
Introduction to PerlPatrick M. Ryanpatrick.m.ryan@gsfc.nasa.govHughes STX CorporationRevised November 16, 19931 What is Perl?Perl has become the new language of choice for many system management tasks.Combining elements of C, awk, sed, grep, and the Bourne shell, Perl is an excellenttool for text and �le processing. Although Perl is often described as a \systemmanagement language", it is useful for many tasks that would otherwise be donewith shell scripts.\Perl" is an acronym for Practical Extraction and Report Language. It wasdeveloped by (and is still maintained by) Larry Wall of Netlabs. It is freelyavailable software and compiles on nearly all major architectures and operatingsystems. These include all the major UNIX1 variants as well as VMS and evenDOS.Perl contains features of the Bourne shell (/bin/sh), awk, sed, and grep aswell as access to systems calls and C library routines. It is said that Perl �lls theniche between shell scripts and C programs.Perl is not a compiled language but it is faster than most interpreted languages.Before executing a Perl script, the perl program reads the entire script intomemory and \compiles" it into a fast internal format. In nearly all cases, a Perlscript is faster than its Bourne shell analogue. Note that by convention, one refersto the Perl language in upper case and the perl program in lower case.This document is intended to be an overview of the major features of Perl anddoes not describe every facet of the language. Much more extensive referencematerials are available. These references, as well as pointers to example scripts,are detailed at the end of this document.1\UNIX" is a trademark of AT&T. No, make that Unix Systems Laboratories. Or maybe Novell, Inc : : :1

2 Basic SyntaxPerl is a free-form language like C. Perl's control
ow structures are very muchlike C's. There are no FORTRAN-like line constraints.Perl programs, by convention, sometimes end in .pl. This is not a requirement,however, and most Perl scripts simply invoke the interpreter through the use ofthe #! construct. The �rst line of a Perl script (at least in the UNIX world)usually looks like this:#!/usr/local/bin/perlIn Perl, every statement must end with a semicolon (;). Text starting with apound sign (#) is treated as a comment and is ignored.Blocks of Perl code, such as those following conditional statements or in loopsare always enclosed in curly brackets (f...g).3 Data TypesPerl has three basic data types:� scalars� arrays of scalars� associative arrays of scalars (also known as hash tables)3.1 ScalarsThe scalar is the basic data type in Perl. A scalar can be an integer, a
oatingpoint number, or a string. Perl �gures out what kind of variable you want basedon context. Scalars variables always have a dollar sign ($) pre�x. Therefore, astring assignment looks like this:$str = "hello world!";not: str = "hello world!"; 2

In Perl, an alphanumeric string with no pre�x is (generally) assumed to be astring literal. Thus, the second statement above attempts to assign string literal"hello world!" to string literal "str".Perl's string quoting mechanisms are similar to those of the Bourne shell.Strings surrounded in double quotes (": : :") are subject to variable substitution.Thus, anything that looks like a scalar variable is evaluated (and possible inter-polated) into a string. Strings inside single quotes (': : : ') are passed throughbasically untouched.Perl variables do not have to be declared ahead of time. The are allocateddynamically. It is even possible to refer to non-existent Perl variables. Thedefault value for a variable in a numeric context is 0 and an empty string in astring context. Perl has a facility for determining whether a variable is undeclaredor if it is really is a zeroish value.Perl variables are also typed and evaluated based on context. String variableswhich happen to contain numeric characters are interpolated to actual numericvalues if used in a numeric context. Consider this code fragment:$x = 4; # an integer$y = "11"; # a string$z = $x+$y;print $z,"\n";After this code is executed, $z will have a value of 15.This interpolation can also happen the other way around. Numeric values areformatted into strings if used in a string context. Numeric values do not have tobe manually formatted as in C or FORTRAN. This type of interpolation takesplace often when writing standard output. For instance:$answer = 42;print "the answer is $answer";The output from this fragment would be \the answer is 42".Note that integer constants may be speci�ed in octal or hexadecimal as wellas in decimal.String constants may be speci�ed by way of \here documents" in the mannerof the shell. Here documents start with a unique string and continue until thatstring is seen again. For example:$msg = <<_EOM_; 3

