
Figure’ing and Picture’ing LATEX
Combining text, figures, and images in a LATEX document

by

Anil Goel c1993, 1994
(akgoel@math.uwaterloo.ca)

Version 1.1
last modified
July 11, 1994

Math Faculty Computing Facility
University of Waterloo

Waterloo, Ontario
Canada N2L 3G1

1 Introduction

LATEX is based on TEX [9] and is one of the typesetting languages available at Waterloo. It is
easy to learn, widely available, and has an informative and comprehensive manual (see [11, 12]).
One weakness of LATEX is graphics. Although it has built-in facilities for drawing figures they are
extremely ugly and difficult to use.

EEPIC [10] is a set of LATEX macros that rectifies this deficiency in LATEX to a large extent. Even
so, it is not always possible to typeset arbitrarily complex figures, pictures and images in a LATEX
document. Therefore, at times it is necessary to use some other language (such as PostScript) to
define parts of a document otherwise typeset using LATEX .

PostScript [4, 5, 6] is a page description language which has achieved widespread use. PostScript
syntax is given in plain ASCII text. Although PostScript programs are usually generated by a
program, complex graphical effects can be obtained by small manually written PostScript programs
(see [7]).

Xfig [1] is a fig language editor which runs under X11. It provides a point and click interface
similar to that of MacDraw. Once editing is complete fig files can be converted into PostScript,
EEPIC or a variety of other languages.

For details on using these and other facilities mentioned in this document, see the corresponding
man pages in addition to the references mentioned at the end.

For the purposes of this document a graphical entity consisting of geometrical objects and text
will be defined as a figure, the term picture will be used for an arbitrary drawing and a pixel image
(such as raster scan) will be referred to as an image. The term drawing will used to refer to any of
the above.

2 Enhancing LATEX to include figures, pictures and images

There are several tools for enhancing the basic LATEX package. Most of these can be classified into
three distinct categories as follows:

Macro Packages These are written in TEX or LATEX and provide more powerful or higher-level
commands for drawing figures and pictures. Examples of macro packages include EEPIC
[10] and MusicTEX [16].

Typesetting Languages These are independent languages much more suited for picture drawing
than LATEX. Examples include PostScript and Fig. Programs written in these languages can
be included in a LATEX document, usually with the assistance of a macro package.

Interactive Applications These are applications and programs which help to hide the lower-level
details of using macros and languages from the user by means of convenient user interfaces.
Prime examples of such applications are graphical editors (e.g., xfig) and translators.

In the rest of this section the above three categories of tools are discussed in reverse order starting
with interactive applications that provide convenient user interfaces for creating complex figures
and pictures. For each category, an example is used to illustrate the basic techniques of preparing
a figure or picture, optionally converting the resulting drawing into a more suitable format and

1

including the drawing in a LATEX document. The examples chosen are some of the most popular
tools of those available for performing a particular task.

2.1 An Interactive Application - XFIG

2.1.1 Using xfig to create a figure

Xfig is a graphical editor that runs under the X11 window system. It is a powerful facility for
drawing figures that works on both monochrome and color display devices.

Figure 1 illustrates a sample xfig screen while being used to create a complex figure. Figures
generated in this manner can be stored in fig format files for future editing with xfig. Fig is an
independent language that supports a variety of figure drawing facilities.

2.1.2 Converting Fig format files

LATEX does not understand Fig format files. Therefore, files created by using xfig need to be
converted into a format suitable for including in a LATEX document.

Fig format files can be converted into a variety of other formats using the fig2dev [1]
command. Two of the more popular of these formats suitable for LATEX documents are the
PostScript language and the EEPIC macros. By default xfig runs in landscape (wider than tall)
mode and fig2dev also defaults to landscape. Both take a -P option which causes them to
operate in portrait (taller than wide) mode. If you use -P on one and not the other you are likely to
get a sideways figure.

As an example:

% fig2dev -L eepic model.fig > model.tex

and,

% fig2dev -L ps model.fig > model.ps

produced the EEPIC (LATEX) and PostScript files that resulted in the two drawings shown in Figure 2
when included appropriately in this document.

Also note that xfig menu provides an export button which can be used by the user to directly
convert and store the drawing being edited into a format of their choice. The use of export button
in xfig eliminates the need for the user to explicitly convert the fig format files into a more
suitable format by using fig2dev. When export option is used, the fig2dev command is
invoked automatically and silently by xfig to carry out the relevant conversion of formats.

