
CSCE 236 Embedded Systems, Spring 2012
Lab 1

Thursday, January 26, 2012
Names of Group Members:

1 Instructions

This is a group assignment for you to work on during class. You only need to hand in one copy of this, but
make sure that the names of all of your group members are on this sheet to receive credit. Complete all of
the sections below during class and make sure to get the instructor or TA to sign o� where required. You
may want to keep your own notes on what you complete since parts of the next homework will build on this
lab.

In this lab you will learn to connect and wire basic components on a breadboard. You will interface
with a button and a RGB LED and will explore how long it takes to perform various operations on di�erent
integer types.

Before starting this lab, make sure you are familiar with the layout of the breadboard and

how each location is connected to each other. If you are unsure ask the instructor before you

break something!

2 Resistors

In this lab you will be using 100, 180, and 47,000 (47k) ohm resistors. These are identi�ed by di�erent color
stripes on them. You can refer to:

http://en.wikipedia.org/wiki/Electronic_color_code

to �gure out the color coding scheme, but for your reference the 100 ohm resistor has the color code
brown-black-brown-yellow, the 180 ohm is brown-gray(blueish)-brown-yellow, and the 47k is yellow-violet-
orange-yellow. You should have three 100 ohm, three 180 ohm, and two 47k resistors in your packet.

3 LEDs

Figure 1: Schematic diagram for the LED connections.

Figure 2: RGB Common Cathode LED (YSL-
R596CR3G4B5W-F12).

1

http://en.wikipedia.org/wiki/Electronic_color_code


For this seciton, you will be using a tri-color RGB LED. On the breadboard, implement the circuit de�ned
by the schematic in Figure 1, but do not connect it to the Arduino yet. You should refer to Figure 2 to
determine the pin-to-color mapping of the LED.
Checko�: Once you have completed wiring on the breadboard, have the instructor verify the connections
before moving onto the next section.

Now connect the circuit on your breadboard to the proper pins on your Arduino. The pins (PD5, PD6,
PD7) are given in terms of the pin names on the Atmel, you will need to determine the correct correspondence
to the output pins on the Arduino itself by refering to the Arduino schematic. Write the code1 for your
Arduino to turn on and o� each of these LEDs2. Does the LED turn on when the output pin is high or low?
For ease of use, you may want to de�ne variable or macros that lets you turn on/o� a particular color LED
by name instead of pin number.
Checko�: Write code that continually cycles through the pattern R,RG,G,GB,B,RB,ALL_OFF where RG
means the red and green LED should be on at the same time. Show your completed program to an instructor
for checko�. I suggest that you put all of the code for this question in single function that you continually
call from the loop function. That way you can easily comment it out when you work on the next part of this
lab, without having to delete any code.

4 Button Input

Figure 3: Dimensions and internal connection diagram
for the button.

Figure 4: Schematic diagram for the button connec-
tion.

Figure 4 shows a schematic for connecting the button to the Arduino and Figure 3 gives details on the
button itself. Looking at Figure 3 you can see that when the button is pressed all of the terminals are
connected together. When it is not pressed, the terminals close to each other are not connected, but those
across from each other are. Following the schematic in Figure 4, connect the button to the Arduino, if you
are unsure how to properly wire this connection, please ask an instructor. Note that you should connect the
button to the Atmel pin PC2. This corresponds to one of the �Analog In� pins on the Arduino. Write the
code to determine if the button is pressed or not. You can still use the digitalRead() function to read these

1You can use the Arduino pin functions or directly set registers for this lab. I suggest using the Arduino functions initially,
but if you have time you should modify them to directly set the registers (for the next homework you will need to directly set
registers for some questions). To set the registers directly, you should put �#include <avr/io.h>� (without quotes) at the top
of your �le to get all of the register de�nitions (DDRD, PORTD, etc).

2You should work together on this program, each group only needs one copy; however, you should make sure to share the
�nal version of the code among the members of your group.

2



pins, look at the Arduino code reference to �nd out how. Alternatively, you can just manually con�gure the
Arduino registers to do this.
Checko�: Write code that changes the color of the LED from red to green when the button is pressed and
held.

5 Operation Timing

It is often useful to time how long a particular operation takes on an embedded system to ensure proper
functionality. Most operations happen very quickly, but by executing the same operation many times (by
putting it in a loop) you can determine how long an operation takes by simply using an LED and stopwatch.
The problem is that the loop itself will incur some overhead. To further complicate this problem on an 8-bit
processor, such as our Atmel, this overhead will be dependent on whether the loop counter is 8-, 16-, or
32-bits.

In this section, you should determine how long each iteration of a for loop takes when using an 8-, 16-, and
32-bit unsigned integer as the loop counter (uint8_t, uint16_t, and uint32_t, respectively). To do this,
turn on an LED before entering the for loop and then turn it o� once the for loop is complete. The compiler
will optimize out any code that does not do anything, so we need to add an instruction that prevents this.
You can do this by adding an assembly command (which the compiler will not remove) that does nothing.
The easiest is to use the �nop� (no operation) command. To do this in c do (for the 8-bit version):

for(uint8_t i = 0; i < 255; i++){

asm volatile("nop");

}

You should then experiment until you come up with values that make the LED stay on for somewhere
between 5 and 15 seconds. This is su�ciently long that you can get a good estimate of how long each
iteration takes by timing this overall time with a stopwatch. Note that for the 8-bit and 16-bit variables you
may need to nest loops to delay for a su�ciently long period. In this case you can ignore any overhead that
the nesting may cause. In addition to enabling you to time operation overhead, this will also give you an
alternative, albeit less accurate, way to delay for a speci�c period of time as opposed to using the Arduino
delay(...) function.
Checko�: Write a program that uses each of the di�erent unsigned integer types (8-, 16-, 32-bit) to turn on
the red, green, and blue LEDs for 1 second each, respectively. In other words, use a uint8_t to turn on the
red LED for 1 second, followed by turning on the green one for 1 second using a delay loop with the uint16_t,
and �nally 1 second with the blue on using a uint32_t.

3


	Instructions
	Resistors
	LEDs
	Button Input
	Operation Timing