The system is going down.Log off now._EOM_3.2 Arrays of ScalarsPerl scripts can have arrays (or \lists") consisting of numeric values or strings.Entire array variables are pre�xed with an \at" sign (@). It is also possible toassign to the array elements by name. Here are some examples of valid Perl arrayassignments:@numbers = (3,1,4,1,5,9);@letters = ("this","is","a","test");($word,$another_word) = ("one","two");Of course, Perl array elements can also be referenced by index. By default, Perlarrays start at 0. Perl array references look like this:$blah[2] = 2.718281828;$message[12] = "core dumped\n";Note that since an array element is a scalar, it is pre�xed by a $.The $# construct is used to �nd out the last valid index of an array ratherthan its size. The $[variable indicates the base index of arrays in a Perl script.By default, this value is 0. Here is a code fragment which tells you the numberof elements in an array:# assume that @a is an array with a bunch of interesting elements$n = $#a - $[+ 1;print "array a has $n elements\n";$[can be reset to use a di�erent base index for arrays. To have FORTRAN-stylearray indexing, set $[to 1.Arrays are expanded dynamically. You need only assign to new array elementsas you need them. You can pre-allocate array memory by assigning to its $# value.For instance:$#months = 11; # array @months has elements 0..114

Perl has operators and functions to do just about anything one would need todo to an array. There are facilities for pushing, popping, appending, slicing, andconcatenating arrays.Perl can only do one-dimensional arrays but there are ways to fake multi-dimensional arrays.3.3 Associative Arrays of ScalarsAssociative arrays are Perl's implementation of hash tables. Associative arraysare arguably the most unique and useful feature of Perl. Common applicationsof associative arrays include creating tables of users keyed on login name andcreating tables of �le names. The pre�x for associative arrays is the percent sign(%).Associative arrays are keyed on strings (numeric keys are interpolated intostrings). An associative array can be explicitly declared as a list of key-valuepairs. For example:%quota = ("root",100000,"pat",256,"fiona",4000);Associative arrays elements are referenced in the following way:$quota{dave} = 3000;In this case, "dave" is the key and 3000 is the value. Note that the referenceabove is to a scalar and is thus pre�xed by a $.Here is another example. In Perl scripts, there is a prede�ned associativearray called %ENV which contains all of the environment variables of the callingenvironment. Here is a bit of Perl code to see if you are running X Windows:if ($ENV{DISPLAY}){ print "X is (probably) running\n";} There are routines for traversing the contents of associative arrays and fordeleting elements. The relevant Perl routines are each, keys, values, anddelete.Note that the namespace for Perl variables is exclusive. One can refer toscalars, arrays, associative arrays, subroutines, and packages with the same namewithout fear of con
ict. 5

4 Operators and ComparatorsPerl's set of operators and comparators comprise nearly all of C's operators andcomparators. All of the usual arithmetic expressions and precedence are the samein Perl as they are in C. Listed below are expressions which are valid in Perl butnot in C. These descriptions are paraphrased from the Perl man page.** The exponentiation operator.**= The exponentiation assignment operator.() The null list, used to initialize an array to null.. Concatenation of two strings..= The concatenation assignment operator.eq String equality (== is numeric equality). Other FORTRAN-style comparatorsare also available. These are only used on strings.=~ Certain operations search or modify the string $ by default. This operatormakes that kind of operation work on some other string. The right argumentis a search pattern, substitution, or translation. The left argument is whatis supposed to be searched, substituted, or translated instead of the default$.x The repetition operator... The range operator-f, -x, -l, : : : Unary �le test operator. Perl has the ability to test various �lepermission settings in the same way as the UNIX test command. Consultthe Perl manual page for a full listing of Perl �le test operators.5 A Word about Default ArgumentsMany functions and syntactic structures in Perl have default arguments. In mostcases, this default argument is the variable $. While this is a handy feature forexperienced Perl programmers, it can make their code incomprehensible to thosejust learning the language. For novices, it can be a nuisance when one does notunderstand how the value of $ is determined.6

I recommend that when you are �rst learning Perl, put in all arguments explic-itly. In many cases, Perl �gures out what you are trying to do based on contextand assigns values to $ according to its own rules. The value of $ can changesubtly (or even drastically) depending on context.Once you have a few lines of Perl under your belt and understand the ways of$, feel free to use the default arguments. It is a nifty feature which allows youto write slick, fast, (and cryptic) Perl code.6 Regular ExpressionsWhere once you had to execute a grep or expr every time you wanted to comparea string to a regular expression (\regexp"), you can now stick regexps right inyour code. Perl's regexp handling capabilities are another reason that you'll neverwant to write another Bourne shell script.6.1 Matching Regular ExpressionsPerl regular expressions look very much like those in vi.. Match any one character except a newline.c* Match zero or more instances of character c.c+ Match one or more instances of character c.c? Match zero or one instance of character c.[class] Match any of the characters in character class class.nw Match an alphanumeric character (including " ")nW Match an non-alphanumeric character (including " ")nb Match a word boundarynB Match non-boundariesns Match a whitespace characternS Match a non-whitespace characternd Match a numeric character 7