Once the drawing has been converted into PostScript or EEPIC, the resulting file needs to be
included in a LATEX document.

2.1.3 Including EEPIC figures in LATEX

To include an EEPIC file in your LATEX document you use the EEPIC and EPIC style files. To do
this you must first input the relevant files 1:1nfssfontcompat style file is local to Waterloo and defines some old style font definitions like \fiverm

2

Figure 1: A Sample xfig Screen

3

File Structure Segment

Iterator
Administrator

Leaf Retrieval

GENERATOR

Query
Results

Leaf
Requests

Shared Buffer Queue

Search Index

Records

Index

diskN

disk3

disk2

disk1
retrieve1

retrieve2

retrieve3

retrieveN

File Structure
Partitioned Accessor

Structure

Traverser

File

(a) model.tex included via EEPIC (xdvi will display this)

File Structure Segment

Iterator
Administrator

Leaf Retrieval

GENERATOR

Query
Results

Leaf
Requests

Shared Buffer Queue

Search Index

Records

Index

diskN

disk3

disk2

disk1
retrieve1

retrieve2

retrieve3

retrieveN

File Structure
Partitioned Accessor

Structure

Traverser

File

(b) model.ps included via psfig (xdvi will not display this; use ghostview)

Figure 2: Sample outputs from xfig

4

\documentstyle[...,epic,eepic,nfssfontcompat]{...}

\begin{document}

...
Then you may include the EEPIC file using the \input macro:

\input model.tex

2.1.4 Including PostScript pictures in LATEX

To include a PostScript file in your LATEX document you use the psfig [3] macro. To do this you
must first \input psfig:

\documentstyle[...]{...}
\input{psfig}

\begin{document}

...
Then you may use the \psfig macro to actually include a PostScript file:

\psfig{figure=model.ps,height=1.5in}

Psfig depends upon the presence of a BoundingBox comment in the PostScript file being
included. A BoundingBox statment essentially specifies the location and size of the included figure
on the page. See [3] for a detailed explanation. In most cases the program generating the PostScript
figure will automatically include a BoundingBox comment in the file and you won’t have to worry
about it. Psfig will use the BoundingBox comment in the PostScript file to scale the included figure
to the given dimensions. You can change the natural scaling of the figure by specifying height
or width or both in the \psfig statement above. If you only specify one, scaling will be the
same in both directions in order to produce that one dimension. If you want to include drawings
produced on a Mac you should see the psfig man page for special instructions.

An alternative set of macros that can be used to include Encapsulated PostScript files in a LATEX
document is called EPSF. Details on how to use the EPSF macros are contained in [15].

A special note about including PostScript files generated by Maple

Maple [2] generated PostScript plots need special mention because of a problem in the relevant
driver of the current Maple release. This problem may be rectified in a future release of Maple.
Until then, if you want to include a Maple generated PostScript plot in your LATEX document you
have to first modify the plot file by commenting out the following three lines.

5

% 540 82 translate
% 90 rotate
% 0.19 0.19 scale

Note that % is the comment character in PostScript. The plot can then be included in the LATEX
document by following the instructions given earlier in section 2.1.4. Another thing that will need
to be done for getting the plot scaled properly is to specify the dimensions of the plot by using the
height, width or both parameters in the psfig command, as in

\psfig{figure=maple_plot.ps,height=2.5in}

If this is not done the resulting plot may be too big since it will be printed in the default Maple size.
The instructions described in this section were used to produce the 3-dimensional plot in Figure 3
from a file generated by maple for plot3d(binomial,0..5,0..5).

Figure 3: An example Maple plot

2.2 A Picture Drawing Language - PostScript

While it is true that most PostScript programs are generated by other programs, it is quite easy
to generate complex pictures by writing programs in the PostScript language. Figure 4 gives an
example of a small PostScript program alongwith the drawing it creats.

2.2.1 Converting and including PostScript drawings

There is no conversion required on a PostScript picture since it can be included directly with the
assistance of the psfig macros. Section 2.1.4 gives the details on including a PostScript file in a
LATEX document.

