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Abstract—Current DDoS attacks are carried out by attack tools, 
worms and botnets using different packet-transmission strategies 
and various forms of attack packets to beat defense systems. 
These problems lead to defense systems requiring various 
detection methods in order to identify attacks. Moreover, DDoS 
attacks can mix their traffics during flash crowds. By doing this, 
the complex defense system cannot detect the attack traffic in 
time. In this paper, we propose a behavior based detection that 
can discriminate DDoS attack traffic from traffic generated by 
real users. By using Pearson’s correlation coefficient, our 
comparable detection methods can extract the repeatable 
features of the packet arrivals. The extensive simulations were 
tested for the accuracy of detection. We then performed 
experiments with several datasets and our results affirm that the 
proposed method can differentiate traffic of an attack source 
from legitimate traffic with a quick response. We also discuss 
approaches to improve our proposed methods at the conclusion 
of this paper. 
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I. INTRODUCTION 
 

Current DDoS attacks remain a high threat to IT security on 
the Internet. The attacks can be carried out by attack tools [1], 
worms [2], and botnets [3] with attack variants of packet 
transmission such as TCP/SYN, UDP and HTTP request floods 
[4]. These sources of DDoS attack are powerful and can 
overwhelm any online host and server. Moreover, one of the 
biggest challenges for DDoS attack detection is flash-crowd 

attack. Flash-crowd attack [5][6][7] is the phenomenon of a 
high volume of illegitimate packets from attack sources. The 
attack traffic is viewed the same as legitimate users’ traffics 
(called flash crowd). Attack sources pretend to be real users 
and pump a large volume of request packets that flood the 
target victim. In this case, the defense/detection system could 
be beaten and the server has difficulty surviving the attack 
which causes it to crush or degrade the service.  

Statistical-based defense systems [8][9][10] against DDoS 
attacks rely on header information from IP packets such as IP 
address, time-to-live (TTL), protocol type (port number), etc. 
The detection can discriminate “normal” traffic from 
“abnormal” traffic which is more likely to be an attack. 
However, some botnets, e.g. Mydoom [2] can bypass detection 
approaches through the victim. This is because the approaches 
consider the Transport layer and/or Network layer. Therefore, 
the botnets which generate similar legitimate HTTP packets 
can avoid detection. Even though the attacking HTTP traffic is 
aggregated, they still look like flash crowd. 

Heuristic-based defense systems [4][11] against DDoS 
attack rely on a threshold. Each approach may need to calculate 
its own threshold to judge the current observing traffic. The 

drawback of heuristic detection approaches is their inability to 
consider legitimate traffic mixed with attacking traffic. Hence, 
packets from legitimate users may be blocked or eliminated 
during attack incidents occur. 

Since attack sources have been programmed and worked 
according to their attack functions, pattern detection based on 
their behaviors is possible. The worms work as an automatic 

program which can be differentiated from human users. The 
botnets and DDoS attack tools work as a semi-automatic 
program after an attacker issues the attack command based on 
C&C fashion. Hence, these attack sources could repeatedly 
generate attack packets with different transmission abilities. 
These anomaly behaviors could be predictable and explainable 
in pattern styles. In contrast, the arrival rate based on human 
users, including a proxy server seems to constitute the 
nonpatternable (random) cases.  

In this paper, we propose a solution to detect the pattern 
behavior of traffic sources by observing packet arrivals. This 
proposed technique is an effective method to discriminate 
packets among DDoS attack sources and real users including 
proxies. We will use the packet arrival rate as information to 
differentiate attack-source traffic from user traffic. We have 
provided more details in Section 2. Since we can measure the 
degree of pattern behavior, we can push the right actions to the 
right packets. The packets from the attack sources must be 
eliminated, but the user packets must get through the server. 

The contributions of the paper are listed as follows: 

• Fast detection: The detection system must be able to 
detect the DDoS attacks in time. 

• Reliability: The detection system must not cause false 
positive and false negative in results. 

• Feasibility: The detection system must be able to 
implement in real-world cases based on current Internet 
technology. 

• Real-time implementation: The detection system must 
be able to respond as soon as the flash-crowd traffic 
arrives at the server. 