nD Match a non-numeric character^ Match the beginning of a line$ Match the end of a lineAlso, nn, nr, nf, nt and nNNN have their usual C-style interpretations.The actual syntax for the pattern matching command is m/pattern/gio. Themodi�ers are g for \global" match, i for \ignore case", and o for \only compile thisregexp once". With the m command, you can use any pair of non-alphanumericcharacters to bound the expression. This especially useful when matching �le-names that contain the \/" character. For example:if (m!^/tmp_mnt!){ print "$_ is an automounted file system\n"; }If the delimiter you choose is \/", then the leading m is optional.Perl even has the ability to do multi-line pattern matching. Refer to thedocumentation on the $* variable for complete information.6.2 Extracting Matched String from RegexpsAs in vi, grep, and sed, Perl can return substrings which are matched in aregular expression. For instance, here is some Perl code to (sort of) emulate theUNIX basename command:$file = "/auto/home/pat/c/utmpdmp.c";($base) = ($file =~ m|.*/([^/]+)$|);The result of this code fragment is that $base has the value "utmpdmp.c". Theparens in the regexp indicate the substring we want to extract.The return value of a regular expression match depends on context. In anarray context, the expression returns an array of strings which are the matchedsubstrings. In a scalar context, typically in a test to see whether or not a stringmatches a regexp, the expression returns a 0 or 1.Here is an example of a scalar context. The <STDIN> construct, discussed indetail later, reads in one line of standard input.$response = <STDIN>;if ($response =~ /^\s*y/i){ print "you said yes\n"; } 8

Note that the distinction between an \array context" and a \scalar context" isimportant in Perl. Many routines and syntactic structures return di�erent typesof values depending on context. We will say more about array contexts later.7 Flow ControlPerl has all of the
ow control structures one normally expects in a procedurallanguage as well as a few extras.7.1 If-Then-ElseThe Perl if statement has the same structure as in C. Perl uses the same con-junctions and boolean operators as C: && for \and", || for \or", and ! for \not".One important note is that the C-style one-statement if construct cannot beused. All of the code following a Perl conditional (if, unless, while, foreach)must be enclosed in curly brackets. For instance, this C fragment:if (error < 0)fprintf(stderr,"error code %d received\n",error);becomes this Perl fragmentif ($error < 0){ print STDERR "error code $error received\n"; }The Perl analogue to C's else if construct is elsif and the else keyword worksas expected.Perl has an unless statement which reverses the sense of the conditional. Forinstance:unless ($#ARGV > 0) # are there any command line arguments?{ print "error; no arguments specified\n"; exit 1; }Perl's ideas about truth are similar to C. In a numeric context, a zero valueis considered \false" and anything non-zero is \true". An empty string is \false"and a string with a length of 1 or more is true. Scalar arrays and associativearrays are considered \true" if they have at least 1 member and \false" if empty.Non-existent variables, since they are always 0, are \false".Note that Perl does not have a case statement because there are numerousways to emulate it. 9

7.2 The while statementPerl's while statement is very versatile. Since Perl's notion of truth is very
exible, the while condition can be one of several things. As in C, Perl conditionalstatements can be actions or functions.For instance, the <STDIN> statement with no argument assigns a line of stan-dard input to the $ variable. To loop until the standard input ends, this syntaxis used:while (<STDIN>){ print "you typed ",$_;}In keeping with the recommended beginner practice of including all default ar-guments, that code would look like this:while ($_ = <STDIN>){ print "you typed ",$_;} As stated before, an array is \true" if it has any elements left. For instance:@users = ("nigel","david","derek","viv");while (@users){ $user = shift @users;print "$user has an account on the system\n";}This while loop will continue as long as @users has at least one element. Theshift routine pops the �rst element o� the named array and returns it.Perl has two keywords used for shortcutting loop operations. The next key-word is like C's continue statement. It will immediately jump to the next itera-tion of innermost loop. The last keyword will break out of the current conditionalstatement. It is analogous to C's break statement.10