6

/drawwheel { % diameter drawwheel --
% draws a wheel at currentpoint, of given diameter

2 div /rad exch def % get radius
gsave

currentpoint translate
0 0 rad 0 360 arc stroke % draw the wheel outline
% compute radius of the small circles hanging off the wheel..
/smallrad rad 7.5 sin mul def
/smallcx rad 7.5 cos mul def

0 15 345 { % draw the 24 spokes
gsave
rotate % use the for loop variable value, 0..245
0 0 moveto rad 0 lineto stroke % draw spoke
smallcx smallrad -1 mul smallrad 82.5 262.5 arc fill
grestore

} for
grestore

} def

% draw the wheel ...
200 200 moveto 300 drawwheel

Figure 4: A sample PostScript program and the wheel it draws

7

2.3 A Macro Package - MusicTEX

Macro packages are written in TEX or LATEX and are usually available in the form of style files
that need to be included in a LATEX document before a drawing made by using the macros can be
included. The use of psfig macro package has already been illustrated. This section illustrates
the use of MusicTEX macros for drawing musical scores.

Here is a MusicTEX example taken from the MusicTEX manual [16]. Figure 5 is an example of
the two first bars of the sonata in C-major K545 by MOZART :Piano:8<GG 4444 ! ! ! !" ! ! ! !! ! 2 ! ! !! . !!����! ! ! ! !"The coding is set as follows :\documentstyle[musictex,...]{...}\begin{music}\parindent 1cm\def\nbinstruments{1}\relax % a single instrument\def\instrumenti{Piano}% % whose name is Piano\nbporteesi=2\relax % with two staffs\generalmeter{\meterfrac{4}{4}}\relax % 4/4 meter chosen\debutextrait % starting real score\normal % normal 12 pt note spacing\temps\Notes\ibu0f0\qh0{cge}\tbu0\qh0g|\hl j\enotes\temps\Notes\ibu0f0\qh0{cge}\tbu0\qh0g|\ql l\sk\ql n\enotes\barre % bar\Notes\ibu0f0\qh0{dgf}|\qlp i\enotes\notes\tbu0\qh0g|\ibbl1j3\qb1j\tbl1\qb1k\enotes\temps\Notes\ibu0f0\qh0{cge}\tbu0\qh0g|\hl j\enotes\finextrait % terminate excerpt\end{music}

Figure 5: A MusicTEX example

2.4 Other macro packages

Some other macro packages available at Waterloo include:

pstricks [19] TEX fonts and macros for fancy PostScript features.

8

nassflow [18, 17] LATEX macros for flowcharts and Nassi-Schneiderman diagrams.

A list of other useful packages (e.g. bipartite graphs, trees, etc.) can be found in [8]. Not all of
the packages mentioned in [8] are installed at Waterloo.

Before printing you will want to preview your document. Your choice of a previewer will depend
on your choice of macro-language used to include the drawings. More on this later.

3 More About Macros

The examples in section 2 illustrated that some macro package is used to make LATEX understand
the type of drawing being included. Some of these macros process the input and convert it to LATEX
primitives. Others merely tell LATEX about the type and size of the input drawing and assume that
some output device driver (display device or printer) will be able to render it. LATEX then leaves
enough blank space for the figure to be drawn.

In the xfig example, note that the user has a choice of macro packages. There are several
factors that affect the choice you should make: image quality, portability, size, processing time,
etc. For example, fig2dev will attempt to render a figure in LATEX as best as possible, but the
quality of the resulting figure may be quite poor due to many LATEX limitations such as restricted
line orientations. On the other hand, such a document could be printed in any environment that
supports LATEX. A PostScript version may render the original figure accurately, but now the user
is assuming that whoever wants to print the document has access to all the necessary macros and
device drivers for processing and converting the PostScript input resulting in a potential lack of
portability. An intermediate solution lies in using the EEPIC set of macros which will generate
much better results than plain LATEX and at the same time be extremely portable.

4 Viewing the Results

The output of LATEX is in a format called device independent (DVI). In order to view (on a
display device or on paper) a DVI document, one has to first convert the document to the device
(terminal or printer) dependent language. The usual UNIX printer command lpr -Fd, where
-Fd indicates that the input is a DVI file, converts the DVI specification to commands which the
printer understands. Similarly, there are several commands for converting the DVI document into
commands which render the document on a graphics terminal, in particular under the X11 window
system.

Recall that when including a PostScript figure, LATEX does not translate the input. Hence, in
general, if you send the DVI file to a DVI processor without telling it about the postscript it will
simply leave a blank space where the figure belongs. An extra conversion step is needed when
including non-LATEX input in your file.