• Flexibility: The detection system must be able to detect 
any form of attack packets such as malformed IP, TCP, 
UDP, ICMP, Application-based floods, etc. 

 
The rest of the paper is organized as follows. Section 2 

reviews the background of our research. Section 3 states the 
problem and defines the methods to solve the problem. Each 
method will be discussed detailing the threshold and variables 
in Section 4. The next Section uses the adjusted threshold and 
variables to experiment with the real datasets. In the final 
Section, we provide the summary and talk about the direction 
of our research in the future. 
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II. BACKGROUND 
 

Our proposed approach to discriminate DDoS attack traffic 
from user traffic is to observe the packet transmission rate. An 
individual host may require access to a server by sending a 
request. The request packets can be, for example, TCP/SYN, or 
HTTP requests, etc. Hence, the request packet transmission can 
be observed using the degree of automation, as we know that 
attack sources work following the instructions from the 
programmer and have a very high degree of automation to 
work after instructions are issued. When the attack sources 
perform a DDoS attack on the victim, their transmission rate 
appears to be predictable and itself becomes a pattern in a short 
period of time. However, Internet users have a limit for the 
response from the outcome after the first request. For example, 
after a webpage has been shown, the user may take time to 
skim and respond, for example, clicking on a link. In other 
words, human users unpredictably create request packets at any 
period of time. Hence, we can test the pattern of packet 
transmission by using some mathematical models or statistical 
analysis. 

A. Predictable and Nonpredictable Rates 

As we know, attack rates depend on the characteristics of 
packet transmission. In the victim-end point, the attack packets 
that are received can be observed as an arrival rate. This attack 
behavior can be divided into two main types as follows: 

1) Predictable attack rate: The attack agents (botnets) 

send out the attack packets in a predictable sense to the victim. 

For instance, if we have enough data of a packet arrival at the 

time interval, we would know what is going to occur at the 

next time interval. This is important behavior of a botnet 

which is an automatic program. The program follows the 

instructions from the (malicious) programmer. The botnet 

program usually repeats packet tranmission until  other 

commands are issued. There are various arrival rates (attack 

rates) and they can be classified as follows: 

a) Constant rate attack [6][12] can be considered a 

stable attack rate. The attack agent (botnet) may use a constant 

attack rate that may be considered from the available 

bandwidth, the performance of a computer, and so forth. With 

a low bandwidth rate, the attack can fly under the radar and 

get through the defense system. Therefore, this attack can 

disturb and/or reduce the quality of services until a denial of 

services occurs that depends on the aggregate rate at the victim 

site. In cases of DDoS attack, the attack agents may continue 

sending the attack packets to the victim with maximum 

available bandwidth and full ability for transmission. This 

could destroy the victim’s service. When a large number of 

agents flood a huge number of attack packets simultaneously, 

the vulnerable victim will be overwhelmed and unable to serve 

legitimate client requests. In a worst case scenario, the 

victim’s servers can completely crash. 

b) Increasing rate attack [6][12] can be considered a 

linear or an exponential attack rate and is also known as an 

abrupt rate attack. The attack agent may increase its packet 

transmission rate gradually or dramatically. As a result, the 

victim’s resources are either slowly or rapidly exhausted. A 

slowly increasing attack rate can delay sensory detection of an 

attack. The attack agent, however, may increase the attack rate 

to maximum or decrease its attack rate at a later stage. 
c) Periodical rate attack [6][13][14] generates a 

predictable attack rate. The attack agents may not continue the 
same attack rates, but may repeat transmission behavior of 
attack packets as a regular pattern. A periodical rate attack is 
also defined in Pulsing DoS attack which considers period of 
attack (T), length of the peak (L), and magnitude of the peak 
(R) [7][15].  

2) Nonpredictable attack rate: The variable rate attack (or 
fluctuating rate attack) [12] is varying the transmission rate of 
attack packets to avoid detection and response. To generate an 
unpredictable attack rate, the attack agents may randomize the 
transmission rate and the attack delay time for the attack 
packets. The attack could be generated in continuous and/or 
discontinuous traffic styles. The detection system may allow 
this type of attack to pass through victims because it appears 
as flash-crowd traffic, which is in high demand by legitimate 
Internet users. 

