List of Figures

1.1	The three generations of networks	2
1.2	A broadcast-and-select network using passive stars.	- 3
1.3	An optical wavelength-routed network.	4
1.4	Wavelength continuity constraint in a wavelength-	_
	routed network.	7
2.1	Block diagram of a WDM transmission system.	9
2.2	Transmitter and receiver structures.	10
2.3	The low-attenuation regions of an optical fiber.	11
2.4	Splitter, combiner and coupler.	13
2.5	A 16x16 passive-star coupler.	14
2.6	A semiconductor optical amplifier.	17
2.7	Erbium-doped fiber amplifier.	18
2.8	The gain spectrum of an erbium-doped fiber am-	
	plifier with input power $= -40 \text{dBm}$.	18
2.9	2×2 crossconnect elements in the cross state and	
	bar state.	20
2.10	A 4 \times 4 non-reconfigurable wavelength-router.	22
2.11	The waveguide grating router (WGR).	23
2.12	A P \times P reconfigurable wavelength-routing switch	
	with M wavelengths.	24
2.13	Broadcast-and-select WDM local optical network.	27
2.14	Lightpath routing in a WDM WAN.	30
3.1	Example of a passive-star-based optical metropoli-	
	tan area network.	36
3.2	Original amplifier gain model approximations used	
	in previous studies.	40
3.3	More-accurate amplifier gain model used here.	40
3.4	Modules.	42
3.5	Link between stars.	45

DESIGN OF OPTICAL WDM NETWORKS

3.6	Link from a station to a star.	45
3.7	Link from a star to a station.	46
3.8	A pair of adjacent stars in the network.	50
3.9	Sample Network 2.	55
3.10	Sample Network 3.	56
3.11	Amplifier placements for Sample Network 1 using	
	the link-by-link method.	56
3.12	Amplifier placements for Sample Network 1 using	
	the global optimum method (this work).	57
4.1	Two examples of powers on three wavelengths pass-	
	ing through a fiber.	62
4.2	Simple two-star network that needs no amplifiers	
	to operate.	63
4.3	Amplifier placement using the As Soon As Possible	
	(ASAP) method.	72
4.4	Amplifier placement using the As Late As Possible	
	(ALAP) method.	73
4.5	Mid-sized tree-based network needing no amplifiers	
	to function.	76
4.6	A possible MAN network.	76
4.7	Scaled-up version of the MAN network.	78
4.8	Scaled-down version of the MAN network.	79
4.9	A denser version of the MAN network.	80
5.1	An all-optical wavelength-routed network.	86
5.2	Wavelength continuity constraint in a wavelength-	
	routed network.	87
5.3	Organization of this study.	88
5.4	Functionality of a wavelength converter.	89
5.5	An opto-electronic wavelength converter.	90
5.6	A wavelength converter based on nonlinear wave	
	mixing effects.	91
5.7	A wavelength converter based on XGM in an SOA.	92
5.8	An interferometric wavelength converter based on	
	XPM in SOAs.	93
5.9	A switch which has dedicated converters at each	
	output port for each wavelength (WC denotes a	
	wavelength converter).	95
5.10	Switches which allow sharing of converters.	96
5.11	The share-with-local wavelength-convertible switch	
	architecture.	97
5.12	Architecture which supports electronic wavelength	
	conversion.	97

xiv

5.13	Wavelength conversion for distributed network man-	
	agement.	100
6.1	Network components along a lightpath.	117
6.2	Components and their loss/gain parameters in a	
	wavelength-routing node (WRN).	117
6.3	Architecture of a $N \times N$ nonblocking space switch	
	used in our model.	118
6.4	Hybrid simulation technique.	119
6.5	Calls at the instant of our simulation snapshot in	
	a bidirectional ring network.	125
6.6	Progress of a tagged call from node 10 to node 6	
	in the bidirectional ring network. The figure shows	
	the signal, noise and crosstalk powers and the BER	
	values at the receivers of the intermediate nodes	
	(9, 8 and 7) and the destination node (6) on wave-	
	length λ_2 for this call.	126
6.7	A mesh network.	127
6.8	Blocking probability vs. load for the mesh network.	128
A.1	Illustration of a directional coupler in the bar state.	136
A.2	Crosstalk in a 2×2 switch.	137
A.3	Crosstalk in a 4×4 switch. Existing calls from	
	input port 3 to output port 4 and from input port	
	1 to output port 2 both interfere with the new call	
	from input port 2 to output port 3.	138
B.1	Calculated gain saturation curves for input and	
	output power variation.	148