7.3 The for and foreach statementsThe for and foreach statements in Perl are actually identical. They can beused interchangeably in any context. Depending on what job is being performed,however, one usually make more sense than the other.Just to make things more confusing, there are two ways that the for/foreachstatement can be used. One way is exactly like C's 3-argument for statement.For instance:@disks = ("/data1","/data2","/usr","/home");for ($i=0; $i <= $#disks; ++$i){ print $disks[$i],"\n"; }However, once you understand Perl's built-in ways of iterating over an array'selements, you will almost never need to use the 3-argument for statement.Perl's one-argument foreach statement is similar to the foreach statementin the C Shell. Given an array argument, the foreach statement will itera-tively return that array's elements. This contrasts with the destructive traversaldemonstrated before with the while and shift statements.The code fragment we just saw can be rewritten as:@disks = ("/data1","/data2","/usr","/home");foreach(@disks){ print $_,"\n"; }This construct is much more elegant and does not (necessarily) destroy the con-tents of @disks.An subtle but important point to note is that, in the fragment above, $ isreally a pointer into the array, not simply a copy of a value. If the code in theloop modi�es the $, the array is changed.7.4 GotoYes, Perl even has a goto statement. goto label will send control of the programto the named label. The usual caveats against GOTOs apply in Perl as elsewhere.Don't use GOTOs unless you really need them!11

8 Built-In Routines, C Library Routines, and SystemCallsPerl has a rich set of built-in routines and access to most of the interestingfunctions in the C library. The manual pages for Perl go into exhaustive detailabout all of these routines so I will simply discuss a few of the more commonlyused ones. Most of these descriptions are paraphrased from the man pages.2 Thedefault argument for most of these routines is $. Note that parentheses aroundfunction parameters are usually optional.8.1 Built-In Routineschop expr Chop o� the last character of a string and return the character. Thismight not seem like a very interesting thing to do until you understand Perl�le I/O. Upon reading a line of input into a variable, Perl preserves thenewline (nn). Usually, you don't need the newline so you probably want tochop it o�.defined expr Determine whether or not the named variable really exists or not.This function will return true if the named variable has a value and is notsimply unde�ned.die expr Utter a �nal message and pass away. This function will print out astring argument and then cause the script to terminate. It is used mostoften when some kind of fatal error occurs.each array Return the key-value pairs of an associative array in an iterativemanner.join expr,array Joins the separate strings of array into a single string with �eldsseparated by the value of expr, and returns the string.pop array Pop o� the top element o� the named array and shorten the array byone.print expr Print out the arguments. More on the print function later.push array,list Treat array as a stack and push the values of list on to the stack.Has the e�ect of lengthening the array.2And a few are shamelessly copied word for word 12

shift Shifts the �rst value of the array o� and returns it, shortening the arrayby 1 and moving everything down. Shift() and unshift() do the same thingto the left end of an array that push() and pop() do to the right end.split(/pattern/,expr,limit) Splits a string into an array of strings and returnsit. The pattern is treated as a delimiter separating the �elds. A commonuse of this function is to split up lines of the UNIX /etc/passwd �le into itscomponent �elds. This is similar awk's functionality only more versatile.substr expr,o�set,len Extract a substring out of expr and returns it.8.2 UNIX-type Utility Routineschmod Change the permission bits of the named �les.chown Change the owner and group of the named �les.mkdir Make directories.unlink Remove a �le.rename Rename a �le.rmdir Remove a directory.8.3 C Library RoutinesMany C library routines can be accessed in Perl. This is a sampling of them.getpw, getgr, : : : Perl has access to all of the C routines which access passwd,group, and hostname information.bind, connect, socket, : : : Interprocess communication facilities are avail-able in Perl.stat Access �le information via the UNIX stat(2) library routine.exit Exit the program with the speci�ed exit status.13

9 Operating System InteractionPerl can execute system commands in several ways.Perl can run shell commands via the system routine. This acts essentially likeC's system(3) call. A string is passed to the shell for execution. The outputfrom the command is sent to standard output. The exit status is put into the $?variable.3Perl also evaluates backquotes (also known as \backticks" or \grave accents")in way similar to the shell. This is useful when you want to run a shell commandand capture the output. Here is an example in which a script gets the name ofthe host:$host = `hostname`;chop($host);Again, the exit status of this command will be put into $?. Note that we needto chop o� the newline from the output.10 File HandlingPerl's has I/O routines for reading and writing text �les as well as \unformatted"�les.10.1 Text I/OPerl reads and writes text �les by way of �lehandles. By convention, �lehandlesare usually in upper case.Files are opened by way of the open command. This command is given twoarguments: a �lehandle and a �le name (the �le name may be pre�xed withsome modi�ers). Lines of input are read by evaluating a �lehandle inside angledbrackets (<: : :>). Here is an example which reads through a �le:open(F,"data.txt");while($line = <F>){ # do something interesting with the input}close F;3Actually, the entire status word is put into $?. Read the man page for details.14