B. Mathematical Models 

Based on data of arrival rates, we do need mathematical 
models to identify the degree of prediction. Since we 
categorize data into predictable and nonpredictable data, the 
mathematical models must be able judge the data by using a 
threshold. In this paper, we use Pearson’s correlation 
coefficient (here after called the correlation) [16], which is 
defined as: 

��,� �
���	 
 ���� 
 ����

����
                      �1� 

The correlation is used to measure dependence between 
two quantities (variables) X and Y with expected values µX and 
µY and standard deviations σX and σY. Both value of the 
standard deviations are finite and nonzero (0 < σX < ∞ and 0 < 
σY < ∞). One of the impressive properties of the correlation is 
symmetric measurement said ��,� � ��,� . In other words, 

whichever data comes first, we can still get the same result as 
measuring.  

The correlation value is between -1 and 1 (
1 � ��,� �

1). Hence its absolute value (|��,�|) cannot exceed 1. The 

absolute correlation value is 1 �|��,�| � 1� represented by the 

stronger relationship between two variables called linear 

dependence. However, the absolute value (|��,�|) from the 

correlation could reach zero. This does not always mean the 
two variables are uncorrelated. In a special case where both 
are normal, the uncorrelated result is also equivalent to 
independence. In our research, we define the data that gives us 
this value of 1 as predictable data with a linear form. The 
value of 0 (|��,�| � 0) also defines predictable data with a 

symmetric form. We provide further details in the next 
section. 

 

III. PROBLEM STATEMENT 

 

We consider the situation where a server is overwhelmed by 

flash crowd flows and/or DDoS attacks as illustrated in Fig. 1. 

A server connects to the Internet and provides a service to 

public Internet users. Legitimate users do not harm the server 

or the service. However, the busy server could suffer a flash 
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crowd (FC) event which is observed as a sudden high demand 

in service requests from Internet users. A flash crowd could 

overwhelm a server and create a DoS condition which results 

in either a delay of response or a complete crash.  

DDoS attack is, however, more harmful than a flash crowd. 

Zombie machines (or bots) are compromised and controlled by 

attackers. The (botnet) attacks could be synchronized to 

overwhelm the victim in a specific period of time. The 

situation could be worse when a flash crowd merges with a 

DDoS attack as shown in Fig. 1. This accelerates the DoS 

condition to the server. 

 

 

 

 

 

 
 
Figure 1. Accumulative arrival rate λ (packet/time interval) from k IP 

address(es). 

 

The behavior of the bot can be detected by the victim’s 

server by observing the predictable arrival rate. To minimize 

the cost of calculation, the server can observe the arrival rate 

(λk) from a high risk group of users. A study [3] found that in a 

botnet attack scenario, at most around 30% of bots were online 

at the same time for attack activities. This could possibly be an 

approximate number of IP addresses that need to run the bot 

behavior check. In particular, only 30% of user IP addresses 

that express high arrival rates could be checked in a period of 

time. This paper covers only two methods using the 

correlation coefficient to check arrival rates as data. 

A. Method 1: Correlation between arrival rate and time  

We denote X as a sample set of arrival rate (	 � ����, 

where k = 0, 1, 2, … , N) and Y as a sample set of sequence 

number (Y� ��� where k = 0, 1, 2, … , N). For example, 

	 � ��0,  �1,  �2, … , ���  and  � �0, 1, 2, … , ��.  Then we 

calculate the correlation value (��,�) from the two variables: X 

and Y. The value that we expect is between -1 and 1 (
1 �

�	,�1). 

B. Method 2: Correlation of itself arrival rate 

We denote X as a sample sequence of arrival rate (	 �

���2���, where k = 0, 1, 2, … , N) and Y as a sequence number 

of time interval ( � ���2��1�� where k = 0, 1, 2, … , N). For 

example, X = {λ0, λ2, λ4, …, λ(2k)} and Y = {λ1, λ3, λ5, …, 

λ(2k+1)}. Then we calculate the correlation value (��,�) from the 

two variables: X and Y. The value that we expect is between -1 

and 1 (
1 � ��,� � 1).  