In the xfig example in section 2.1.3, EEPIC was used to describe the image. Hence, xdvi,
a DVI previewer for X11 window system is able to display the figures. Similarly, the musicTEX
example in section 2.3 uses TEX fonts and macros so xdvi is able to display the musical scores on

9

an X11 terminal 2. On the other hand, in the PostScript example in section 2.1.4, LATEX has left the
figure in its native PostScript. xdvi does not understand PostScript so it just leaves enough blank
space for the figure.

In order to view a LATEX document with postscript figures the DVI file must be translated into
a postscript file. Now the whole document is in PostScript and can be understood by any device
driver which handles PostScript input.

At Waterloo dvips [15] is the standard dvi to postscript converter. See man dvips for
details on how to convert a dvi file into PostScript.

Also note that most of the existing laser printers at Waterloo are PostScript printers. This means
that any dvi file produced by LATEX has to be converted to PostScript before it can be printed (even
if the LATEX document did not contain any PostScript). In most cases, this conversion is performed
automatically by thelpr command when used with -Fd option. The conversion is done by silently
invoking dvips.

4.1 Previewing Files

As mentioned before, the xdvi command can be used to look at dvi files generated by LATEX as
long as they don’t contain any PostScript (EEPIC is okay). If xdvi fails to display the file, you
will need to convert the dvi file into PostScript (by using dvips) and then use the ghostview
command to look at the resulting PostScript file. Ghostview has a very nice user interface and has
a number of features including viewing and printing of randomly selected pages. If you only want
to look at the document once in order (no random selection of pages), you can avoid creating the
intermediate PostScript file by typing the following:

dvips yourfile.dvi | ghostview -

In the absence of ghostview on your machine, you can use gs instead. It is not a very user
friendly program. Type ˆC to escape.

5 Other Useful Applications

5.1 Images

A paper image can be digitized and stored in PostScript format by using the scanner available in
the DCS I/O room (MC 1063). The image on the title page was produced in this way.

5.2 Window dumps

Window dumps produced using xwd can be converted to PostScript using the xpr command. The
window dump of the xfig window in Figure 1 was produced using the command:

% xpr -device ps -portrait -psfig -compact xfig.xwd > xfig.ps

but in most cases you can save some disk space by piping xwd to xpr directly:2assuming xdvi knows where to find the fonts

10

% xwd | xpr -device ps -portrait -psfig -compact > xfig.ps

Note that the -psfig option is necessary in order to have the figure center correctly in your
LATEX document. The -compact option saves some disk space in most cases.

5.3 Special effects

5.3.1 Scaling and rotating

Postscript input can be arbitrarily scaled and rotated using the \psfig macros. See the psfig
documentation for complete details.

Figu
re’

ing
an

d Pict
ur

e’i
ng

LATEX

Com
bin

ing
tex

t, fi
gu

res
, a

nd
im

ag
es

in
a LATE

X
do

cu
men

t

by

Anil G
oe

l
c19

93
, 1

99
4

(a
kg
oe
l@
ma
th
.u
wa
te
rl
oo
.c
a)

Ve
rs
io
n
1.
1

la
st

mod
ifi

ed

Ju
ly

11
, 1

99
4

M
ath

Fac
ult

y Com
pu

tin
g Fac

ili
ty

Univ
ers

ity
of

W
ate

rlo
o

W
ate

rlo
o,

Onta
rio

Can
ad

a N2L
3G

1

Figure 6: The Title Page of this Document

For example, you can include a page of one of your LATEX documents in another document
with any desired scaling and rotation. The title page of this document is reproduced in Figure 6.
The dviselect command was used to extract the one page and dvips was used to convert it to
PostScript. The resulting PostScript file was then included:

\centerline{\hbox{\psfig{figure=title.ps,height=3.0in,angle=45}}}

5.3.2 Using PostScript fonts

You may have noticed by now that this document has been typeset with PostScript fonts as opposed
to the Computer Modern family of fonts usually employed by LATEX . The recommended mechanism
for using PostScript fonts is the psnfssmacro package available at Waterloo. See man psnfss
and [14] for details.

11

6 Using Make to Make Life Easy

This document was produced using a Makefile which takes care of converting the various files into
one single document. The Makefile is reproduced in Appendix A.

7 Acknowledgements

This document has borrowed liberally from [13], a smaller document Lindsay Patten wrote for the
PAMI Lab users at University of Waterloo. The PostScript example in section 2.2 is taken from
one of the example programs packaged with the itrans package for Indian languages.