The �le name argument can have one of several pre�xes. If the �le name ispre�xed with <, the �le is opened for reading. (This is the default action.) If the�le name is pre�xed with > then it is opened for writing. If the �le exists, it istruncated and opened. Finally, a pre�x of >> opens the �le for appending. Hereare a few examples:# peruse the passwd fileopen(PASSWD,"</etc/passwd");while ($p = <PASSWD>){ chop $p;@fields= split(/:/,$p);print "$fields[0]'s home directory is $fields[5]\n";}close PASSWD;# enter some information into a log fileopen(LOG,">>user.log");print LOG "user $user logged in as root\n";# read a line of input from the user$response = <STDIN>;There are 3 prede�ned �lehandles which have obvious meanings: STDIN, STDOUT,and STDERR. Trying to rede�ne these �lehandles with open statements will causestrange things to happen. STDOUT is the default �lehandle for print.Perl's �le input facility acts very di�erently if it is called in an array context.If input is being read in to an array, the entire �le is read in as an array of lines.For instance:$file = "some.file";open(F,$file);@lines = <F>; # suck in the whole file. yum, yum,...close F;This capability, though useful, should be used with great care. Ingesting whole�les into memory can be a risky thing to do if you do not necessarily knowwhat size �les you are dealing with. Perl already does a certain amount of inputbu�ering so reading in a �le at once does not necessarily yield an increase in I/Operformance. 15

10.2 PipesPerl can use the open routine to run shell commands and read or write to themin the manner of C's popen(3S) call.If a �le name argument starts with the pipe character (|), the �le name istreated as a command. The command is then executed and the program can besent input via the print command.If the �le name argument ends with a pipe, the command is executed and thatcommand's output can be read using the <: : :> facility. Here are two examples:open(MAIL,"| Mail root"); # send mail to rootprint MAIL "user \"pat\" is up to no good\n";close MAIL; # mail is now sentopen(WHO,"who|"); # see who's on the systemwhile ($who = <WHO>){ chop $who;($user,$tty,$junk) = split(/\s+/,$who,3);print "$user is logged on to terminal $tty\n";}close(WHO);10.3 Unformatted File AccessPerl can do direct reading and writing of bytes via the sysread and syswritecalls.Given the narrow scope of this introduction to Perl, I will not discuss thesefunctions. The references at the end provide complete information.10.4 Use of the print commandWe have already seen several examples of the use of the print command in Perl.Now perhaps is a good time to see a more exact description of what it does.The print command is very
exible and, in most cases, can do the same thingseveral di�erent ways. In general, print takes a series of strings separated bycommas, does any necessary variable interpolation, and then prints out the re-sult. The string concatenation operator (.) is often used with print. All of thefollowing lines yield the same output. 16

print "But these go to 11.\n";$level = 11;print "But these go to ",$level,".\n";print "But these go to $level.\n";printf "But these go to %d.\n",$level;print "But these " . "go to ". $level.".\n";print join(' ',("But","these","go","to","$level.\n"));As you can see, the C-style printf command is available. However, because ofPerl's ability to automatically interpolate numeric values to strings, printf israrely needed.There are, in fact, subtle performance issues that can be addressed with eachof the methods in the example above. Wall and Schwartz's book, listed in thereferences, talks about these issues.As seen in several of the previous examples, the print command also takes anoptional �lehandle argument.11 Some Notes about Perl Array ContextsIn C, every expression yields some kind of value. That value can be used as inputto another routine without having to store it in a temporary variable. Thus, youcan do things like chdir(getenv("HOME")).In Perl, many routines and contexts yield arrays. These resultant arrays canbe passed to other routines, iterated over, and subscripted. This eliminates theneed for many temporary variables.Here are a few examples. In this �rst case, we use the sort routine. Thisroutine takes an array as a parameter and passes back a sorted version of thesame array.@names = ("bill","hillary","chelsea","socks");@sorted = sort @names;foreach $name (@sorted){ print $name,"\n"; }In fact, one can iterate directly over the output from sort.foreach $name (sort @names){ print $name,"\n"; } 17

