soft versus hard, respectively.

In both indoor and outdoor settings, the decision tree has

similar performance to the LDA and QDA classifiers. The

most noticeable difference is in the outdoor setting when

classifying between two different surfaces. The decision tree

is not biased to choosing one surface type over the other,

unlike the LDA and QDA, which frequently misclassify hard

surfaces as soft. This will force the UAV to operate in a safer

manner, and make it less likely to damage itself. Also, it is

not overly conservative like the SVM, and less likely to miss

deployment opportunities.

Overall, we see improved results when focusing on classi-

fying hard versus soft. As this solves our overall deployment

problem, we concentrate on the two classifier system, where

all classifiers performed well. Because of the ease of imple-

mentation, we implement the decision tree approach on our

platform.

VI. EXPERIMENTS

We performed experiments indoors to validate our ap-

proach. In this experiment, the UAV travels to each of the

four indoor surfaces. The UAV first lands on the surface and

runs the decision tree classifier shown in Figure 6, which was

generated using the previously collected data, as described in

Section V. If the surface is soft, it will then re-launch itself,

and perform a simulated sensor node deployment. After this

is complete, or if the surface is hard, it will proceed to the

max
>= 394

fmax >=

11.25

soft hard

no

yes

no

yes

Fig. 6. Indoor decision tree

next surface and repeat the experiment. We repeated this

process ten times.

Table V summarizes the results of the experiment. The

‘H’ entries in the table indicate that the system classified

a surface as hard, and an ‘S’ entry indicates the surface

was classified as soft. The overall classification rate is 90%
accurate. All of the hard surfaces were correctly classified,

although it did struggle with the soft surface, incorrectly

classifing the soft foam as hard four out of ten times.

Surface

Experiment Tile Foam Wood Carpet

1 H S H H

2 H H H H

3 H S H H

4 H H H H

5 H S H H

6 H S H H

7 H H H H

8 H H H H

9 H S H H

10 H S H H

TABLE V

INDOOR VERIFICATION RESULTS

This incorrect classification of the soft foam may be

due to the UAV dropping from a slightly different height,

or impacting the foam at a different location than it was

before. However, we prefer that the system is conservative

in classifying a surface as soft, since attempting to install a

sensor in an incorrectly classified hard surface could damage

the sensor or UAV.

VII. CONCLUSION

In this paper, we examine using a UAV to classify surfaces

based on accelerometer data. We collect indoor and outdoor

datasets, analyze their features, and develop classifiers based

on those features. The decision tree classifier performs well

in discriminating between soft and hard surfaces as well as

being easy to implement onboard a UAV. We implement

this classifier on our UAV control system and develop



classifiers for both indoor and outdoor surfaces. For our

indoor experiments, the classification accuracy between hard

and soft surfaces is 90%. All of the classification errors are

in classification of a soft surface as hard, which is a safe

error as it would not cause an erroneous sensor deployment.

In future work, we will investigate improvements to our

features and classification approaches by incorporating other

onboard sensors such as the gyroscope, or accelerometers

with larger dynamic ranges and bandwidths. Additional

classification features will be investigated, in particular, those

related to the frequency response of the landing. In addition,

we plan to look at classifying surfaces based on a range

of softness and retesting (performing another landing) on

surfaces that are borderline soft to ensure that we only

deploy sensors in soft soil. Furthermore, we will test different

misclassification cost parameters to optimize the behavior of

the system. Finally, we will add the ability to allow the UAV

to deploy sensors that must be inserted into the soil, such

as soil moisture sensors. This work will ultimately result in

easier deployment of sensors in remote or hard to access

locations.
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