Thanks are due to Bill Ince and Peter Yamamoto who read the first draft and offered several
valuable suggestions. Peter even keyed in many of his suggested additions which were gratefully
accepted for inclusion in this document.

Please send comments to akgoel@math.uwaterloo.ca.

References 3
[1] Micah Beck. TransFig: Portable Figures for LATEX.

In /software/fig/doc/transfig.dvi.Z.

[2] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M.Watt. Maple V
Language Reference Manual. Springer-Verlag and Waterloo Maple Publishing, 1991.

[3] Trevor Darrell. Psfig/TEX 1.8 Users Guide.
In /software/tex documents/doc/formatted/psfig-doc.ps.Z.

[4] Adobe Systems Inc. Encapsulated PostScript.
In /software/postscript/doc/encapsulated.ps.

[5] Adobe Systems Inc. Summary of PostScript statements.
In /software/postscript/doc/pssummary.ps.

[6] Adobe Systems Inc. PostScript Reference Manual. Addison Wesley, 1985.

[7] Adobe Systems Inc. PostScript Tutorial and Cookbook. Addison Wesley, 1985.

[8] David M. Jones. An index of TEX macros. In
/software/tex documents/doc/source/tex-index.Z.

[9] Donald E. Knuth. The TEXbook. Addison Wesley, 1987.

[10] Conrad Kwok. EEPIC: Extensions to epic and LATEX Picture Environment.
In /software/tex documents/doc/formatted/eepic.dvi.Z.

[11] Leslie Lamport. LATEX User’s Guide and Reference Manual. Addison Wesley, 1986.3The "/software" references are local to Waterloo and are mostly documents available with public domain
software available at various FTP sites elsewhere. Please don’t send me mail to make these files available via FTP.

12

[12] Anil Goel (original by Leslie Lamport). Using LATEX at Waterloo.
In /software/tex documents/doc/formatted/LocalGuide.dvi.Z.

[13] Lindsay Patten. Using PostScript within LATEX. In
watnow:/system/watnext/software/share/pami/contrib/psdvidocs.

[14] Sebastian Rahtz. Notes on setup of the NFSS to use PostScript fonts.
In /software/tex documents/doc/formatted/psnfss.dvi.Z.

[15] Tomas Rokicki. DVIPS: A TEX Driver.
In /software/tex network/doc/dvips.dvi.Z.

[16] Daniel Taupin. musictex: Using TEX to write polyphonic or instrumental music.
In /software/tex documents/doc/formatted/musicdoc.dvi.Z.

[17] Marion van Geest. FLOW: Typeset Flow diagrams in LATEX.
In /software/tex documents/doc/formatted/flow man.dvi.Z.

[18] Marion van Geest. NASSI: Typeset Nassi-Schneiderman diagrams in LATEX.
In /software/tex documents/doc/formatted/nass man.dvi.Z.

[19] Timothy Van Zandt. PSTricks documentation and examples.
In /software/tex documents/doc/source/pstricks.

13

A Makefile

MAINFILE = figsInLatex
FIGS_TO_MAKE = xfig.ps model.ps model.tex
PSFILES = face.ps wheel.ps

Everything below this line can stay the same, customize above

.SUFFIXES: .fig .tex .dvi .ps .xwd .bib .bbl

.dvi.ps:
dvips $*.dvi > $*.ps

.fig.ps:
fig2dev -L ps $*.fig > $*.ps

.fig.tex:
fig2dev -L eepic $*.fig > $*.tex

.bib.bbl:
if [-r $*.aux] ; then . ; else latex $*.tex ; fi
bibtex $*

.xwd.ps:
xpr -device ps -portrait -psfig -compact $*.xwd > $*.ps

all: $(MAINFILE).ps

preview: $(MAINFILE).ps
ghostview $(MAINFILE).ps

printout: $(MAINFILE).ps
lpr -Fl -Pljp_mfcf $(MAINFILE).ps

$(MAINFILE).dvi: $(MAINFILE).tex $(FIGS_TO_MAKE) $(PSFILES) \
$(MAINFILE).bbl
latex $(MAINFILE)
dviselect 0 $(MAINFILE).dvi > title.dvi
dvips title.dvi > title.ps
latex $(MAINFILE)

clean:
/bin/rm -f $(MAINFILE).ps $(FIGS_TO_MAKE)
/bin/rm -f *.aux *.dvi *.bbl *.blg *.log

14