This example shows that we can even put a subscript on an array context.$name = (getpwuid($<))[6];print "my name is ",$name,"\n";The function getpwuid returns an array. We want the \real name" (or GECOS)�eld from the passwd entry so we put a subscript of [6] on the array context andput the result in $name.12 Subroutines and PackagesPerl has the ability to do modular programming by way of subroutines and li-braries.12.1 SubroutinesPerl scripts can contain functions (usually called \subs") which have parametersand can return values. Listed below is a skeleton for a Perl sub called sub1.sub sub1{ local($param1,$param2) = @_;# do something interesting$value;}This sub can then be called in this way:$return_val = do sub1("this is","a test");The do can be replaced by &. This is actually the preferred method:$return_val = &sub1("this is","a test");There are a few thing to keep in mind when writing subroutines. Parametersare put into the array @ inside the routine. Since all variables are global bydefault, we use the local() function to copy the values into local variables.Perl has a return statement which can be used to explicitly return values. Thisis usually unnecessary, however, because the return value from a Perl subroutineis simply the value of the last statement executed. Thus, if you want a subroutineto return a zero, the last line of the routine can be 0;.18

12.2 PackagesPerl has a library of useful routines which you can include in your scripts. ThePerl analogue of C's #include statement is require.For instance, Perl has a library to do command-line parsing similar to C'sgetopt(3) function.require 'getopts.pl';&Getopts('vhi:');if ($opt_v) { print "verbose mode is turned on\n"; }It is also possible to write your own libraries and include them in other scripts.13 Prede�ned VariablesPerl has a sizable set of prede�ned variables. These are all documented in detailin the man pages so I will only describe a few of the common ones.$ Default argument for many routines and syntactic structures.$? Status word returned from last system call. The lower bytes contain the signalupon which the program died (if any) and the upper bytes contain the exitcode.$$ Process ID of script.$< Real user ID of user running script.@ARGV Command-line arguments of script. Note that $ARGV[0] is the �rst actualargument, not the name of the program (as in C). The name of the script isin the variable $0.%ENV Associative array containing the environment variables of the calling envi-ronment.14 Command Line OptionsPerl has a set of command-line switches. Here are a few of the most useful ones.-c Check the syntax of a Perl script but do not execute it.19

-e Specify Perl code on the command line.-w Warn the programmer about any questionable uses of variables. These includevariable used only once and variables which are referenced before being as-signed. New Perl programmers are advised to check their scripts with perl-c -w script.pl.15 References15.1 Manuals and BooksThere are several very good references to Perl available. The �rst and foremostis the Perl manual page. It is about 90 pages long and describes all aspects ofPerl, albeit in a terse manner. For me, it is the reference of �rst resort since Ican scan through it in an Emacs bu�er.The book Programming Perl by Perl author Larry Wall and Randal Schwartzis the de�nitive compendium of all things Perl. It is known colloquially as \theCamel book" due to O'Reilly and Associates' habit of putting animals on thecovers of their books, in the case a camel. It should be noted, however, that itis not the best book to buy for learning Perl from scratch simply because it is sobig. It is a better book to read once you know the basics.There is a book due out sometime this fall by Randal Schwartz called Learning Perl.It is being written presumably in response to the di�culty of learning Perl fromthe Programming Perl book.There is a Usenet newsgroup devoted to the Perl language called comp.lang.perl.This is a forum for discussing nuances of Perl and asking questions about the lan-guage. New Perl programmers are encouraged to read the manual pages and thePerl FAQ (mentioned below) and to consult experienced local Perl programmersbefore posting to the group.15.2 How to get PerlThe current version of Perl is 4.036. Although version 5 is in alpha test right now,version 4 is the stable version. Version 4 can be found via the archie protocolat hundreds of ftp sites.I have put the current version of Perl in the anonymous ftp account on mymachine. The code can be found at:jaameri.gsfc.nasa.gov:/pub/perl/perl-4.036.tar.gz20

There are several useful things in that directory. They are:� perl-mode.el An Emacs major mode for editing Perl code.� perl.faq The list of Frequently-Asked Questions about Perl.� refguide.ps PostScript format reference guide for perl 4.036.� examples/ A directory of example Perl scriptsThe directory of example scripts is a good place to start hacking with real Perlcode. Even though I refer to these as \example" scripts, they are all real Perlscripts that I wrote to solve real problems.I welcome comments, bug �xes, fan mail, et cetera about anything in the ftp di-rectory or about Perl in general. I can be reached at patrick.m.ryan@gsfc.nasa.gov.

21