For both methods we calculate the correlation value and 

define two thresholds: upper threshold (τU) and lower 

threshold (τL). We can calculate these thresholds as follows: 

τ�  � �  1.0                                                �2� 

τ!  � 1.0 
 ��  1.0�                               �3� 

The value of the upper threshold must not exceed 1 and be 

less than the lower threshold (1 � τU � τL). On the other 

hand, the value of the lower threshold must not be below 0 and 

greater than the upper threshold (τU  � τL � 0 ). The 

confidence value ��� is another adjustable value that we will 

discuss in the next section. As we state in our goals, these 

thresholds will help us to identify the dependency degree of 

dependency of the arrival rate data into two categories: 

1) Predictable attack rate: The data will be classified as a 

predictable attack rate if the correlation value is closed to 0 or 

1 as we discussed in the previous section. If the absolute 

correlation value is greater than the upper threshold (τU 

� |��,�| � 1) or less than the lower threshold (0 � |��,�| � 
τL), thus the data is judged as a predictable attack rate. 

However, we still need to define how close the correlation 

value can be for it to be considered a dependency arrival rate. 

This issue will be explained in more detail in the next section. 

2) Nonpredictable attack rate: The data will be classified 

as a nonpredictable attack rate if the correlation value is not 

closed to 0 or 1. In other words, the data is expressed as a 

nonattack arrival rate and is legitimate to the service of the 

server. If the absolute correlation value is between the upper 

and lower thresholds (τU # |��,�| # τL), thus the data is  

judged as a predictable attack rate. However, we still need to 

define the range of the correlation value that can be judged as 

an independency arrival rate. This issue will be explained in 

more detail in the next section. 

Unfortunately, only one correlation result (ρ%,& ) cannot 

determine whether arrival data is attacking or legitimate. We 

need a series of correlation result to confirm the situation. 

Hence we define ��'� is a set of the continuous results of the 

correlation coefficient. The i variable (i = 0, 1, 2, … , N) could 

be the limited number of observing the correlation value. For 

instance, if we want to observe the correlation for 10 values, 

we will have ��(, �), �*, … , �+�. Each of the correlation values 

will be calculated with the upper threshold (τU) and lower 

threshold (τL) to define whether the data is predictable or not. 

All of these results will be calculated for an average point 

�,-�  a and compared with a confidence value ��� . For 

example, the default confidence value is 95% �� � 0.95�. The 

confidence value is used to judge whether this arrival data is 

either an attack or legitimate arrival. Finally, we decide to 

drop only the IP traffic that equals or is higher than the 

confidence value �,- � �� which indicates the predictable 

traffic. 

 

IV. SYSTEM OPTIMIZATION ANALYSIS 

 
In this section, we discuss optimizing variables. As we 

proposed in our goals, the attack detection must respond as 
quickly as possible after the attack reaches the victim. The 
computational resources also need to be minimized with 
simplified methods. To find the optimized variables, we 
analyzed the following: 

λk 

Router 

Legitimate Flaw 
 

DDoS Attack 

Server Internet 
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A. Size of sample analysis 

We begin from the size (k) of a sample set of arrival rates 
(����, where k = 0, 1, 2, … , N). The question is how much 
sample data should be used. If the size is very small, for 
example k = 3, the calculation process is very quick. However, 

the correlation result (��,�) may be misleading. As a result, the 

performance measurement gives us a high rate of false 
negative/positive. On the contrary, if the size is quite large, for 
example, k = 100, the calculation process is very slow. It also 
means we wait for a long time to get all the data 
���0,  �1,  �2, … , �99��. For example, if each k has a time slot of 
0.1 second. Our defense system needs at least 10 seconds to 
get the first sample correlation coefficient (�(). Moreover, if 
we observe up to 10 sample correlation data ��(, �), �*, … , �+�, 
the detection will give us the result in at least 11 seconds (10 
seconds for the first correlation data (�() plus 1 second for the 
remaining data ��), �*, �0, … , �+�). This delay in making the 
decision means a weak victim could increase the possibility to 
crash. 

B. Correlation threshold analysis 

There are two thresholds: upper threshold (τU) and lower 

threshold (τL) that we consider to minimize the false 

positive/negative rate. To catch the predictable attacks, we 
need to adjust the absolute correlation value greater than the 

upper threshold (τU � |ρ%,&| � 1 ) or less than the lower 

threshold (0 � |ρ%,&| �  τL). The question is what the best 

values are for τU and τL. If we adjust τU too high and τL too 
low, our detection system may fail, andas a result, the defense 
system may allow most attack packets to get through. On the 

contrary, if we adjust τU too low and τL too high, we may 
confront the DoS condition earlier because most packets would 
be considered a predictable attack. Since the two thresholds are 
important, the adjusted values may rely on how much 
confidence we have. Hence, the confidence value ��� would be 
calculated with these thresholds. By default, we assign the 

confidence value of 85% (� � 0.85). Thus, the τU is 0.85 of 

correlation value and τL is 0.15 of the correlation value.  

C. Average point and confidence value analysis 

Before the final decision on the detection system, there are 
another two variables that need to be adjusted. One is the 

average point (,) and another is the confidence value ���. The 

,-  is calculated from the total point (P) divided by the total 
number (k) of observing correlation (��'�). We borrow k from 
the size of the sample set of arrival rates (����, where k = 0, 1, 
2, … , N-1) because we need to observe the behavior as double 
time. For example, if we set k = 10 then we observe 10 arrival 
data ���0,  �1,  �2, … , �9��. This data is calculated to only one 
correlation coefficient (�() which is not enough to judge the 
situation. Hence, we extend to observe more data as k time 
which create ��), �*, �0, … , �+� . The optimized k has been 
discussed in Section 4(A).  

In the next step, point (P) would be assigned based on the 
result of each correlation ��'�. If the correlation value is not 

lower than the upper threshold (τU) and is not higher than the 

lower threshold (τL), we increase P. This is because the 

correlation may be closed to 0 or 1 (��,� 2  0 OR ��,� 2  1), 

so we need to transform the result of correlation into a marking 
score fashion (point P). The final step is to judge the arrival 
data ���� as either a predictable attack or not from the average 

point �,-�. This process is concerned with the confidence value 
���. The higher �, the more confidence we give our judgment. 
However, too high or too low � value leads to a high rate of 
negative/positive false. By default, we assign the confidence 
value of 85% (� � 0.85).  

 
V. EXPERIMENTAL RESULTS 

 
We test our methods with the generated datasets and 

analyze how to optimize all variables in our discrimination 
detection system. However, we cannot use all details of the 
test due to the number of results. Based on the real datasets we 
have, we will test them with these optimized variables using 
both methods. Following are examples provided with a 
description: 

 

 
(a) 

 
(b) 

Figure 2. Experiment on sample dataset 1 (CID55) with method 1, (a) packet 

arrival plot, and (b) correlation from different k=20. 

 

 
(a) 

 
(b) 

Figure 3. Experiment on generated dataset 1 (CID55) with method 2, (a) 

packet arrival plot, and (b) correlation with k=10. 
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(a) 

 
(b) 

Figure 4. Experiment on sample dataset 2 (M17060) with method 1, (a) packet 

arrival plot, and (b) correlation from different k=20. 

 

 
(a) 

 
(b) 

Figure 5. Experiment on sample dataset 2 (M17060) with method 2, (a) packet 

arrival plot, and (b) correlation with k=10. 

A. Sample Dataset 1 (CID55) 

CID55 is an example of clients from a website of the 
World Cup 98 [17]. Its arrival rates are similar to screw 
attacks as depicted in Fig. 2(a). We believe this may not be a 
screw attack but an automatic program. Perhaps this is an 
effect of using Java script to update data from the website.  

Now let us consider the result of correlation from both 
methods. The result of accumulative correlation gives us very 
different meanings. Method 1 detects the traffic flaw as an 
attack with a confidence value of 94% (as shown in Fig. 2(b)) 
but the other method does not (as shown in Fig. 3(b)). In this 
case, we must rely on the method that can detect the 
dependency relationship. Hence, we will not consider the 
correlation with different k from method 2. 

As we have stated, method 1 is more reliable in this 
scenario. The accumulative correlation is more stable and less 
than 0.05 after k > 20. Hence, we consider k = 20. As a result, 

the maximum average point �56	�,-�� is 80%, if � � 95%. 
This means that the results of correlation ��'�  are �' �
0.05 and �' ; 0.95. Because we set the confidence value too 
high, this scenario did not detect it as a screw attack. 

The system admin may ignore this kind of low rate attack 
which may not be harmful to the service system. Perhaps this 
is a download program or Java scripts that regularly download 
something from the website. However, if we consider the 
automatic program, we could reset � � 85%  and then the 
system can detect an attack after 20 time intervals (equal to 2.0 
seconds) in this scenario. 

B. Sample Dataset 2(M17060) 

M17060 is sample traffic of the client from the project of 
MStream attack [1]. Its arrival rates are transmitted in the 
random mode and are hard to detect as depicted in Fig. 4(a). 
As this is a high arrival rate, we expect our method to detect it 
as soon as possible before it can harm the server. 

Now let us consider the result of correlation from both 
methods as shown in Fig. 4(b) and 5(b) respectively. The 
result of accumulative correlation tells us a similar meaning; 
method 1 and 2 detect the traffic flaw as an attack with 85% of 
the confidence threshold value. As a result, the maximum 
average point �56	�,-�� is 100%, if � � 85%. This means 
that the results of correlation ��'� are �' ; 0.15 or �' � 0.85.  

For detection time, the two methods can detect the attack 
within 1.7 seconds and 2.4 seconds respectively. 

C. Sample Dataset 3(CID1387) 

CID1387 is an example of the clients from the World Cup 
98 website [17]. Its arrival rates are transmitted like a flash 
crowd as depicted in Fig. 6(a). As this is a high arrival rate, we 
expect our method to detect this flow as legitimate flash crowd 
traffic with a low degree of harm for the server. 

Now let us consider the result of correlation from both 
methods. The result of accumulative correlation as shown in 
Fig. 6(b) and 7(b) tells us a similar meaning; method 1 and 2 
could not detect the strong relationship for the traffic flaw with 
85% of the confidence threshold value. As a result, the 
maximum average point �56	�,-��  is only 10% and 60% 
from both methods respectively, if � � 85%. This means that 
the results of correlation ��'�  are �' # 0.15 >?@ �' A 0.85. 
This is because the traffic is clean and therefore, all attack 
request data can pass through the server. 

 

VI. SUMMARY AND FUTHER WORK 

 
As we stated that DDoS attack sources have a form of 

pattern behavior of packet transmission, with the predictability 
of known patterns being a very effective approach in detecting 
them. We propose two methods using the correlation 
coefficient to detect the known patterns.  

Moreover, we tested these methods with generated data 
and a real dataset from the website of the World Cup 98 and 
project MStream attacks. We found the hidden predictable 
behavior from both datasets. The best results we achieved 
were 1.7 seconds and 2.4 seconds from the first method and 
second method respectively. We can also differentiate flash 
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crowd traffic from DDoS attack traffic. The detection 
performance so far is good enough to protect the server from 
crashing during a DDoS attack incident. We believe that our 
experiment is a big step to providing the universal DDoS 
detection which could be implemented in any network 
equipment and in any Internet layer. 

As the further works, we will test the two methods with 
difference packet information such as packet delay and 
changing rate of port number. We could test them with the real 
scenarios in real time. This could help us to confirm the 
performance from the predictability test. Moreover, a number 
of observing data may cause us delay in detection. We 
therefore need to improve our proposed methods to detect 
faster reducing complexity and delay. 

 

 
(a) 

 
(b) 

Figure 6. Experiment on sample dataset 3 (CID1387) with method 1, (a) 

packet arrival plot, and (b) correlation from different k=20. 

 

 
(a) 

 
(b) 

Figure 7. Experiment on sample dataset 3 (CID1387) with method 2, (a) 

packet arrival plot, and (b) correlation with k=10. 
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